Thioformaldehyde
- Formula: CH2S
- Molecular weight: 46.092
- IUPAC Standard InChIKey: DBTDEFJAFBUGPP-UHFFFAOYSA-N
- CAS Registry Number: 865-36-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 28.3 ± 2.0 | kcal/mol | Ion | Ruscic and Berkowitz, 1993 | |
ΔfH°gas | 22. ± 2. | kcal/mol | Ion | Roy and McMahon, 1982 | Appearance potential |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to CH2S+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Proton affinity (review) | 181.6 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 174.6 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.465 ± 0.023 | LPES | Moran and Ellison, 1987 | B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.376 ± 0.003 | PI | Ruscic and Berkowitz, 1993, 2 | LL |
9.338 ± 0.010 | PE | Kroto and Suffolk, 1972 | LLK |
9.44 ± 0.05 | EI | Jones and Lossing, 1967 | RDSH |
9.38 | PE | Solouki, Rosmus, et al., 1976 | Vertical value; LLK |
9.0 | PE | Rao, 1975 | Vertical value; LLK |
9.33 | PE | Guimon, Gonbeau, et al., 1974 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CHS+ | 11.533 ± 0.021 | H | PI | Ruscic and Berkowitz, 1993, 2 | LL |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Marilyn E. Jacox
State: E
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 55096 | gas | E-X | 181 | 182 | Judge, Drury-Lessard, et al., 1978 | ||
Drury and Moule, 1982 | |||||||
State: D
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 53134 | gas | D-X | 188 | 189 | Judge, Drury-Lessard, et al., 1978 | ||
Drury and Moule, 1982 | |||||||
State: C
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 47110.821 ± 0.009 | gas | C-X | 212 | 213 | Callear, Connor, et al., 1969 | ||
Judge, Drury-Lessard, et al., 1978 | |||||||
Goetz, Moule, et al., 1981 | |||||||
Drury and Moule, 1982 | |||||||
State: B
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 45197 | gas | B-X | 185 | 215 | Judge, Drury-Lessard, et al., 1978 | ||
Drury, Lai, et al., 1982 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a1 | 3 | CS stretch | 476 | gas | AB | Drury, Lai, et al., 1982 | |
b1 | 4 | OPLA | 363 | gas | AB | Drury, Lai, et al., 1982 | |
State: A
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 16394.628 ± 0.004 | gas | A-X | 440 | 610 | Judge and King, 1975 | ||
Judge and King, 1979 | |||||||
Judge and King, 1979, 2 | |||||||
Clouthier, Ramsay, et al., 1983 | |||||||
Dunlop, Karolczak, et al., 1991 | |||||||
Clouthier, Huang, et al., 1994 | |||||||
Fung and Ramsay, 1996 | |||||||
Ulrich and Huttner, 2000 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a1 | 1 | CH stretch | 3033.4 | gas | AB LF | Judge and King, 1979 Dunlop, Karolczak, et al., 1991 | |
2 | CH2 scissors | 1334.5 | gas | LF | Dunlop, Karolczak, et al., 1991 | ||
3 | CS stretch | 819.7 | gas | AB LF | Judge and King, 1975 Judge and King, 1979 Dunlop, Karolczak, et al., 1991 | ||
b1 | 4 | OPLA | 370.3 | gas | AB LF | Judge and King, 1979 Dunlop, Karolczak, et al., 1991 Clouthier, Huang, et al., 1994 | |
