Carbon dioxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-393.51 ± 0.13kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas-393.52kJ/molReviewChase, 1998Data last reviewed in September, 1965
Quantity Value Units Method Reference Comment
gas,1 bar213.785 ± 0.010J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar213.79J/mol*KReviewChase, 1998Data last reviewed in September, 1965

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 24.9973558.16639
B 55.186962.720074
C -33.69137-0.492289
D 7.9483870.038844
E -0.136638-6.447293
F -403.6075-425.9186
G 228.2431263.6125
H -393.5224-393.5224
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1965 Data last reviewed in September, 1965

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Ttriple216.58KN/AMarsh, 1987Uncertainty assigned by TRC = 0.008 K; recommended as fixed point for thermometery; TRC
Ttriple216.58KN/AAngus, Armstrong, et al., 1976Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Ptriple5.185barN/AAngus, Armstrong, et al., 1976Uncertainty assigned by TRC = 0.005 bar; TRC
Quantity Value Units Method Reference Comment
Tc304.18KN/ASuehiro, Nakajima, et al., 1996Uncertainty assigned by TRC = 0.04 K; TRC
Tc304.1KN/AWeber, 1989Uncertainty assigned by TRC = 0.1 K; TRC
Tc304.35KN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.4 K; TRC
Tc304.200KN/AMorrison, 1981Uncertainty assigned by TRC = 0.02 K; TRC
Tc304.23KN/AEfremova and Shvarts, 1972Visual, agreement with literature evidence of sample purity; TRC
Quantity Value Units Method Reference Comment
Pc73.80barN/ASuehiro, Nakajima, et al., 1996Uncertainty assigned by TRC = 0.15 bar; TRC
Pc73.40barN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.50 bar; TRC
Pc73.825barN/AAngus, Armstrong, et al., 1976Uncertainty assigned by TRC = 0.005 bar; TRC
Quantity Value Units Method Reference Comment
Vc0.0919l/molN/ALi and Kiran, 1988Uncertainty assigned by TRC = 0.001 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc10.6mol/lN/ASuehiro, Nakajima, et al., 1996Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc10.590mol/lN/AAngus, Armstrong, et al., 1976Uncertainty assigned by TRC = 0.007 mol/l; TRC
ρc10.8mol/lN/AAndrizhievskii and Chernova, 1970Uncertainty assigned by TRC = 0.2 mol/l; TRC
ρc10.64mol/lN/ALowry and Erickson, 1927Uncertainty assigned by TRC = 0.034 mol/l; from a plot of (DN(liq) + DN(g))/2 based on exp. measurement and extrapolated to 31.0 deg C; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
16.7288.AStephenson and Malanowski, 1987Based on data from 273. to 304. K.; AC
16.4258.AStephenson and Malanowski, 1987Based on data from 216. to 273. K.; AC
16.5282.N/ABoublík and Aim, 1972Based on data from 267. to 303. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
154.26 to 195.896.812281301.679-3.494Giauque and Egan, 1937Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
26.1207.AStephenson and Malanowski, 1987Based on data from 198. to 216. K.; AC
27.2 ± 0.470. to 102.LEBryson, Cazcarra, et al., 1974AC
25.9188.N/AAmbrose, 1956Based on data from 179. to 198. K.; AC
26.3167.AStull, 1947Based on data from 139. to 195. K.; AC
25.2195.N/AGiauque and Egan, 1937, 2Based on data from 154. to 196. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Oxygen cation + Carbon dioxide = (Oxygen cation • Carbon dioxide)

By formula: O2+ + CO2 = (O2+ • CO2)

Quantity Value Units Method Reference Comment
Δr41. ± 4.kJ/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr73.2J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr79.1J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=41.0 kJ/mol; M
Δr86.6J/mol*KN/ADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M
Δr84.J/mol*KN/AMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M
Quantity Value Units Method Reference Comment
Δr18.kJ/molDTRakshit and Warneck, 1981gas phase; M
Δr18.kJ/molFADotan, Davidson, et al., 1978gas phase; switching reaction(O2+)O2, Entropy change calculated or estimated; Conway and Janik, 1970; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
39.600.PHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change calculated or estimated, DG>, ΔrH>; M

CO2+ + Carbon dioxide = (CO2+ • Carbon dioxide)

By formula: CO2+ + CO2 = (CO2+ • CO2)

Quantity Value Units Method Reference Comment
Δr66. ± 4.kJ/molAVGN/AAverage of 7 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr77.8J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=66.5 kJ/mol; M
Δr81.6J/mol*KDTVan Koppen, Kemper, et al., 1983gas phase; M
Δr95.4J/mol*KPHPMSHeadley, Mason, et al., 1982gas phase; M
Δr88.3J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

O- + Carbon dioxide = (O- • Carbon dioxide)

By formula: O- + CO2 = (O- • CO2)

Quantity Value Units Method Reference Comment
Δr200. ± 50.kJ/molAVGN/AAverage of 8 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr201. ± 21.kJ/molIMREAdams and Bohme, 1970gas phase; O3- + CO2 <=> CO3- + O2; B

Iodide + Carbon dioxide = (Iodide • Carbon dioxide)

By formula: I- + CO2 = (I- • CO2)

Quantity Value Units Method Reference Comment
Δr15. ± 7.5kJ/molN/APiani, Becucci, et al., 2008gas phase; Stated electron affinity is the Vertical Detachment Energy; B
Δr17. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr20. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr13.4kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr23.4 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr56.1J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Δr76.1J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr3. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr3.3 ± 0.42kJ/molTDAsBanic and Iribarne, 1985gas phase; B,M
Δr1.7 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

