Sulfur dimer

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas128.60 ± 0.30kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas128.60kJ/molReviewChase, 1998Data last reviewed in September, 1977
Quantity Value Units Method Reference Comment
gas,1 bar228.167 ± 0.010J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar228.19J/mol*KReviewChase, 1998Data last reviewed in September, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 33.51313
B 5.065360
C -1.059670
D 0.089905
E -0.211911
F 117.6855
G 266.0919
H 128.6003
ReferenceChase, 1998
Comment Data last reviewed in September, 1977

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(HS2- • 4294967295Sulfur dimer) + Sulfur dimer = HS2-

By formula: (HS2- • 4294967295S2) + S2 = HS2-

Quantity Value Units Method Reference Comment
Δr341. ± 15.kJ/molN/AEntfellner and Boesl, 2009gas phase; B
Δr195. ± 15.kJ/molTherMoran and Ellison, 1988gas phase; B

(OS2- • 4294967295Sulfur dimer) + Sulfur dimer = OS2-

By formula: (OS2- • 4294967295S2) + S2 = OS2-

Quantity Value Units Method Reference Comment
Δr474.0 ± 1.6kJ/molN/ANimlos and Ellison, 1986gas phase; B

(Vanadium ion (1+) • Sulfur dimer) + Sulfur dimer = (Vanadium ion (1+) • 2Sulfur dimer)

By formula: (V+ • S2) + S2 = (V+ • 2S2)

Quantity Value Units Method Reference Comment
Δr286. ± 18.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

(Molybdenum ion (1+) • Sulfur dimer) + Sulfur dimer = (Molybdenum ion (1+) • 2Sulfur dimer)

By formula: (Mo+ • S2) + S2 = (Mo+ • 2S2)

Quantity Value Units Method Reference Comment
Δr300. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Vanadium ion (1+) + Sulfur dimer = (Vanadium ion (1+) • Sulfur dimer)

By formula: V+ + S2 = (V+ • S2)

Quantity Value Units Method Reference Comment
Δr313. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Molybdenum ion (1+) + Sulfur dimer = (Molybdenum ion (1+) • Sulfur dimer)

By formula: Mo+ + S2 = (Mo+ • S2)

Quantity Value Units Method Reference Comment
Δr329. ± 10.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Ion clustering data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to S2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.356 ± 0.002eVN/AN/AL

Electron affinity determinations

EA (eV) Method Reference Comment
1.670 ± 0.015LPESMoran and Ellison, 1988B
1.663 ± 0.040LPESCelotta, Bennett, et al., 1974B
1.565 ± 0.050LPDHunsicker, Jones, et al., 1995B
>0.86 ± 0.10R-ADillard and Franklin, 1968S- + COS -> S2- + CO. Also S2- + COS -> S3- + CO, etc. to n=6; B
>2.50 ± 0.80EIAEThynne, 1972From CS2; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.4PEBender, Carnovale, et al., 1988LL
9.356 ± 0.002PILiao and Ng, 1986LBLHLM
9.6 ± 0.2EIRosinger, Grade, et al., 1983LBLHLM
9.5 ± 0.2EIGrade, Wienecke, et al., 1983LBLHLM
9.5 ± 0.3EILau, Brittain, et al., 1982LBLHLM
9.38 ± 0.03DERCoppens, Reynaert, et al., 1979LLK
9.36 ± 0.02EITal'roze, Butkovskaya, et al., 1978LLK
9.8 ± 0.3EISmoes, Drowart, et al., 1977LLK
10.1 ± 0.3EIPiacente, Bardi, et al., 1976LLK
9.4 ± 0.1EIHildenbrand, 1975LLK
9.38 ± 0.01PEGolob, Jonathan, et al., 1975LLK
9.30PEBerkowitz, 1975LLK
9.8 ± 0.5EIMuenow and Margrave, 1972LLK
9.42 ± 0.10EIHildenbrand, 1972LLK
9.40 ± 0.05SDonovan, Husain, et al., 1970RDSH
9.32SBarrow, duParcq, et al., 1969RDSH
9.36 ± 0.02PIBerkowitz and Lifshitz, 1968RDSH
9.55PEWu and Fehlner, 1976Vertical value; LLK
9.56PEBerkowitz, 1975Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
S+14.732 ± 0.005SPILiao and Ng, 1986LBLHLM
S+13.5 ± 0.5SEIPiacente, Bardi, et al., 1976LLK
S+14.74 ± 0.01SPIBerkowitz and Chupka, 1969RDSH

