Thioformaldehyde


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas118. ± 8.4kJ/molIonRuscic and Berkowitz, 1993 
Δfgas90. ± 8.kJ/molIonRoy and McMahon, 1982Appearance potential

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(MeS anion • 4294967295Thioformaldehyde) + Thioformaldehyde = MeS anion

By formula: (CH3S- • 4294967295CH2S) + CH2S = CH3S-

Quantity Value Units Method Reference Comment
Δr305. ± 16.kJ/molN/ABartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CH2S+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
Proton affinity (review)759.7kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity730.5kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.465 ± 0.023LPESMoran and Ellison, 1987B

Ionization energy determinations

IE (eV) Method Reference Comment
9.376 ± 0.003PIRuscic and Berkowitz, 1993, 2LL
9.338 ± 0.010PEKroto and Suffolk, 1972LLK
9.44 ± 0.05EIJones and Lossing, 1967RDSH
9.38PESolouki, Rosmus, et al., 1976Vertical value; LLK
9.0PERao, 1975Vertical value; LLK
9.33PEGuimon, Gonbeau, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHS+11.533 ± 0.021HPIRuscic and Berkowitz, 1993, 2LL

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(MeS anion • 4294967295Thioformaldehyde) + Thioformaldehyde = MeS anion

By formula: (CH3S- • 4294967295CH2S) + CH2S = CH3S-

Quantity Value Units Method Reference Comment
Δr305. ± 16.kJ/molN/ABartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale

Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   E


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 55096 gas E-X 181 182 Judge, Drury-Lessard, et al., 1978
Drury and Moule, 1982

State:   D


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 53134 gas D-X 188 189 Judge, Drury-Lessard, et al., 1978
Drury and Moule, 1982

State:   C


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 47110.821 ± 0.009 gas C-X 212 213 Callear, Connor, et al., 1969
Judge, Drury-Lessard, et al., 1978
Goetz, Moule, et al., 1981
Drury and Moule, 1982

State:   B


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 45197 gas B-X 185 215 Judge, Drury-Lessard, et al., 1978
Drury, Lai, et al., 1982


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 3 CS stretch 476 gas AB Drury, Lai, et al., 1982
b1 4 OPLA 363 gas AB Drury, Lai, et al., 1982

State:   A


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 16394.628 ± 0.004 gas A-X 440 610 Judge and King, 1975
Judge and King, 1979
Judge and King, 1979, 2
Clouthier, Ramsay, et al., 1983
Dunlop, Karolczak, et al., 1991
Clouthier, Huang, et al., 1994
Fung and Ramsay, 1996
Ulrich and Huttner, 2000


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 CH stretch 3033.4 gas AB LF Judge and King, 1979
Dunlop, Karolczak, et al., 1991
2 CH2 scissors 1334.5 gas LF Dunlop, Karolczak, et al., 1991
3 CS stretch 819.7 gas AB LF Judge and King, 1975
Judge and King, 1979
Dunlop, Karolczak, et al., 1991
b1 4 OPLA 370.3 gas AB LF Judge and King, 1979
Dunlop, Karolczak, et al., 1991
Clouthier, Huang, et al., 1994
b2 5 CH stretch 3054.9 gas LF Dunlop, Karolczak, et al., 1991
6 CH2 rock 785.2 gas LF Dunlop, Karolczak, et al., 1991

State:   a


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 14507.38 gas a-X 610 800 Judge and King, 1975
Judge, Moule, et al., 1980
Clouthier and Kerr, 1982
Clouthier, Ramsay, et al., 1983
Glinski, Getty, et al., 1985
Dunlop, Karolczak, et al., 1991, 2
Glinski, Taylor, et al., 1991


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 2 CH2 scissors 1318.6 gas AB LF Judge, Moule, et al., 1980
Dunlop, Karolczak, et al., 1991, 2
3 CS stretch 861.6 gas AB LF Judge, Moule, et al., 1980
Suzuki, Saito, et al., 1983
b1 4 OPLA 326 gas LF CL Clouthier and Kerr, 1982
Jensen and Bunker, 1982
Glinski, Getty, et al., 1985
Glinski, Taylor, et al., 1991
Clouthier, Huang, et al., 1994
b2 6 CH2 rock 762.3 gas LF Suzuki, Saito, et al., 1983