Oxygen anion + Carbon dioxide = (Oxygen anion • Carbon dioxide)

By formula: O2- + CO2 = (O2- • CO2)

Quantity Value Units Method Reference Comment
Δr79.50 ± 0.84kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Δr74.1 ± 7.5kJ/molIMREPack and Phelps, 1966gas phase; Corrected with more recent EA(O2) = 0.45 eV; B,M
Δr106. ± 19.kJ/molPDisVestal and Mauclaire, 1977gas phase; B
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Δr88.J/mol*KDTPack and Phelps, 1966gas phase; M
Quantity Value Units Method Reference Comment
Δr49.0 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr51.0 ± 5.0kJ/molIMREPack and Phelps, 1966gas phase; Corrected with more recent EA(O2) = 0.45 eV; B
Δr41.8kJ/molFAAdams and Bohme, 1970gas phase; switching reaction(O2-)O2; Conway and Nesbit, 1968; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
54.0296.FAFehsenfeld and Ferguson, 1974gas phase; switching reaction(O2-)H2O; Arshadi and Kebarle, 1970; M

Fluorine anion + Carbon dioxide = (Fluorine anion • Carbon dioxide)

By formula: F- + CO2 = (F- • CO2)

Quantity Value Units Method Reference Comment
Δr134.2kJ/molN/AArnold, Bradforth, et al., 1995, 2gas phase; B
Δr135. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr133. ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B,M
Δr138. ± 13.kJ/molIMREMcMahon and Northcott, 1978gas phase; B
Quantity Value Units Method Reference Comment
Δr112.J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Δr100.J/mol*KN/ALarson and McMahon, 1985gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr102. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1985gas phase; B,M
Δr48.5kJ/molFASpears and Ferguson, 1973gas phase; DG>; M

Chlorine anion + Carbon dioxide = (Chlorine anion • Carbon dioxide)

By formula: Cl- + CO2 = (Cl- • CO2)

Quantity Value Units Method Reference Comment
Δr28.5 ± 2.1kJ/molPDisArnold, Bradforth, et al., 1995, 2gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B
Δr31.8kJ/molTDEqHiraoka, Shoda, et al., 1986gas phase; B,M
Δr33.5 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr82.0J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr8.79kJ/molTDEqHiraoka, Shoda, et al., 1986gas phase; B
Δr8.79 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

(Iodide • 2Carbon dioxide) + Carbon dioxide = (Iodide • 3Carbon dioxide)

By formula: (I- • 2CO2) + CO2 = (I- • 3CO2)

Quantity Value Units Method Reference Comment
Δr9.20kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr15. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr19. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-3. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • 4Carbon dioxide) + Carbon dioxide = (Iodide • 5Carbon dioxide)

By formula: (I- • 4CO2) + CO2 = (I- • 5CO2)

Quantity Value Units Method Reference Comment
Δr7.11kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr13. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr18. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.9 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • Carbon dioxide) + Carbon dioxide = (Iodide • 2Carbon dioxide)

By formula: (I- • CO2) + CO2 = (I- • 2CO2)

Quantity Value Units Method Reference Comment
Δr15. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr20. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Δr10.9kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Quantity Value Units Method Reference Comment
Δr72.4J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr3. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Iodide • 5Carbon dioxide) + Carbon dioxide = (Iodide • 6Carbon dioxide)

By formula: (I- • 5CO2) + CO2 = (I- • 6CO2)

Quantity Value Units Method Reference Comment
Δr13. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr7.53kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr18.kJ/molPHPMSHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr79.J/mol*KN/AHiraoka, Mizuse, et al., 1987gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • Carbon dioxide) + Water = (Sodium ion (1+) • Water • Carbon dioxide)

By formula: (Na+ • CO2) + H2O = (Na+ • H2O • CO2)

Quantity Value Units Method Reference Comment
Δr86.6kJ/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Δr95.8kJ/molFAPerry, Rowe, et al., 1980gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Δr107.J/mol*KFAPerry, Rowe, et al., 1980gas phase; From thermochemical cycle(Na+) 2H2O; Dzidic and Kebarle, 1970, Peterson, Mark, et al., 1984; M

CHO2+ + Carbon dioxide = (CHO2+ • Carbon dioxide)

By formula: CHO2+ + CO2 = (CHO2+ • CO2)

Quantity Value Units Method Reference Comment
Δr82.8kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr75.3kJ/molPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr79.9kJ/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr84.1kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr111.J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr92.9J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr113.J/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr101.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(Iodide • 3Carbon dioxide) + Carbon dioxide = (Iodide • 4Carbon dioxide)

By formula: (I- • 3CO2) + CO2 = (I- • 4CO2)

Quantity Value Units Method Reference Comment
Δr7.53kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B
Δr15. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr19. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Quantity Value Units Method Reference Comment
Δr-4.2 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

Nitrogen oxide anion + Carbon dioxide = (Nitrogen oxide anion • Carbon dioxide)

By formula: NO2- + CO2 = (NO2- • CO2)

Quantity Value Units Method Reference Comment
Δr30.5 ± 0.84kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Δr38.9 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B,M
Quantity Value Units Method Reference Comment
Δr72.0J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Δr101.J/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr8.8 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr8.37 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

Nitric oxide anion + Carbon dioxide = (Nitric oxide anion • Carbon dioxide)

By formula: NO- + CO2 = (NO- • CO2)