b2 | 5 | CH stretch | 3054.9 | gas | LF | Dunlop, Karolczak, et al., 1991 | |
6 | CH2 rock | 785.2 | gas | LF | Dunlop, Karolczak, et al., 1991 | ||
State: a
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 14507.38 | gas | a-X | 610 | 800 | Judge and King, 1975 | ||
Judge, Moule, et al., 1980 | |||||||
Clouthier and Kerr, 1982 | |||||||
Clouthier, Ramsay, et al., 1983 | |||||||
Glinski, Getty, et al., 1985 | |||||||
Dunlop, Karolczak, et al., 1991, 2 | |||||||
Glinski, Taylor, et al., 1991 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a1 | 2 | CH2 scissors | 1318.6 | gas | AB LF | Judge, Moule, et al., 1980 Dunlop, Karolczak, et al., 1991, 2 | |
3 | CS stretch | 861.6 | gas | AB LF | Judge, Moule, et al., 1980 Suzuki, Saito, et al., 1983 | ||
b1 | 4 | OPLA | 326 | gas | LF CL | Clouthier and Kerr, 1982 Jensen and Bunker, 1982 Glinski, Getty, et al., 1985 Glinski, Taylor, et al., 1991 Clouthier, Huang, et al., 1994 | |
b2 | 6 | CH2 rock | 762.3 | gas | LF | Suzuki, Saito, et al., 1983 | |
State: X
Additional references: Jacox, 1994, page 143; Jacox, 1998, page 224; Jacox, 2003, page 173; Johnson, Powell, et al., 1971; Beers, Klein, et al., 1972; Johnson, Lovas, et al., 1972; Duxbury, Kato, et al., 1981; Kawasaki, Kasatani, et al., 1983; Kawasaki, Kasatani, et al., 1985; Petersen and Ramsay, 1987; Maeda, Medvedev, et al., 2008
Notes
w | Weak |
m | Medium |
s | Strong |
o | Energy separation between the v = 0 levels of the excited and electronic ground states. |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Ruscic and Berkowitz, 1993
Ruscic, B.; Berkowitz, J.,
Photoionization mass spectrometry of CH2S and HCS,
J. Chem. Phys., 1993, 98, 2568-2579. [all data]
Roy and McMahon, 1982
Roy, M.; McMahon, T.B.,
The proton affinity of thioformaldehyde implications for the heat of formation of thioformaldehyde and thiolmethyl carbonium ion from ion cyclotron resonance investigations of the proton transfer reactions of [CH2SH]+,
Org. Mass Spectrom., 1982, 8, 392-395. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Moran and Ellison, 1987
Moran, S.; Ellison, G.B.,
Electron spectroscopy of CH2S-,
Int. J. Mass Spectrom. Ion Processes, 1987, 80, 83. [all data]
Ruscic and Berkowitz, 1993, 2
Ruscic, B.; Berkowitz, J.,
Photoionization mass spectrometry of CH2S and HCS,
J. Chem. Phys., 1993, 98, 2568. [all data]
Kroto and Suffolk, 1972
Kroto, H.W.; Suffolk, R.J.,
The photoelectron spectrum of an unstable species in the pyrolysis products of dimethyldisulphide,
Chem. Phys. Lett., 1972, 15, 545. [all data]
Jones and Lossing, 1967
Jones, A.; Lossing, F.P.,
The ionization potential and heat of formation of thioformaldehyde,
J. Phys. Chem., 1967, 71, 4111. [all data]
Solouki, Rosmus, et al., 1976
Solouki, B.; Rosmus, P.; Bock, H.,
Unstable intermediates. 4. Thioformaldehyde,
J. Am. Chem. Soc., 1976, 98, 6054. [all data]
Rao, 1975
Rao, C.N.R.,
Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules,
Indian J. Chem., 1975, 13, 950. [all data]
Guimon, Gonbeau, et al., 1974
Guimon, C.; Gonbeau, D.; Pfister-Guillouzo, G.; Asbrink, L.; Sandstrom, J.,
