Water
- Formula: H2O
- Molecular weight: 18.0153
- IUPAC Standard InChIKey: XLYOFNOQVPJJNP-UHFFFAOYSA-N
- CAS Registry Number: 7732-18-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Water vapor; Distilled water; Ice; H2O; Dihydrogen oxide; steam; Tritiotope
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 100, reactions 101 to 150, reactions 151 to 200, reactions 201 to 250, reactions 251 to 300, reactions 301 to 350, reactions 351 to 400, reactions 401 to 450, reactions 451 to 500, reactions 501 to 550, reactions 551 to 600, reactions 601 to 650, reactions 651 to 700, reactions 701 to 750, reactions 801 to 850, reactions 851 to 900, reactions 901 to 950, reactions 951 to 1000, reactions 1001 to 1050, reactions 1051 to 1100, reactions 1101 to 1150, reactions 1151 to 1200, reactions 1201 to 1250, reactions 1251 to 1300, reactions 1301 to 1350, reactions 1351 to 1360
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Fluid Properties
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 751 to 800
By formula: (HO- • 4H2O) + H2O = (HO- • 5H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.12 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. ± 5.9 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
By formula: (HO- • 5H2O) + H2O = (HO- • 6H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.86 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. ± 5.9 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
By formula: (HO- • 6H2O) + H2O = (HO- • 7H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.51 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13. ± 5.9 | kJ/mol | N/A | Meot-Ner (Mautner) and Speller, 1986 | gas phase; B |
By formula: (Sr+ • H2O) + H2O = (Sr+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 128. | kJ/mol | HPMS | Tang, Lian, et al., 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 118. | J/mol*K | HPMS | Tang, Lian, et al., 1976 | gas phase; M |
By formula: (Ag+ • H2O) + H2O = (Ag+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 106. | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Pb+ • 5H2O) + H2O = (Pb+ • 6H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. | kJ/mol | HPMS | Tang and Castleman, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | HPMS | Tang and Castleman, 1972 | gas phase; M |
By formula: (Pb+ • H2O) + H2O = (Pb+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.7 | kJ/mol | HPMS | Tang and Castleman, 1972 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 106. | J/mol*K | HPMS | Tang and Castleman, 1972 | gas phase; M |
By formula: (NO3- • H2O) + O2S = (NO3- • O2S • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 30. | kJ/mol | HPMS | Banic and Iribarne, 1985 | gas phase; From thermochemical cycle,switching reaction, electric fields; M |
By formula: (Bi+ • 5H2O) + H2O = (Bi+ • 6H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. | kJ/mol | HPMS | Tang and Castleman, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.7 | J/mol*K | HPMS | Tang and Castleman, 1974 | gas phase; M |
By formula: (Bi+ • H2O) + H2O = (Bi+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.1 | kJ/mol | HPMS | Tang and Castleman, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 107. | J/mol*K | HPMS | Tang and Castleman, 1974 | gas phase; M |
By formula: CH3O4- + 2H2O = CH5O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62.34 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
By formula: CH4O5- + 3H2O = CH6O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 ± 3.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14. ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
By formula: CH5O5- + 3H2O = CH7O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 1.3 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19. ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
By formula: CH7O6- + 4H2O = CH9O7-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.1 ± 3.8 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 14. ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