Quantity Value Units Method Reference Comment
Δr36. ± 1.kJ/molDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr32. ± 2.kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Δr57.7kJ/molFADunkin, Fehsenfeld, et al., 1971gas phase; switching reaction(NO+)NO, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KDTIllies, 1988gas phase; ΔrH(0 K)=36.0 kJ/mol; M
Δr57.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Bromine anion • Carbon dioxide) + Carbon dioxide = (Bromine anion • 2Carbon dioxide)

By formula: (Br- • CO2) + CO2 = (Br- • 2CO2)

Quantity Value Units Method Reference Comment
Δr21. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr25. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr1. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(CO2+ • Carbon dioxide) + Carbon dioxide = (CO2+ • 2Carbon dioxide)

By formula: (CO2+ • CO2) + CO2 = (CO2+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr23. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr35.kJ/molEICameron, Aitken, et al., 1994gas phase; M
Δr14.kJ/molPILinn and Ng, 1981gas phase; M
Δr25.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr59.0J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr100.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

Bromine anion + Carbon dioxide = (Bromine anion • Carbon dioxide)

By formula: Br- + CO2 = (Br- • CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995, 2gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B
Δr28. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.5 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Chlorine anion • 2Carbon dioxide) + Carbon dioxide = (Chlorine anion • 3Carbon dioxide)

By formula: (Cl- • 2CO2) + CO2 = (Cl- • 3CO2)

Quantity Value Units Method Reference Comment
Δr28. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr28.5kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr93.7J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr0.4 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr0.42kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; B

(Chlorine anion • Carbon dioxide) + Carbon dioxide = (Chlorine anion • 2Carbon dioxide)

By formula: (Cl- • CO2) + CO2 = (Cl- • 2CO2)

Quantity Value Units Method Reference Comment
Δr30. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr30.1kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr87.0J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.9 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B
Δr4.18kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; B

Hydronium cation + Carbon dioxide = (Hydronium cation • Carbon dioxide)

By formula: H3O+ + CO2 = (H3O+ • CO2)

Quantity Value Units Method Reference Comment
Δr59.8kJ/molPHPMSSzulejko and McMahon, 1992gas phase; M
Δr64.0kJ/molPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr60.2kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSSzulejko and McMahon, 1992gas phase; M
Δr103.J/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase; M
Δr86.6J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; M

(Sodium ion (1+) • 2Water • Carbon dioxide) + Water = (Sodium ion (1+) • 3Water • Carbon dioxide)

By formula: (Na+ • 2H2O • CO2) + H2O = (Na+ • 3H2O • CO2)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr23.kJ/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M

(Oxygen cation • Carbon dioxide) + Carbon dioxide = (Oxygen cation • 2Carbon dioxide)

By formula: (O2+ • CO2) + CO2 = (O2+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr36. ± 2.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr31.kJ/molPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr63.J/mol*KPHPMSMeot-Ner (Mautner) and Field, 1977gas phase; Entropy change is questionable; M

(Sodium ion (1+) • 3Water) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide • 3Water)

By formula: (Na+ • 3H2O) + CO2 = (Na+ • CO2 • 3H2O)

Quantity Value Units Method Reference Comment
Δr30.kJ/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/APeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr-1.kJ/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

(Sodium ion (1+) • 3Carbon dioxide) + Carbon dioxide = (Sodium ion (1+) • 4Carbon dioxide)

By formula: (Na+ • 3CO2) + CO2 = (Na+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr35.kJ/molHPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/APeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.310.HPMSPeterson, Mark, et al., 1984gas phase; Entropy change calculated or estimated; M

Sodium ion (1+) + Carbon dioxide = (Sodium ion (1+) • Carbon dioxide)

By formula: Na+ + CO2 = (Na+ • CO2)

Quantity Value Units Method Reference Comment
Δr66.5kJ/molHPMSPeterson, Mark, et al., 1984gas phase; M
Δr57.3kJ/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; M
Δr82.8J/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
28.310.DTKeller and Beyer, 1971gas phase; low E/N; M

(Iodide • 6Carbon dioxide) + Carbon dioxide = (Iodide • 7Carbon dioxide)

By formula: (I- • 6CO2) + CO2 = (I- • 7CO2)

Quantity Value Units Method Reference Comment
Δr14. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr7.95kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B

(Iodide • 7Carbon dioxide) + Carbon dioxide = (Iodide • 8Carbon dioxide)

By formula: (I- • 7CO2) + CO2 = (I- • 8CO2)

Quantity Value Units Method Reference Comment
Δr13. ± 8.4kJ/molPDisArnold, Bradforth, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B
Δr7.95kJ/molN/AGomez, Taylor, et al., 2002gas phase; EA=Vertical Detachment Energy. Affinity is stepwise difference in EAs.; B

(Chlorine anion • 3Carbon dioxide) + Carbon dioxide = (Chlorine anion • 4Carbon dioxide)

By formula: (Cl- • 3CO2) + CO2 = (Cl- • 4CO2)

Quantity Value Units Method Reference Comment
Δr26.8kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; entropy estimated.; B,M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr-3.3kJ/molTDAsHiraoka, Shoda, et al., 1986gas phase; entropy estimated.; B

CO3- + Carbon dioxide = C2O5-

By formula: CO3- + CO2 = C2O5-

Quantity Value Units Method Reference Comment
Δr24.7 ± 0.84kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr29.7 ± 0.42kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B
Quantity Value Units Method Reference Comment
Δr4.2 ± 8.4kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B
Δr2.5 ± 0.84kJ/molTDAsKeesee, Lee, et al., 1980gas phase; B

HO- + Carbon dioxide = (HO- • Carbon dioxide)

By formula: HO- + CO2 = (HO- • CO2)