Electronic structure of sulphur compounds. VI. Photoelectron spectra of some simple thiocarbonyl compounds,
J. Electron Spectrosc. Relat. Phenom., 1974, 4, 49. [all data]
Judge, Drury-Lessard, et al., 1978
Judge, R.H.; Drury-Lessard, C.R.; Moule, D.C.,
The far ultraviolet spectrum of thioformaldehyde,
Chem. Phys. Lett., 1978, 53, 1, 82, https://doi.org/10.1016/0009-2614(78)80395-9
. [all data]
Drury and Moule, 1982
Drury, C.R.; Moule, D.C.,
The ultraviolet absorption spectrum of thioformaldehyde,
J. Mol. Spectrosc., 1982, 92, 2, 469, https://doi.org/10.1016/0022-2852(82)90116-3
. [all data]
Callear, Connor, et al., 1969
Callear, A.B.; Connor, J.; Dickson, D.R.,
Electronic Spectra of Thioformaldehyde and the Methyl Thiyl Radical,
Nature, 1969, 221, 5187, 1238, https://doi.org/10.1038/2211238a0
. [all data]
Goetz, Moule, et al., 1981
Goetz, W.; Moule, D.C.; Ramsay, D.A.,
The electric dipole moment of the state of thioformaldehyde,
Can. J. Phys., 1981, 59, 11, 1635, https://doi.org/10.1139/p81-215
. [all data]
Drury, Lai, et al., 1982
Drury, C.R.; Lai, J.Y.K.; Moule, D.C.,
The B1A2 ← X1A1 absorption spectrum of thioformaldehyde,
Chem. Phys. Lett., 1982, 87, 6, 520, https://doi.org/10.1016/0009-2614(82)83169-2
. [all data]
Judge and King, 1975
Judge, R.H.; King, G.W.,
The Electronic Absorption Spectrum of Thioformaldehyde,
Can. J. Phys., 1975, 53, 19, 1927, https://doi.org/10.1139/p75-241
. [all data]
Judge and King, 1979
Judge, R.H.; King, G.W.,
Thioformaldehyde,
J. Mol. Spectrosc., 1979, 74, 2, 175, https://doi.org/10.1016/0022-2852(79)90048-1
. [all data]
Judge and King, 1979, 2
Judge, R.H.; King, G.W.,
Thioformaldehyde,
J. Mol. Spectrosc., 1979, 78, 1, 51, https://doi.org/10.1016/0022-2852(79)90035-3
. [all data]
Clouthier, Ramsay, et al., 1983
Clouthier, D.J.; Ramsay, D.A.; Birss, F.W.,
Singlet--triplet perturbations in the A 1A2 (v=0) state of thioformaldehyde,
J. Chem. Phys., 1983, 79, 12, 5851, https://doi.org/10.1063/1.445755
. [all data]
Dunlop, Karolczak, et al., 1991
Dunlop, J.R.; Karolczak, J.; Clouthier, D.J.; Ross, S.C.,
Pyrolysis jet spectroscopy: the S1-S0 band system of thioformaldehyde and the excited-state bending potential,
J. Phys. Chem., 1991, 95, 8, 3045, https://doi.org/10.1021/j100161a020
. [all data]
Clouthier, Huang, et al., 1994
Clouthier, D.J.; Huang, G.; Adam, A.G.; Merer, A.J.,
Sub-Doppler spectroscopy of thioformaldehyde: Excited state perturbations and evidence for rotation-induced vibrational mixing in the ground state,
J. Chem. Phys., 1994, 101, 9, 7300, https://doi.org/10.1063/1.468287
. [all data]
Fung and Ramsay, 1996
Fung, K.H.; Ramsay, D.A.,
Mol. Phys., 1996, 88, 997. [all data]
Ulrich and Huttner, 2000
Ulrich, W.; Huttner, W.,
The Mechanism of Magnetically Tuned Singlet--Triplet Avoided Crossings in the Ã1A2--1A1 410 Band of Thioformaldehyde H2C«58875»S,
J. Mol. Spectrosc., 2000, 200, 2, 182, https://doi.org/10.1006/jmsp.2000.8063
. [all data]
Judge, Moule, et al., 1980
Judge, R.H.; Moule, D.C.; King, G.W.,