By formula: CHO3- + H2O = CH3O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.69 ± 0.84 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 35.6 ± 1.7 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
By formula: COS + H2O = CO2 + H2S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.4 ± 0.96 | kJ/mol | Eqk | Terres and Wesemann, 1932 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.66 kJ/mol; ALS |
By formula: C2H6O + C3H6O2 = C5H10O2 + H2O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -22.6 ± 0.42 | kJ/mol | Eqk | Essex and Sandholzer, 1938 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -23.54 kJ/mol; ALS |
By formula: C2H7O2- + H2O + CH4O = C2H9O3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.5 ± 4.2 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 42.3 ± 2.1 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
By formula: C4H7O4- + H2O + 2H2O = C4H9O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.4 ± 2.9 | kJ/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.7 | kJ/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
By formula: C6H11O6- + 2H2O + 2H2O = C6H13O7-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.1 ± 1.7 | kJ/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 11.6 | kJ/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
By formula: C3H11O3- + H2O + 2CH4O = C3H13O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.7 ± 4.2 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26.8 ± 2.1 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
By formula: C2H9O3- + 2H2O + CH4O = C2H11O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.6 ± 4.2 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 28.9 ± 2.1 | kJ/mol | TDAs | Meot-Ner(Mautner), 1986 | gas phase; B |
By formula: C4H9O5- + H2O + 3H2O = C4H11O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.4 ± 2.5 | kJ/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.4 | kJ/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
By formula: C6H13O7- + 2H2O + 2H2O = C6H15O8-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.9 ± 0.42 | kJ/mol | N/A | Meot-ner, Elmore, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.83 | kJ/mol | TDAs | Meot-ner, Elmore, et al., 1999 | gas phase; B |
By formula: CH2O4- + 2H2O = CH4O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 2.1 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20. ± 4.2 | kJ/mol | TDAs | Keesee, Lee, et al., 1979 | gas phase; B |
+ = H2N3O-
By formula: N3- + H2O = H2N3O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46. ± 75. | kJ/mol | N/A | Yang, Kiran, et al., 2004 | gas phase; Affinity: EA change (H2O)n-1..N3- ion. Vertical Detachment Energy: 3.25±0.03 eV; B |
CAS Reg. No. 581782-45-8 + 2 = C6H15N2O5-
By formula: CAS Reg. No. 581782-45-8 + 2H2O = C6H15N2O5-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.2 ± 0.84 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.2 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
CAS Reg. No. 581782-45-8 + 3 = C6H17N2O6-
By formula: CAS Reg. No. 581782-45-8 + 3H2O = C6H17N2O6-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.0 ± 0.84 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 16.5 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
CAS Reg. No. 581782-45-8 + 4 = C6H19N2O7-
By formula: CAS Reg. No. 581782-45-8 + 4H2O = C6H19N2O7-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.7 ± 0.84 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 13.5 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
CAS Reg. No. 581782-45-8 + = C6H13N2O4-
By formula: CAS Reg. No. 581782-45-8 + H2O = C6H13N2O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.95 ± 0.84 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27.6 | kJ/mol | TDEq | Liu, Wyttenbacj, et al., 2004 | gas phase; B |
(C7H10O4-2 • 2) + = (C7H10O4-2 • 3)
By formula: (C7H10O4-2 • 2H2O) + H2O = (C7H10O4-2 • 3H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 33.5 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C7H10O4-2 • 3) + = (C7H10O4-2 • 4)