Quantity Value Units Method Reference Comment
Δr213. ± 10.kJ/molCIDTSquires, 1992gas phase; Dissociative protonation threshold at nPrSH, 9 kcal> calc. CIDC(HOCO2-..HSH) = 7:1 HOCO2-; B
Δr366.5kJ/molEndoHierl and Paulson, 1984gas phase; Implies ΔHacid = 291.4, anion appears too stable - JEB; B

(CO2+ • 2Carbon dioxide) + Carbon dioxide = (CO2+ • 3Carbon dioxide)

By formula: (CO2+ • 2CO2) + CO2 = (CO2+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr25.kJ/molEICameron, Aitken, et al., 1994gas phase; M
Δr21. ± 1.kJ/molPHPMSHiraoka, Nakajima, et al., 1988gas phase; M
Δr12.kJ/molPILinn and Ng, 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka, Nakajima, et al., 1988gas phase; M

(Sodium ion (1+) • Water • Carbon dioxide) + Water = (Sodium ion (1+) • 2Water • Carbon dioxide)

By formula: (Na+ • H2O • CO2) + H2O = (Na+ • 2H2O • CO2)

Quantity Value Units Method Reference Comment
Δr72.8kJ/molHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr98.7J/mol*KHPMSPeterson, Mark, et al., 1984gas phase; From thermochemical cycle; Dzidic and Kebarle, 1970; M

(Fluorine anion • 3Carbon dioxide) + Carbon dioxide = (Fluorine anion • 4Carbon dioxide)

By formula: (F- • 3CO2) + CO2 = (F- • 4CO2)

Quantity Value Units Method Reference Comment
Δr24. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-0.8 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • 4Carbon dioxide) + Carbon dioxide = (Fluorine anion • 5Carbon dioxide)

By formula: (F- • 4CO2) + CO2 = (F- • 5CO2)

Quantity Value Units Method Reference Comment
Δr23. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-4.2 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • 5Carbon dioxide) + Carbon dioxide = (Fluorine anion • 6Carbon dioxide)

By formula: (F- • 5CO2) + CO2 = (F- • 6CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr-5.9 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

C7O15- + 7Carbon dioxide = C8O17-

By formula: C7O15- + 7CO2 = C8O17-

Quantity Value Units Method Reference Comment
Δr19. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; Estimated entropy; single temperature measurement; B
Quantity Value Units Method Reference Comment
Δr-8.8 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; Estimated entropy; single temperature measurement; B

(Fluorine anion • 2Carbon dioxide) + Carbon dioxide = (Fluorine anion • 3Carbon dioxide)

By formula: (F- • 2CO2) + CO2 = (F- • 3CO2)

Quantity Value Units Method Reference Comment
Δr30. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr2. ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Fluorine anion • Carbon dioxide) + Carbon dioxide = (Fluorine anion • 2Carbon dioxide)

By formula: (F- • CO2) + CO2 = (F- • 2CO2)

Quantity Value Units Method Reference Comment
Δr31. ± 4.2kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka, Mizuse, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr7.9 ± 8.4kJ/molTDAsHiraoka, Mizuse, et al., 1987gas phase; B

(Oxygen anion • 2Carbon dioxide) + Carbon dioxide = (Oxygen anion • 3Carbon dioxide)

By formula: (O2- • 2CO2) + CO2 = (O2- • 3CO2)

Quantity Value Units Method Reference Comment
Δr26. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-3. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 3Carbon dioxide) + Carbon dioxide = (Oxygen anion • 4Carbon dioxide)

By formula: (O2- • 3CO2) + CO2 = (O2- • 4CO2)

Quantity Value Units Method Reference Comment
Δr20. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-3. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 4Carbon dioxide) + Carbon dioxide = (Oxygen anion • 5Carbon dioxide)

By formula: (O2- • 4CO2) + CO2 = (O2- • 5CO2)

Quantity Value Units Method Reference Comment
Δr19. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-4.6 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 5Carbon dioxide) + Carbon dioxide = (Oxygen anion • 6Carbon dioxide)

By formula: (O2- • 5CO2) + CO2 = (O2- • 6CO2)

Quantity Value Units Method Reference Comment
Δr18. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-6.3 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • 6Carbon dioxide) + Carbon dioxide = (Oxygen anion • 7Carbon dioxide)

By formula: (O2- • 6CO2) + CO2 = (O2- • 7CO2)

Quantity Value Units Method Reference Comment
Δr17. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-7.5 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Oxygen anion • Carbon dioxide) + Carbon dioxide = (Oxygen anion • 2Carbon dioxide)

By formula: (O2- • CO2) + CO2 = (O2- • 2CO2)

Quantity Value Units Method Reference Comment
Δr27.6 ± 0.84kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr4.6 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 2Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 3Carbon dioxide)

By formula: (NO2- • 2CO2) + CO2 = (NO2- • 3CO2)

Quantity Value Units Method Reference Comment
Δr26. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-3. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 3Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 4Carbon dioxide)

By formula: (NO2- • 3CO2) + CO2 = (NO2- • 4CO2)

Quantity Value Units Method Reference Comment
Δr25. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-7.1 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 4Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 5Carbon dioxide)

By formula: (NO2- • 4CO2) + CO2 = (NO2- • 5CO2)

Quantity Value Units Method Reference Comment
Δr22. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.5J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-7.5 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

(Nitrogen oxide anion • 5Carbon dioxide) + Carbon dioxide = (Nitrogen oxide anion • 6Carbon dioxide)

By formula: (NO2- • 5CO2) + CO2 = (NO2- • 6CO2)