The absorption spectrum of thioformaldehyde,
J. Mol. Spectrosc., 1980, 81, 1, 37, https://doi.org/10.1016/0022-2852(80)90328-8
. [all data]
Clouthier and Kerr, 1982
Clouthier, D.J.; Kerr, C.M.L.,
Gas-phase phosphorescence of thioformaldehyde,
Chem. Phys., 1982, 70, 1-2, 55, https://doi.org/10.1016/0301-0104(82)85104-5
. [all data]
Glinski, Getty, et al., 1985
Glinski, R.J.; Getty, J.N.; Birks, J.W.,
Phosphorescence spectra of thioformaldehyde and thioformaldehyde-d2 by chemiluminescence: Identification of the 411 band,
Chem. Phys. Lett., 1985, 117, 4, 359, https://doi.org/10.1016/0009-2614(85)85244-1
. [all data]
Dunlop, Karolczak, et al., 1991, 2
Dunlop, J.R.; Karolczak, J.; Clouthier, D.J.; Ross, S.C.,
Pyrolysis jet spectroscopy: laser-induced phosphorescence of thioformaldehyde and the triplet excited-state bending potential,
J. Phys. Chem., 1991, 95, 8, 3063, https://doi.org/10.1021/j100161a021
. [all data]
Glinski, Taylor, et al., 1991
Glinski, R.J.; Taylor, C.D.; Martin, H.R.,
Chemiluminescence spectra of thioformaldehyde and selenoformaldehyde,
J. Phys. Chem., 1991, 95, 16, 6159, https://doi.org/10.1021/j100169a021
. [all data]
Suzuki, Saito, et al., 1983
Suzuki, T.; Saito, S.; Hirota, E.,
Laser excitation spectrum and microwave optical double resonance spectrum of the 310 band in the a 3A2--X 1A1 system of H2CS: The hyperfine structure of the a 3A2 state,
J. Chem. Phys., 1983, 79, 4, 1641, https://doi.org/10.1063/1.446008
. [all data]
Jensen and Bunker, 1982
Jensen, P.; Bunker, P.R.,
The geometry and the out-of-plane bending potential function of thioformaldehyde in the and electronic states,
J. Mol. Spectrosc., 1982, 95, 1, 92, https://doi.org/10.1016/0022-2852(82)90241-7
. [all data]
Johns and Olson, 1971
Johns, J.W.C.; Olson, W.B.,
The infrared spectrum of thioformaldehyde,
J. Mol. Spectrosc., 1971, 39, 3, 479, https://doi.org/10.1016/0022-2852(71)90219-0
. [all data]
Turner, Halonen, et al., 1981
Turner, P.H.; Halonen, L.; Mills, I.M.,
Fourier transform infrared spectra of H2CS and D2CS,
J. Mol. Spectrosc., 1981, 88, 2, 402, https://doi.org/10.1016/0022-2852(81)90190-9
. [all data]
Jacox and Milligan, 1975
Jacox, M.E.; Milligan, D.E.,
Matrix isolation study of the infrared spectrum of thioformaldehyde,
J. Mol. Spectrosc., 1975, 58, 1, 142, https://doi.org/10.1016/0022-2852(75)90162-9
. [all data]
Torres, Safarik, et al., 1982
Torres, M.; Safarik, I.; Clement, A.; Strausz, O.P.,
The generation and vibrational spectrum of matrix isolated thioformaldehyde and dideuterothioformaldehyde,
Can. J. Chem., 1982, 60, 10, 1187, https://doi.org/10.1139/v82-176
. [all data]
Clouthier, Kerr, et al., 1981
Clouthier, D.J.; Kerr, C.M.L.; Ramsay, D.A.,
Single rotational level resonance fluorescence of thioformaldehyde,
Chem. Phys., 1981, 56, 1, 73, https://doi.org/10.1016/0301-0104(81)85101-4
. [all data]
McNaughton and Bruget, 1993
McNaughton, D.; Bruget, D.N.,
Far-Infrared and ν2 Vibration-Rotation Spectrum of Thioformaldehyde and Infrared Spectrum of Thioglyoxal,