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 CH stretch 2971.03 gas IR Johns and Olson, 1971
Turner, Halonen, et al., 1981
1 CH stretch 2970 w Ar IR Jacox and Milligan, 1975
Torres, Safarik, et al., 1982
1 CH stretch 2973 w N2 IR Jacox and Milligan, 1975
2 CH2 scissors 1455.50 gas LF Clouthier, Kerr, et al., 1981
McNaughton and Bruget, 1993
2 CH2 scissors 1447 Ar IR Torres, Safarik, et al., 1982
3 CS stretch 1059.20 gas LS IR Bedwell and Duxbury, 1980
Turner, Halonen, et al., 1981
Flaud, Lafferty, et al., 2008
3 CS stretch 1063 w Ar IR Jacox and Milligan, 1975
Torres, Safarik, et al., 1982
3 CS stretch 1062 w N2 IR Jacox and Milligan, 1975
b1 4 OPLA 990.18 gas LS IR Bedwell and Duxbury, 1980
Turner, Halonen, et al., 1981
Flaud, Lafferty, et al., 2008
4 OPLA 993 s Ar IR Jacox and Milligan, 1975
Torres, Safarik, et al., 1982
4 OPLA 995 s N2 IR Jacox and Milligan, 1975
b2 5 CH stretch 3024.61 gas IR Johns and Olson, 1971
Turner, Halonen, et al., 1981
6 CH2 rock 991.02 gas LS IR Bedwell and Duxbury, 1980
Turner, Halonen, et al., 1981
Flaud, Lafferty, et al., 2008
6 CH2 rock 988 m Ar IR Jacox and Milligan, 1975
Torres, Safarik, et al., 1982

Additional references: Jacox, 1994, page 143; Jacox, 1998, page 224; Jacox, 2003, page 173; Johnson, Powell, et al., 1971; Beers, Klein, et al., 1972; Johnson, Lovas, et al., 1972; Duxbury, Kato, et al., 1981; Kawasaki, Kasatani, et al., 1983; Kawasaki, Kasatani, et al., 1985; Petersen and Ramsay, 1987; Maeda, Medvedev, et al., 2008

Notes

wWeak
mMedium
sStrong
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ruscic and Berkowitz, 1993
Ruscic, B.; Berkowitz, J., Photoionization mass spectrometry of CH2S and HCS, J. Chem. Phys., 1993, 98, 2568-2579. [all data]

Roy and McMahon, 1982
Roy, M.; McMahon, T.B., The proton affinity of thioformaldehyde implications for the heat of formation of thioformaldehyde and thiolmethyl carbonium ion from ion cyclotron resonance investigations of the proton transfer reactions of [CH2SH]+, Org. Mass Spectrom., 1982, 8, 392-395. [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Moran and Ellison, 1987
Moran, S.; Ellison, G.B., Electron spectroscopy of CH2S-, Int. J. Mass Spectrom. Ion Processes, 1987, 80, 83. [all data]

Ruscic and Berkowitz, 1993, 2
Ruscic, B.; Berkowitz, J., Photoionization mass spectrometry of CH2S and HCS, J. Chem. Phys., 1993, 98, 2568. [all data]

Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J., The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide, Chem. Phys. Lett., 1972, 15, 545. [all data]

Jones and Lossing, 1967
Jones, A.; Lossing, F.P., The ionization potential and heat of formation of thioformaldehyde, J. Phys. Chem., 1967, 71, 4111. [all data]

Solouki, Rosmus, et al., 1976
Solouki, B.; Rosmus, P.; Bock, H., Unstable intermediates. 4. Thioformaldehyde, J. Am. Chem. Soc., 1976, 98, 6054. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Guimon, Gonbeau, et al., 1974
Guimon, C.; Gonbeau, D.; Pfister-Guillouzo, G.; Asbrink, L.; Sandstrom, J., Electronic structure of sulphur compounds. VI. Photoelectron spectra of some simple thiocarbonyl compounds, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 49. [all data]