Quantity Value Units Method Reference Comment
Δr21. ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B,M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSHiraoka and Yamabe, 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr-8.4 ± 4.2kJ/molTDAsHiraoka and Yamabe, 1992gas phase; B

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0352400.LN/A 
0.0342600.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.045 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0352300.LN/A 
0.0342400.CN/A 
0.0342400.CN/A 
0.0342400.CN/A 
0.0312400.TN/A 
0.0342400.QN/A missing citation refer to several references in their list of Henry's law constants but they don't assign them to specific species.
0.034 N/AN/A 
0.034 CN/A 
0.0322400.XN/A 
0.0352400.LN/A 
0.0342400.LN/A 
0.0342400.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).
0.0342700.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).
0.0342400.N/AN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

Quantity Value Units Method Reference Comment
IE (evaluated)13.777 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)540.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity515.8kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
-0.599986EIAEKnapp, Echt, et al., 1986Unbound but in -0.3 eV well, from (CO2)n; B
-1.60 ± 0.10NBIECompton, Reinhardt, et al., 1975B

Ionization energy determinations

IE (eV) Method Reference Comment
13.778 ± 0.002PEWang, Reutt, et al., 1988LL
13.78PEKimura, Katsumata, et al., 1981LLK
13.776 ± 0.002PEPotts and Fattahallah, 1980LLK
13. ± 1.PIHitchcock, Brion, et al., 1980LLK
13.89 ± 0.03EISahini, Constantin, et al., 1978LLK
13.79 ± 0.05EIMark and Hille, 1978LLK
13.77PIJones and Taylor, 1978LLK
13.777 ± 0.002PEFrey, Gotchev, et al., 1977LLK
13.83 ± 0.05EIBussieres and Marmet, 1977LLK
13.788PEKronebusch and Berkowitz, 1976LLK
13.776 ± 0.002TEBatten, Taylor, et al., 1976LLK
13.774 ± 0.003PIParr and Taylor, 1974LLK
13.9 ± 0.2EISemenov, Volkov, et al., 1973LLK
13.776 ± 0.008PIParr and Taylor, 1973LLK
13.78PENatalis, 1973LLK
13.773 ± 0.002PIMcCulloh, 1973LLK
13.80 ± 0.01PEFrost, Lee, et al., 1973LLK
13.788 ± 0.005PEBrundle and Turner, 1969RDSH
13.78 ± 0.01PEEland and Danby, 1968RDSH
13.77PESpohr and Puttkamer, 1967RDSH
13.75 ± 0.05EICarette, 1967RDSH
13.767 ± 0.003PINakata, Watanabe, et al., 1965RDSH
13.77 ± 0.03STanaka, Jursa, et al., 1960RDSH
13.773PEEland and Berkowitz, 1977Vertical value; LLK
13.78PEBenoit and Harrison, 1977Vertical value; LLK
13.78PESchweig and Thiel, 1974Vertical value; LLK
13.79PEPotts and Williams, 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+25. ± 2.O2PIHitchcock, Brion, et al., 1980LLK
C+22.7 ± 0.2O2EIBussieres and Marmet, 1977LLK
C+27.8 ± 0.12OEIBussieres and Marmet, 1977LLK
C+24.6 ± 1.0O2EICrowe and McConkey, 1974LLK
C+28.4 ± 0.62OEICuthbert, Farren, et al., 1968RDSH
C+14.2 ± 0.52OEICuthbert, Farren, et al., 1968RDSH
C+23.2 ± 0.5O2EICuthbert, Farren, et al., 1968RDSH
CO+19. ± 2.OPIHitchcock, Brion, et al., 1980LLK
CO+19.466OPEEland and Berkowitz, 1977, 2LLK
CO+19.42 ± 0.075OEIBussieres and Marmet, 1977LLK
CO+19.466OPEKronebusch and Berkowitz, 1976LLK
CO+20.9 ± 1.0OEICrowe and McConkey, 1974LLK
CO+29.0OPISamson and Gardner, 1973LLK
O+19. ± 1.COPIHitchcock, Brion, et al., 1980LLK
O+19.071COPEEland and Berkowitz, 1977, 2LLK
O+19.05 ± 0.05COEIBussieres and Marmet, 1977LLK
O+19.067COPEKronebusch and Berkowitz, 1976LLK
O+19.393 ± 0.008?PIParr and Taylor, 1974LLK
O+22.6 ± 1.0COEICrowe and McConkey, 1974LLK
O+19.10 ± 0.01COPIDibeler and Walker, 1967RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 69

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Marsh, 1987
Marsh, K.N., Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Sci. Pub., Oxford, 1987. [all data]

Angus, Armstrong, et al., 1976
Angus, S.; Armstrong, B.; de Reuck, K.M., International Thermodynamic Tables of the Fluid State - 3 Carbon Dioxide, Pergamon, New York, 1976. [all data]

Suehiro, Nakajima, et al., 1996
Suehiro, Y.; Nakajima, M.; Yamada, K.; Uematsu, M., Critical parameters of {xCO2 + (1 - x)CHF3} for x = (1.0000, 0.7496, 0.5013 , and 0.2522), J. Chem. Thermodyn., 1996, 28, 1153-1164. [all data]

Weber, 1989
Weber, L.A., Simple Apparatus for Vapor-Liquid Equilibrium Measurements with Data for the Binary Systems of Carbon Dioxide with n-Butane and Isobutane, J. Chem. Eng. Data, 1989, 34, 171. [all data]

Li and Kiran, 1988
Li, L.; Kiran, E., Gas-Liquid Critical Properties of Methylamine + Nitrous Oxide and Methylamine + Ethylene Binary Mixtures, J. Chem. Eng. Data, 1988, 33, 342. [all data]