J. Mol. Spectrosc., 1993, 159, 2, 340, https://doi.org/10.1006/jmsp.1993.1132
. [all data]
Bedwell and Duxbury, 1980
Bedwell, D.J.; Duxbury, G.,
Laser Stark spectroscopy of thioformaldehyde in the 10-μm region: The ν3, ν4, and the ν6 fundamentals,
J. Mol. Spectrosc., 1980, 84, 2, 531, https://doi.org/10.1016/0022-2852(80)90042-9
. [all data]
Flaud, Lafferty, et al., 2008
Flaud, J.-M.; Lafferty, W.J.; Perrin, A.; Kim, Y.S.; Beckers, H.; Willner, H.,
The first high-resolution analysis of the 10-μm absorption of thioformaldehyde,
J. Quant. Spectrosc. Radiat. Transfer, 2008, 109, 6, 995, https://doi.org/10.1016/j.jqsrt.2007.11.004
. [all data]
Jacox, 1994
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]
Jacox, 1998
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement A,
J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017
. [all data]
Jacox, 2003
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement B,
J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629
. [all data]
Johnson, Powell, et al., 1971
Johnson, D.R.; Powell, F.X.; Kirchhoff, W.H.,
Microwave spectrum, ground state structure, and dipole moment of thioformaldehyde,
J. Mol. Spectrosc., 1971, 39, 1, 136, https://doi.org/10.1016/0022-2852(71)90284-0
. [all data]
Beers, Klein, et al., 1972
Beers, Y.; Klein, G.P.; Kirchhoff, W.H.; Johnson, D.R.,
Millimeter wave spectrum of thioformaldehyde,
J. Mol. Spectrosc., 1972, 44, 3, 553, https://doi.org/10.1016/0022-2852(72)90263-9
. [all data]
Johnson, Lovas, et al., 1972
Johnson, D.R.; Lovas, F.J.; Kirchhoff, W.H.,
Microwave Spectra of Molecules of Astrophysical Interest: 1. Formaldehyde, Formamide, and Thioformaldehyde,
J. Phys. Chem. Ref. Data, 1972, 1, 4, 1011, https://doi.org/10.1063/1.3253107
. [all data]
Duxbury, Kato, et al., 1981
Duxbury, G.; Kato, H.; Le Lerre, M.L.,
Laser Stark and interferometric studies of thioformaldehyde and methyleneimine,
Discuss. Faraday Soc., 1981, 71, 97, https://doi.org/10.1039/dc9817100097
. [all data]
Kawasaki, Kasatani, et al., 1983
Kawasaki, M.; Kasatani, K.; Ogawa, Y.; Sato, H.,
Spectra and emission lifetimes of H2CS(Ã 1A2),
Chem. Phys., 1983, 74, 1, 83, https://doi.org/10.1016/0301-0104(83)80010-X
. [all data]
Kawasaki, Kasatani, et al., 1985
Kawasaki, M.; Kasatani, K.; Sato, H.,
Fluorescence lifetimes of the single vibrational levels of H2CS1, D2CS, and Cl2CS in the A1A2 state,
Chem. Phys., 1985, 94, 1-2, 179, https://doi.org/10.1016/0301-0104(85)85075-8
. [all data]
Petersen and Ramsay, 1987
Petersen, J.C.; Ramsay, D.A.,
Doppler-limited dye laser excitation spectroscopy of the 401 band of the system of D2CS,
J. Mol. Spectrosc., 1987, 126, 1, 29, https://doi.org/10.1016/0022-2852(87)90073-7
. [all data]
Maeda, Medvedev, et al., 2008
Maeda, A.; Medvedev, I.R.; Winnewisser, M.; DeLucia, F.C.; Herbst, E.; Muller, H.S.P.; Koerber, M.; Endres, C.P.; Schlemmer, S.,
High-Frequency Rotational Spectrum of Thioformaldehyde, H,
Astrophys. J. Suppl., 2008, 176, 2, 543, https://doi.org/10.1086/528684
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.