Judge, Drury-Lessard, et al., 1978
Judge, R.H.; Drury-Lessard, C.R.; Moule, D.C., The far ultraviolet spectrum of thioformaldehyde, Chem. Phys. Lett., 1978, 53, 1, 82, https://doi.org/10.1016/0009-2614(78)80395-9 . [all data]

Drury and Moule, 1982
Drury, C.R.; Moule, D.C., The ultraviolet absorption spectrum of thioformaldehyde, J. Mol. Spectrosc., 1982, 92, 2, 469, https://doi.org/10.1016/0022-2852(82)90116-3 . [all data]

Callear, Connor, et al., 1969
Callear, A.B.; Connor, J.; Dickson, D.R., Electronic Spectra of Thioformaldehyde and the Methyl Thiyl Radical, Nature, 1969, 221, 5187, 1238, https://doi.org/10.1038/2211238a0 . [all data]

Goetz, Moule, et al., 1981
Goetz, W.; Moule, D.C.; Ramsay, D.A., The electric dipole moment of the state of thioformaldehyde, Can. J. Phys., 1981, 59, 11, 1635, https://doi.org/10.1139/p81-215 . [all data]

Drury, Lai, et al., 1982
Drury, C.R.; Lai, J.Y.K.; Moule, D.C., The B1A2 ← X1A1 absorption spectrum of thioformaldehyde, Chem. Phys. Lett., 1982, 87, 6, 520, https://doi.org/10.1016/0009-2614(82)83169-2 . [all data]

Judge and King, 1975
Judge, R.H.; King, G.W., The Electronic Absorption Spectrum of Thioformaldehyde, Can. J. Phys., 1975, 53, 19, 1927, https://doi.org/10.1139/p75-241 . [all data]

Judge and King, 1979
Judge, R.H.; King, G.W., Thioformaldehyde, J. Mol. Spectrosc., 1979, 74, 2, 175, https://doi.org/10.1016/0022-2852(79)90048-1 . [all data]

Judge and King, 1979, 2
Judge, R.H.; King, G.W., Thioformaldehyde, J. Mol. Spectrosc., 1979, 78, 1, 51, https://doi.org/10.1016/0022-2852(79)90035-3 . [all data]

Clouthier, Ramsay, et al., 1983
Clouthier, D.J.; Ramsay, D.A.; Birss, F.W., Singlet--triplet perturbations in the A 1A2 (v=0) state of thioformaldehyde, J. Chem. Phys., 1983, 79, 12, 5851, https://doi.org/10.1063/1.445755 . [all data]

Dunlop, Karolczak, et al., 1991
Dunlop, J.R.; Karolczak, J.; Clouthier, D.J.; Ross, S.C., Pyrolysis jet spectroscopy: the S1-S0 band system of thioformaldehyde and the excited-state bending potential, J. Phys. Chem., 1991, 95, 8, 3045, https://doi.org/10.1021/j100161a020 . [all data]

Clouthier, Huang, et al., 1994
Clouthier, D.J.; Huang, G.; Adam, A.G.; Merer, A.J., Sub-Doppler spectroscopy of thioformaldehyde: Excited state perturbations and evidence for rotation-induced vibrational mixing in the ground state, J. Chem. Phys., 1994, 101, 9, 7300, https://doi.org/10.1063/1.468287 . [all data]

Fung and Ramsay, 1996
Fung, K.H.; Ramsay, D.A., Mol. Phys., 1996, 88, 997. [all data]

Ulrich and Huttner, 2000
Ulrich, W.; Huttner, W., The Mechanism of Magnetically Tuned Singlet--Triplet Avoided Crossings in the Ã1A2--1A1 410 Band of Thioformaldehyde H2C«58875»S, J. Mol. Spectrosc., 2000, 200, 2, 182, https://doi.org/10.1006/jmsp.2000.8063 . [all data]