Morrison, 1981
Morrison, G., Effect of water on the critical points of carbon dioxide and ethane, J. Phys. Chem., 1981, 85, 759-61. [all data]

Efremova and Shvarts, 1972
Efremova, G.D.; Shvarts, A.V., Higher-order Critical Phenomena in Ternary Systems. The Methanol-Carbon Dioxide-Ethane System, Russ. J. Phys. Chem. (Engl. Transl.), 1972, 46, 237-239. [all data]

Andrizhievskii and Chernova, 1970
Andrizhievskii, A.A.; Chernova, N.I., Application of the Moving Meniscus Method in the Study of the Critical Phenomena in One-component Systems, Russ. J. Phys. Chem. (Engl. Transl.), 1970, 44, 1519. [all data]

Lowry and Erickson, 1927
Lowry, H.H.; Erickson, W.R., The Densities of Coexisting Liquid and Gaseous Carbon Dioxide and the Solubility of Water in Liquid Carbon Dioxide., J. Am. Chem. Soc., 1927, 49, 2729-2734. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Giauque and Egan, 1937
Giauque, W.F.; Egan, C.J., Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy, J. Chem. Phys., 1937, 5, 1, 45-54, https://doi.org/10.1063/1.1749929 . [all data]

Bryson, Cazcarra, et al., 1974
Bryson, Charles E.; Cazcarra, Victor; Levenson, Leonard L., Sublimation rates and vapor pressures of water, carbon dioxide, nitrous oxide, and xenon, J. Chem. Eng. Data, 1974, 19, 2, 107-110, https://doi.org/10.1021/je60061a021 . [all data]

Ambrose, 1956
Ambrose, D., The vapour pressures and critical temperatures of acetylene and carbon dioxide, Trans. Faraday Soc., 1956, 52, 772, https://doi.org/10.1039/tf9565200772 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Giauque and Egan, 1937, 2
Giauque, W.F.; Egan, C.J., Carbon Dioxide. The Heat Capacity and Vapor Pressure of the Solid. The Heat of Sublimation. Thermodynamic and Spectroscopic Values of the Entropy, J. Chem. Phys., 1937, 5, 1, 45, https://doi.org/10.1063/1.1749929 . [all data]

Hiraoka, Nakajima, et al., 1988
Hiraoka, K.; Nakajima, G.; Shoda, S., Determination of the Stabilities of CO2+(CO2)n and O2+(CO2)n Clusters with n = 1 - 6, Chem. Phys. Lett., 1988, 146, 6, 535, https://doi.org/10.1016/0009-2614(88)87495-5 . [all data]

Illies, 1988
Illies, A.J., Thermochemistry of the Gas - Phase Ion - Molecule Clustering of CO2+CO2, SO2+CO2, N2O+N2O, O2+CO2, NO+CO2 and NO+N2O: Description of a New Hybrid Drift Tube/Ion Source with Coaxial Electron Beam and Ion Exit Apertures, J. Phys. Chem., 1988, 92, 10, 2889, https://doi.org/10.1021/j100321a037 . [all data]

Dotan, Davidson, et al., 1978
Dotan, I.; Davidson, J.A.; Fehsenfeld, F.C.; Albritton, D.L., Reactions of O2+.O2 with CO2, O3 and CH4 and O2+.O3 with H2O and CH4 and their Role in Stratospheric Ion Chemistry, J. Geophys. Res., 1978, 83, C8, 4036, https://doi.org/10.1029/JC083iC08p04036 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Meot-Ner (Mautner) and Field, 1977
Meot-Ner (Mautner), M.; Field, F.H., Proton Affinity and Ion - Molecule Clustering in CO2 and CS2. Applications in Martian Ionospheric Chemistry, J. Chem. Phys., 1977, 66, 10, 4527, https://doi.org/10.1063/1.433706 . [all data]

Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P., Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions, Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X . [all data]

Van Koppen, Kemper, et al., 1983
Van Koppen, P.A.M.; Kemper, P.R.; Illies, A.J.; Bowers, M.T., An Improved High - Pressure, Temperature - Variable Ion Source with Coaxial Electron Beam/Ion Exit Slit, Int. J. Mass Spectrom. Ion Proc., 1983, 54, 3, 263, https://doi.org/10.1016/0168-1176(83)80015-9 . [all data]

Headley, Mason, et al., 1982
Headley, J.V.; Mason, R.S.; Jennings, K.R., Kinetics, Equilibria and Diffusion of Ions Produced in N2, CO and CO2, Studied as a Function of Temperature using a High - Pressure Pulsed Mass Spectrometer, J. Chem. Soc., 1982, 78, 933. [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Piani, Becucci, et al., 2008
Piani, G.; Becucci, M.; Bowen, M.S.; Oakman, J.; Hu, Q.; Continetti, R.E., Photodetachment and dissociation dynamics of microsolvated iodide clusters, Phys. Scripta, 2008, 78, 5, 058110, https://doi.org/10.1088/0031-8949/78/05/058110 . [all data]

Arnold, Bradforth, et al., 1995
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of I-(CO2)n, Br-(CO2)n, and I-(N2O)n clusters by anion photoelectron spectroscopy, J. Chem. Phys., 1995, 102, 9, 3510, https://doi.org/10.1063/1.468576 . [all data]

Hiraoka, Mizuse, et al., 1987
Hiraoka, K.; Mizuse, S.; Yamabe, S., Stability and Structure of Cluster Ions: Halide Ions with CO2, J. Chem. Phys., 1987, 87, 6, 3647, https://doi.org/10.1063/1.452962 . [all data]