Anion protonation reactions

S2- + Hydrogen cation = HS2

By formula: S2- + H+ = HS2

Quantity Value Units Method Reference Comment
Δr1380. ± 15.kJ/molD-EAMoran and Ellison, 1988gas phase; B
Quantity Value Units Method Reference Comment
Δr>1441.8kJ/molIMRBGoodings, Bohme, et al., 1986gas phase; S- deprotonates H2S, Sn- for n≥2, does not.; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(HS2- • 4294967295Sulfur dimer) + Sulfur dimer = HS2-

By formula: (HS2- • 4294967295S2) + S2 = HS2-

Quantity Value Units Method Reference Comment
Δr341. ± 15.kJ/molN/AEntfellner and Boesl, 2009gas phase; B
Δr195. ± 15.kJ/molTherMoran and Ellison, 1988gas phase; B

Molybdenum ion (1+) + Sulfur dimer = (Molybdenum ion (1+) • Sulfur dimer)

By formula: Mo+ + S2 = (Mo+ • S2)

Quantity Value Units Method Reference Comment
Δr329. ± 10.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

(Molybdenum ion (1+) • Sulfur dimer) + Sulfur dimer = (Molybdenum ion (1+) • 2Sulfur dimer)

By formula: (Mo+ • S2) + S2 = (Mo+ • 2S2)

Quantity Value Units Method Reference Comment
Δr300. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

(OS2- • 4294967295Sulfur dimer) + Sulfur dimer = OS2-

By formula: (OS2- • 4294967295S2) + S2 = OS2-

Quantity Value Units Method Reference Comment
Δr474.0 ± 1.6kJ/molN/ANimlos and Ellison, 1986gas phase; B

Vanadium ion (1+) + Sulfur dimer = (Vanadium ion (1+) • Sulfur dimer)

By formula: V+ + S2 = (V+ • S2)

Quantity Value Units Method Reference Comment
Δr313. ± 13.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

(Vanadium ion (1+) • Sulfur dimer) + Sulfur dimer = (Vanadium ion (1+) • 2Sulfur dimer)

By formula: (V+ • S2) + S2 = (V+ • 2S2)

Quantity Value Units Method Reference Comment
Δr286. ± 18.kJ/molCIDTSchroeder, Kretzschmar, et al., 2003RCD