Judge, Moule, et al., 1980
Judge, R.H.; Moule, D.C.; King, G.W., The absorption spectrum of thioformaldehyde, J. Mol. Spectrosc., 1980, 81, 1, 37, https://doi.org/10.1016/0022-2852(80)90328-8 . [all data]

Clouthier and Kerr, 1982
Clouthier, D.J.; Kerr, C.M.L., Gas-phase phosphorescence of thioformaldehyde, Chem. Phys., 1982, 70, 1-2, 55, https://doi.org/10.1016/0301-0104(82)85104-5 . [all data]

Glinski, Getty, et al., 1985
Glinski, R.J.; Getty, J.N.; Birks, J.W., Phosphorescence spectra of thioformaldehyde and thioformaldehyde-d2 by chemiluminescence: Identification of the 411 band, Chem. Phys. Lett., 1985, 117, 4, 359, https://doi.org/10.1016/0009-2614(85)85244-1 . [all data]

Dunlop, Karolczak, et al., 1991, 2
Dunlop, J.R.; Karolczak, J.; Clouthier, D.J.; Ross, S.C., Pyrolysis jet spectroscopy: laser-induced phosphorescence of thioformaldehyde and the triplet excited-state bending potential, J. Phys. Chem., 1991, 95, 8, 3063, https://doi.org/10.1021/j100161a021 . [all data]

Glinski, Taylor, et al., 1991
Glinski, R.J.; Taylor, C.D.; Martin, H.R., Chemiluminescence spectra of thioformaldehyde and selenoformaldehyde, J. Phys. Chem., 1991, 95, 16, 6159, https://doi.org/10.1021/j100169a021 . [all data]

Suzuki, Saito, et al., 1983
Suzuki, T.; Saito, S.; Hirota, E., Laser excitation spectrum and microwave optical double resonance spectrum of the 310 band in the a 3A2--X 1A1 system of H2CS: The hyperfine structure of the a 3A2 state, J. Chem. Phys., 1983, 79, 4, 1641, https://doi.org/10.1063/1.446008 . [all data]

Jensen and Bunker, 1982
Jensen, P.; Bunker, P.R., The geometry and the out-of-plane bending potential function of thioformaldehyde in the and electronic states, J. Mol. Spectrosc., 1982, 95, 1, 92, https://doi.org/10.1016/0022-2852(82)90241-7 . [all data]

Johns and Olson, 1971
Johns, J.W.C.; Olson, W.B., The infrared spectrum of thioformaldehyde, J. Mol. Spectrosc., 1971, 39, 3, 479, https://doi.org/10.1016/0022-2852(71)90219-0 . [all data]

Turner, Halonen, et al., 1981
Turner, P.H.; Halonen, L.; Mills, I.M., Fourier transform infrared spectra of H2CS and D2CS, J. Mol. Spectrosc., 1981, 88, 2, 402, https://doi.org/10.1016/0022-2852(81)90190-9 . [all data]

Jacox and Milligan, 1975
Jacox, M.E.; Milligan, D.E., Matrix isolation study of the infrared spectrum of thioformaldehyde, J. Mol. Spectrosc., 1975, 58, 1, 142, https://doi.org/10.1016/0022-2852(75)90162-9 . [all data]

Torres, Safarik, et al., 1982
Torres, M.; Safarik, I.; Clement, A.; Strausz, O.P., The generation and vibrational spectrum of matrix isolated thioformaldehyde and dideuterothioformaldehyde, Can. J. Chem., 1982, 60, 10, 1187, https://doi.org/10.1139/v82-176 . [all data]

Clouthier, Kerr, et al., 1981
Clouthier, D.J.; Kerr, C.M.L.; Ramsay, D.A., Single rotational level resonance fluorescence of thioformaldehyde, Chem. Phys., 1981, 56, 1, 73, https://doi.org/10.1016/0301-0104(81)85101-4 . [all data]