Gomez, Taylor, et al., 2002
Gomez, H.; Taylor, T.R.; Neumark, D.M., Anion photoelectron spectroscopy of I-2(-)(CO2)(n)(n=1-8) clusters, J. Chem. Phys., 2002, 116, 14, 6111-6117, https://doi.org/10.1063/1.1458246 . [all data]

Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr., Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions, J. Chem. Phys., 1980, 73, 2195. [all data]

Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V., Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions, J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543 . [all data]

Hiraoka and Yamabe, 1992
Hiraoka, K.; Yamabe, S., Formation of the Chelate Bonds in the Cluster O2(-)(CO2)n, CO3(-)(CO2)n, and NO2(-)(CO2)n, J. Chem. Phys., 1992, 97, 1, 643, https://doi.org/10.1063/1.463560 . [all data]

Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V., Electron Attachment and Detachment . II. Mixtures of O2 and CO2 and of O2 and H2O, J. Chem. Phys., 1966, 45, 11, 4316, https://doi.org/10.1063/1.1727491 . [all data]

Vestal and Mauclaire, 1977
Vestal, M.L.; Mauclaire, G.H., Photodissociaton of negative ions formed in CO2 and CO2/O2 Mixtures, J. Chem. Phys., 1977, 67, 3758. [all data]

Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E., Stability of O4-, J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956 . [all data]

Fehsenfeld and Ferguson, 1974
Fehsenfeld, F.C.; Ferguson, E.E., Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys., 1974, 61, 3181. [all data]

Arshadi and Kebarle, 1970
Arshadi, M.; Kebarle, P., Hydration of OH- and O2- in the Gas Phase. Comparative Solvation of OH- by Water and the Hydrogen Halides. Effect of Acidity, J. Phys. Chem., 1970, 74, 7, 1483, https://doi.org/10.1021/j100702a015 . [all data]

Arnold, Bradforth, et al., 1995, 2
Arnold, D.W.; Bradforth, S.E.; Kim, E.H.; Neumark, D.M., Study of halogen carbon dioxide clusters and the fluoroformyloxyl radical by photodetachment of X(-)(CO2) (X=I,Cl,Br) and FCO2-, J. Chem. Phys., 1995, 102, 9, 3493, https://doi.org/10.1063/1.468575 . [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

McMahon and Northcott, 1978
McMahon, T.B.; Northcott, C.J., The Fluoroformate Ion FCO2-: An ICR study of the gas phase lewis acidity of carbon dioxide and related isoelectronic species, Can. J. Chem., 1978, 56, 1068. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E., Termolecular and Saturated Termolecular Kinetics for Li+ and F-, J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610 . [all data]

Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K., Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+, J. Chem. Phys., 1986, 84, 2091. [all data]

Peterson, Mark, et al., 1984
Peterson, K.I.; Mark, T.D.; Keesee, R.G.; Castleman, A.W., Thermochemical Properties of Gas - Phase Mixed Clusters: H2O/CO2 with Na+, J. Phys. Chem., 1984, 88, 13, 2880, https://doi.org/10.1021/j150657a042 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Szulejko and McMahon, 1992
Szulejko, J.; McMahon, T.B., personal communication, 1992. [all data]

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Cameron, Aitken, et al., 1994
Cameron, B.R.; Aitken, C.G.; Harland, P.W., Appearence Energies of Small Cluster Ions and their Fragments, J. Chem. Soc. Faraday Trans., 1994, 90, 7, 935, https://doi.org/10.1039/ft9949000935 . [all data]

Linn and Ng, 1981
Linn, S.H.; Ng, C.Y., Photoionization Study of CO2, N2O Dimers and Clusters, J. Chem. Phys., 1981, 75, 10, 4921, https://doi.org/10.1063/1.441931 . [all data]

Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A., CO2 and O2 Clustering to Sodium Ions, J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289 . [all data]

Squires, 1992
Squires, R.R., Gas Phase Thermochemical Properties of the Bicarbonate and Bisulfate Ions, Int. J. Mass Spectrom. Ion Proc., 1992, 117, 565, https://doi.org/10.1016/0168-1176(92)80114-G . [all data]

Hierl and Paulson, 1984
Hierl, P.M.; Paulson, J.F., Translational energy dependence of cross sections for reactions of OH- (H2O)n with CO2 and SO2, J. Chem. Phys., 1984, 80, 4890. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Knapp, Echt, et al., 1986
Knapp, A.; Echt, O.; Kreisle, D.; Mark, T.D.; Recknagel, E., Formation of Long-Lived CO2-, N2O- and their Dimer Anions, by Electron Attachment to van der Walls Clusters, Chem. Phys. Lett., 1986, 126, 3-4, 225, https://doi.org/10.1016/S0009-2614(86)80074-4 . [all data]

Compton, Reinhardt, et al., 1975
Compton, R.N.; Reinhardt, P.W.; Cooper, C.D., Collisional ionization of Na, K, and Cs by CO2, COS, and CS2: Molecular electron affinities, J. Chem. Phys., 1975, 63, 3821. [all data]

Wang, Reutt, et al., 1988
Wang, L.; Reutt, J.E.; Lee, Y.T.; Shirley, D.A., High resolution UV photoelectron spectroscopy of CO2, COS, and CS2 using supersonic molecular beams, J. Electron Spectrosc. Relat. Phenom., 1988, 47, 167. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Potts and Fattahallah, 1980
Potts, A.W.; Fattahallah, G.H., High-resolution ultraviolet photoelectron spectroscopy of CO2, COS and CS2, J. Phys. B:, 1980, 13, 2545. [all data]