By formula: (C7H10O4-2 • 3H2O) + H2O = (C7H10O4-2 • 4H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 30.1 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C7H10O4-2 • 4) + = (C7H10O4-2 • 5)
By formula: (C7H10O4-2 • 4H2O) + H2O = (C7H10O4-2 • 5H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 25.9 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C7H10O4-2 • 5) + = (C7H10O4-2 • 6)
By formula: (C7H10O4-2 • 5H2O) + H2O = (C7H10O4-2 • 6H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 23.0 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C7H10O4-2 • ) + = (C7H10O4-2 • 2)
By formula: (C7H10O4-2 • H2O) + H2O = (C7H10O4-2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56. ± 18. | kJ/mol | N/A | Ding, Wang, et al., 1998 | gas phase; Affinity is EA difference from next lower solvated ion.; B |
(C8H12O4-2 • 2) + = (C8H12O4-2 • 3)
By formula: (C8H12O4-2 • 2H2O) + H2O = (C8H12O4-2 • 3H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 32.6 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C8H12O4-2 • 3) + = (C8H12O4-2 • 4)
By formula: (C8H12O4-2 • 3H2O) + H2O = (C8H12O4-2 • 4H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 29.7 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C8H12O4-2 • 4) + = (C8H12O4-2 • 5)
By formula: (C8H12O4-2 • 4H2O) + H2O = (C8H12O4-2 • 5H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 25.5 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C8H12O4-2 • 5) + = (C8H12O4-2 • 6)
By formula: (C8H12O4-2 • 5H2O) + H2O = (C8H12O4-2 • 6H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 23.0 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C8H12O4-2 • ) + = (C8H12O4-2 • 2)
By formula: (C8H12O4-2 • H2O) + H2O = (C8H12O4-2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59. ± 18. | kJ/mol | N/A | Ding, Wang, et al., 1998 | gas phase; Affinity is EA difference from next lower solvated ion.; B |
(C6H8O4-2 • 2) + = (C6H8O4-2 • 3)
By formula: (C6H8O4-2 • 2H2O) + H2O = (C6H8O4-2 • 3H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 35.1 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C6H8O4-2 • 3) + = (C6H8O4-2 • 4)
By formula: (C6H8O4-2 • 3H2O) + H2O = (C6H8O4-2 • 4H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 31.4 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C6H8O4-2 • 4) + = (C6H8O4-2 • 5)
By formula: (C6H8O4-2 • 4H2O) + H2O = (C6H8O4-2 • 5H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 26.8 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C6H8O4-2 • 5) + = (C6H8O4-2 • 6)
By formula: (C6H8O4-2 • 5H2O) + H2O = (C6H8O4-2 • 6H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 24.3 ± 1.3 | kJ/mol | TDAs | Blades, Klassen, et al., 1995 | gas phase; B,M |
(C6H8O4-2 • ) + = (C6H8O4-2 • 2)
By formula: (C6H8O4-2 • H2O) + H2O = (C6H8O4-2 • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56. ± 18. | kJ/mol | N/A | Ding, Wang, et al., 1998 | gas phase; Affinity is EA difference from next lower solvated ion.; B |
By formula: C5H8NO2- + H2O = C5H10NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64.4 ± 2.1 | kJ/mol | N/A | Wincel, 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31.8 ± 3.8 | kJ/mol | TDAs | Wincel, 2008 | gas phase; B |
C5H9N2O3- + = C5H11N2O4-
By formula: C5H9N2O3- + H2O = C5H11N2O4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.2 ± 1.7 | kJ/mol | N/A | Wincel, 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.6 ± 3.3 | kJ/mol | TDAs | Wincel, 2008 | gas phase; B |
By formula: C5H10NO2- + H2O = C5H12NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 ± 1.7 | kJ/mol | N/A | Wincel, 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 30.1 ± 2.9 | kJ/mol | TDAs | Wincel, 2008 | gas phase; B |
+ = C5H12NO3S-
By formula: C5H10NO2S- + H2O = C5H12NO3S-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 ± 2.1 | kJ/mol | N/A | Wincel, 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 29.7 ± 3.3 | kJ/mol | TDAs | Wincel, 2008 | gas phase; B |
By formula: C9H10NO2- + H2O = C9H12NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.7 ± 1.7 | kJ/mol | N/A | Wincel, 2008 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 30.1 ± 3.8 | kJ/mol | TDAs | Wincel, 2008 | gas phase; B |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Meot-Ner (Mautner) and Speller, 1986