McNaughton and Bruget, 1993
McNaughton, D.; Bruget, D.N., Far-Infrared and ν2 Vibration-Rotation Spectrum of Thioformaldehyde and Infrared Spectrum of Thioglyoxal, J. Mol. Spectrosc., 1993, 159, 2, 340, https://doi.org/10.1006/jmsp.1993.1132 . [all data]

Bedwell and Duxbury, 1980
Bedwell, D.J.; Duxbury, G., Laser Stark spectroscopy of thioformaldehyde in the 10-μm region: The ν3, ν4, and the ν6 fundamentals, J. Mol. Spectrosc., 1980, 84, 2, 531, https://doi.org/10.1016/0022-2852(80)90042-9 . [all data]

Flaud, Lafferty, et al., 2008
Flaud, J.-M.; Lafferty, W.J.; Perrin, A.; Kim, Y.S.; Beckers, H.; Willner, H., The first high-resolution analysis of the 10-μm absorption of thioformaldehyde, J. Quant. Spectrosc. Radiat. Transfer, 2008, 109, 6, 995, https://doi.org/10.1016/j.jqsrt.2007.11.004 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Johnson, Powell, et al., 1971
Johnson, D.R.; Powell, F.X.; Kirchhoff, W.H., Microwave spectrum, ground state structure, and dipole moment of thioformaldehyde, J. Mol. Spectrosc., 1971, 39, 1, 136, https://doi.org/10.1016/0022-2852(71)90284-0 . [all data]

Beers, Klein, et al., 1972
Beers, Y.; Klein, G.P.; Kirchhoff, W.H.; Johnson, D.R., Millimeter wave spectrum of thioformaldehyde, J. Mol. Spectrosc., 1972, 44, 3, 553, https://doi.org/10.1016/0022-2852(72)90263-9 . [all data]

Johnson, Lovas, et al., 1972
Johnson, D.R.; Lovas, F.J.; Kirchhoff, W.H., Microwave Spectra of Molecules of Astrophysical Interest: 1. Formaldehyde, Formamide, and Thioformaldehyde, J. Phys. Chem. Ref. Data, 1972, 1, 4, 1011, https://doi.org/10.1063/1.3253107 . [all data]

Duxbury, Kato, et al., 1981
Duxbury, G.; Kato, H.; Le Lerre, M.L., Laser Stark and interferometric studies of thioformaldehyde and methyleneimine, Discuss. Faraday Soc., 1981, 71, 97, https://doi.org/10.1039/dc9817100097 . [all data]

Kawasaki, Kasatani, et al., 1983
Kawasaki, M.; Kasatani, K.; Ogawa, Y.; Sato, H., Spectra and emission lifetimes of H2CS(Ã 1A2), Chem. Phys., 1983, 74, 1, 83, https://doi.org/10.1016/0301-0104(83)80010-X . [all data]

Kawasaki, Kasatani, et al., 1985
Kawasaki, M.; Kasatani, K.; Sato, H., Fluorescence lifetimes of the single vibrational levels of H2CS1, D2CS, and Cl2CS in the A1A2 state, Chem. Phys., 1985, 94, 1-2, 179, https://doi.org/10.1016/0301-0104(85)85075-8 . [all data]

Petersen and Ramsay, 1987
Petersen, J.C.; Ramsay, D.A., Doppler-limited dye laser excitation spectroscopy of the 401 band of the system of D2CS, J. Mol. Spectrosc., 1987, 126, 1, 29, https://doi.org/10.1016/0022-2852(87)90073-7 . [all data]

Maeda, Medvedev, et al., 2008
Maeda, A.; Medvedev, I.R.; Winnewisser, M.; DeLucia, F.C.; Herbst, E.; Muller, H.S.P.; Koerber, M.; Endres, C.P.; Schlemmer, S., High-Frequency Rotational Spectrum of Thioformaldehyde, H, Astrophys. J. Suppl., 2008, 176, 2, 543, https://doi.org/10.1086/528684 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Vibrational and/or electronic energy levels, References