Hitchcock, Brion, et al., 1980
Hitchcock, A.P.; Brion, C.E.; Van der Wiel, M.J., Absolute oscillator strengths for valence-shell ionic photofragmentation of N2O and CO2(8-75 eV), Chem. Phys., 1980, 45, 461. [all data]

Sahini, Constantin, et al., 1978
Sahini, V.E.; Constantin, V.; Serban, I., Determination of ionization potentials using a MI-1305 mass spectrometer, Rev. Roum. Chim., 1978, 23, 479. [all data]

Mark and Hille, 1978
Mark, T.D.; Hille, E., Cross section for single and double ionization of carbon dioxide by electron impact threshold up to 180 eV, J. Chem. Phys., 1978, 69, 2492. [all data]

Jones and Taylor, 1978
Jones, G.G.; Taylor, J.W., A photoionization study of carbon dioxide dimers in a supersonic molecular beam, J. Chem. Phys., 1978, 68, 1768. [all data]

Frey, Gotchev, et al., 1977
Frey, R.; Gotchev, B.; Kalman, O.F.; Peatman, W.B.; Pollak, H.; Schlag, E.W., Photoionization resonance spectra of CO2+ and threshold electron-ion coincidence measurements of the fragmentation of CO2+, Chem. Phys., 1977, 21, 89. [all data]

Bussieres and Marmet, 1977
Bussieres, N.; Marmet, P., Ionization and dissociative ionization of CO2 by electron impact, Can. J. Phys., 1977, 55, 1889. [all data]

Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J., Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]

Batten, Taylor, et al., 1976
Batten, C.F.; Taylor, J.A.; Meisels, G.G., Photoionization processes at threshold. I. Threshold photoelectron and photoionization spectra of CO2, J. Chem. Phys., 1976, 65, 3316. [all data]

Parr and Taylor, 1974
Parr, G.R.; Taylor, J.W., Photoionization mass spectrometry. IV. Carbon dioxide, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 467. [all data]

Semenov, Volkov, et al., 1973
Semenov, G.A.; Volkov, A.D.; Franktseva, K.E., Mass-spectrometric study of sodium carbonate vaporization, Tr. Leningrad. Tekhnol. Inst. Tsellyul. Bum. Prom., 1973, 30, 153. [all data]

Parr and Taylor, 1973
Parr, G.R.; Taylor, J.W., A photoionization mass spectrometer utilizing a high intensity molecular beam sampling system and synchrotron radiation, Rev. Sci. Instrum., 1973, 44, 1578. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

McCulloh, 1973
McCulloh, K.E., Photoionization of carbon dioxide, J. Chem. Phys., 1973, 59, 4250. [all data]

Frost, Lee, et al., 1973
Frost, D.C.; Lee, S.T.; McDowell, C.A., Photoelectron spectra of OCSe, SCSe, and CSe2, J. Chem. Phys., 1973, 59, 5484. [all data]

Brundle and Turner, 1969
Brundle, C.R.; Turner, D.W., Studies on the photoionisation of the linear triatomic molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 195. [all data]

Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J., Photoelectron spectra and ionic structure of carbon dioxide, carbon disulphide and sulphur dioxide, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 111. [all data]

Spohr and Puttkamer, 1967
Spohr, R.; Puttkamer, E.v., Energiemessung von Photoelektronen und Franck-Condon-Faktoren der Schwingungsubergange einiger Molekulionen, Z. Naturforsch., 1967, 22a, 705. [all data]

Carette, 1967
Carette, J.-D., Ionisation par impact electronique de CO2 et N2O, Can. J. Phys., 1967, 45, 2931. [all data]

Nakata, Watanabe, et al., 1965
Nakata, R.S.; Watanabe, K.; Matsunaga, F.M., Absorption and photoionization coefficients of CO2 in the region 580-1670 A, Sci. Light (Tokyo), 1965, 14, 54. [all data]

Tanaka, Jursa, et al., 1960
Tanaka, Y.; Jursa, A.S.; LeBlanc, F.J., Higher ionization potentials of linear triatomic molecules. I. CO2, J. Chem. Phys., 1960, 32, 1199. [all data]

Eland and Berkowitz, 1977
Eland, J.H.D.; Berkowitz, J., Photoionization mass spectrometry of HI and DI at high resolution, J. Chem. Phys., 1977, 67, 5034. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Schweig and Thiel, 1974
Schweig, A.; Thiel, W., Photoionization cross sections: He I- and He II-photoelectron spectra of homologous oxygen and sulphur compounds, Mol. Phys., 1974, 27, 265. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Crowe and McConkey, 1974
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact. III. O+, CO+ and C+ from CO2, J. Phys. B:, 1974, 7, 349. [all data]

Cuthbert, Farren, et al., 1968
Cuthbert, J.; Farren, J.; PrahalladaRao, B.S.; Preece, E.R., Sequential mass spectrometry. III. Ions and fragments from carbon dioxide anddisulphide, J. Phys. B:, 1968, 1, 62. [all data]

Eland and Berkowitz, 1977, 2
Eland, J.H.D.; Berkowitz, J., Formation and predissociation of CO2+(C2Σ+g), J. Chem. Phys., 1977, 67, 2782. [all data]

Samson and Gardner, 1973
Samson, J.A.R.; Gardner, J.L., Fluorescence excitation and photoelectron spectra of CO2 induced by vacuum ultraviolet radiation between 185 and 716 angstroms, J. Geophys. Res., 1973, 78, 3663. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References