Meot-Ner (Mautner), M.; Speller, C.V.,
The Filling of Solvent Shells in Cluster Ions: Thermochemical Criteria nd the Effects of Isomeric Clusters,
J. Phys. Chem., 1986, 90, 25, 6616, https://doi.org/10.1021/j100283a006
. [all data]
Tang, Lian, et al., 1976
Tang, I.N.; Lian, M.S.; Castleman, A.W.,
Mass Spectrometric Study of Gas - Phase Clustering Reactions: Hydration of the Monovalent Strontium Ion,
J. Chem. Phys., 1976, 65, 10, 4022, https://doi.org/10.1063/1.432854
. [all data]
Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W.,
The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes,
J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497
. [all data]
Tang and Castleman, 1972
Tang, I.N.; Castleman, A.W.,
Mass Spectrometric Study of the Gas - Phase Hydration of the Monovalent Lead Ion,
J. Chem. Phys., 1972, 57, 9, 3638, https://doi.org/10.1063/1.1678820
. [all data]
Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V.,
Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions,
J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543
. [all data]
Tang and Castleman, 1974
Tang, I.N.; Castleman, A.W.,
Mass Spectrometric Study of Gas - Phase Clustering Reactions: Hydration of the Monovalent Bismuth Ion,
J. Chem. Phys., 1974, 60, 10, 3981, https://doi.org/10.1063/1.1680846
. [all data]
Keesee, Lee, et al., 1979
Keesee, R.G.; Lee, N.; Castleman Jr.,
Properties of Clusters in the Gas Phase. 3. Hydration Complexes of CO3- and HCO3-,
J. Am. Chem. Soc., 1979, 101, 10, 2599, https://doi.org/10.1021/ja00504a015
. [all data]
Terres and Wesemann, 1932
Terres, E.; Wesemann, H.,
Uber Gleichgewichtsmessungen der teilreaktionen bei der umsetzung von scnwefelkohlenstoff mit wasserdampf im temperaturgebiet von 350° bis 900° C,
Angew. Chem., 1932, 45, 795-832. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Essex and Sandholzer, 1938
Essex, H.; Sandholzer, M.,
The free energy of formation of ethyl propionate,
J. Phys. Chem., 1938, 42, 317-333. [all data]
Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M.,
Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol,
J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014
. [all data]
Meot-ner, Elmore, et al., 1999
Meot-ner, M.; Elmore, D.E.; Scheiner, S.,
Ionic Hydrogen Bond Effects on the Acidities, Basicities, Solvation, Solvent Bridging and Self-assembly of Carboxylic Groups,
J. Am. Chem. Soc., 1999, 121, 33, 7625, https://doi.org/10.1021/ja982173i
. [all data]
Yang, Kiran, et al., 2004
Yang, X.; Kiran, B.; Wang, X.B.; Wang, L.S.; Mucha, M.; Jungwirth, P.,
Solvation of the azide anion (N-3(-)) in water clusters and aqueous interfaces: A combined investigation by photoelectron spectroscopy, density functional calculations, and molecular dynamic,
J. Phys. Chem. A, 2004, 108, 39, 7820-7826, https://doi.org/10.1021/jp0496396
. [all data]
Liu, Wyttenbacj, et al., 2004
Liu, D.; Wyttenbacj, T.; Carpenter, C.J.; Bowers, M.T.,
Investigation of Non-Covalent Interactions in Deprotonated Peptides: Structural and Energetic Competition between Aggregation and Hydration,
J. Am. Chem. Soc., 2004, 126, 10, 3261, https://doi.org/10.1021/ja0393628
. [all data]
Blades, Klassen, et al., 1995
Blades, A.T.; Klassen, J.S.; Kebarle, P.,
Free Energies of Hydration in the Gas Phase on the Anions of Some Oxo Acids of C, N, S, P, Cl and I,
J. Am. Chem. Soc., 1995, 117, 42, 10563, https://doi.org/10.1021/ja00147a019
. [all data]
Ding, Wang, et al., 1998
Ding, C.F.; Wang, X.B.; Wang, L.S.,
Photoelectron spectroscopy of doubly charged anions: Intramolecular Coulomb repulsion and solvent stabilization,
J. Phys. Chem. A, 1998, 102, 45, 8633-8636, https://doi.org/10.1021/jp982698x
. [all data]
Wincel, 2008
Wincel, H.,
Hydration energies of deprotonated amino acids from gas phase equilibria measurements,
J. Am. Soc. Mass Spectrom., 2008, 19, 8, 1091-1097, https://doi.org/10.1016/j.jasms.2008.05.014
. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.