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through July, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 32S2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Additional progressions and unassigned bands in the absorption spectrum 65700 - 71900 cm-1.
Mahajan, Lakshminarayana, et al., 1976
F 2 (66333) [827] 1 H         F ← X 66384 1 H
Donovan, Husain, et al., 1970; Mahajan, Lakshminarayana, et al., 1976
(66229) [827] 1 H         F ← X 66280 1 H
Donovan, Husain, et al., 1970; Mahajan, Lakshminarayana, et al., 1976
E 2 (65933) [818] 1 H         E ← X 65980 1 H
Donovan, Husain, et al., 1970; Mahajan, Lakshminarayana, et al., 1976
(65829) [818] 1 H         E ← X 65876 1 H
Donovan, Husain, et al., 1970; Mahajan, Lakshminarayana, et al., 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
j 3          j → (b) 4 V 56077.7 H
missing citation
i  [785.0] H         i → (b) 4 V 55099.3 H
missing citation
h  819.6 H 2.70        h → (b) 4 V 51461.4 H
missing citation
D 3Πu,r 58978.7 793.8 H 4.00  [0.3073]   [1.85E-7]  [1.8546] D ↔ X V 59012.50 Z
missing citation; Tanaka and Ogawa, 1962; Ricks and Barrow, 1969
58691.7 793.8 H 4.00  [0.3066]   [1.85E-7]  [1.8546] D ↔ X V 58725.47 Z
missing citation; Tanaka and Ogawa, 1962; Ricks and Barrow, 1969
58518.3 793.8 H 4.00  [0.3059]   [1.85E-7]  [1.8546] D ↔ X V 58552.05 Z
missing citation; Tanaka and Ogawa, 1962; Ricks and Barrow, 1969
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
g 1Δu x+ 52187.7 816.0 H 2.70  [0.3210]   (2.0E-7)  [1.8125] g ↔ a 5 V 52244.66 Z
missing citation; Barrow and Du Parcq, 1968
C' (3Σu-) 6          C' → X V 56621.6 H
missing citation
C 3Σu- 55581.7 829.15 Z 3.34  0.3219 7 0.00138 -2.3E-4 [2.17E-7]  1.8100 C ↔ X V 55633.3 8 Z
Wieland, Wehrli, et al., 1934; missing citation; Tanaka and Ogawa, 1962; missing citation
f 1Δu x+ 36875.45 438.32 Z 2.70 -0.005 0.22704 9 0.00178  (2.43E-7)  2.1551 f ↔ a 10 R 36743.53 Z
Barrow and Du Parcq, 1968; Carleer and Colin, 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B' 3Πg,i     11      B' → A V 
Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
z+ (14504) [533.7] 12 (Z)   [0.2441] 11     [2.078] B' → A V 13451.95 13 Z
Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
z+ (14295)    [0.2435] 11      B' → A V 13320.64 13 Z
Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
           B' → A' V 
Meakin and Barrow, 1962; Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
           B' → A' V 14144.37 Z
Meakin and Barrow, 1962; Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
           B' → A' V 14318.07 Z
Meakin and Barrow, 1962; Narasimham, 1964; Narasimham and Apparao, 1966; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 3Σu- 31835 434.0 14 2.75 14  0.2239 14 15 16 0.0023 14  [2.4E-7] 14  2.170 B ↔ X 17 18 R 31689 19
Olsson, 1938; Ikenoue, 1960; Barrow and du Parcq, 1965
A 3Σu+(0u-) z+ 1078 20 482.75 Z 2.58  0.2301 0.0021    2.141  
A 3Σu+(1u) z+1000.49 482.15 Z 2.56  0.2259 21 0.0014    2.161  
A' 3Δu ,i 
A' 3Δu,i z+ 383 488.16 Z 2.51  0.2285 0.0014    2.148  
z 22 488.25 Z 2.52  0.2285 0.0015      
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
b 1Σg+ y (699.7) 23 (3.4) 23         
a 1Δg x 24 702.35 Z 3.09  0.29262 0.00173  (2.01E-7)  1.8983  
X 3Σg- 0 25 725.65 Z 2.844  0.29547 26 0.001570 27 -1.82E-6 [1.90E-7]  1.8892 28  
Yee, Barrow, et al., 1972; Freedman and Jones, 1975
EPR and
Wayne, Davies, et al., 1974
mol. Beam rf sp.
Channappa, Pendlebury, et al., 1967

Notes

1Measurements of Mahajan, Lakshminarayana, et al., 1976; assignments of higher members of the two progressions appear uncertain.
2The two states E and F are believed to be members of two Rydberg series, one converging to X 2Π1/2 of S2+ (C,E,...), the other to X 2Π3/2 (F...). The apparent doublet structure of the bands is tentatively attributed to (ΩOc, w) coupling Donovan, Husain, et al., 1970.
3Only v=0 observed.
4The lower state(s) of the three systems could be either a or b; see Barrow and du Parcq, 1965, Barrow and Du Parcq, 1968. Bands originating from the j level have double heads, all others single heads. No absorption corresponding to these transitions has been reported, although strong absorption from a 1Δg (g←a, f←a) has been seen in the flash photolysis of S2Cl2 Donovan, Husain, et al., 1968, Donovan, Husain, et al., 1970 and COS Carleer and Colin, 1970. Tanaka and Ogawa, 1962 use c and c' instead of h and i, respectively.
5Called d →x by Tanaka and Ogawa, 1962. Observed in absorption in the flash photolysis of S2Cl2 Donovan, Husain, et al., 1970.
6v=0 only; system e-X of Tanaka and Ogawa, 1962.
7Spin splitting constants λ0 = -11.61, γ0 = +0.033.
8missing note
9Breaking-off in emission above v'= 10 Asundi, 1965, Narasimham and Gopal, 1965. In absorption Carleer and Colin, 1970 bands with v'=11 and 12 have been observed, the rotational lines being only very slightly broadened. Predissociation probably into 3Δu from 3P + 1D.
10First observed by Rosen and Desirant, 1935, Haranath, 1963. Vibrational numbering established by isotope investigations Narasimham and Brody, 1964, Narasimham and Bhagvat, 1965.
11The last observed levels in emission are J'=33 and 15 in 3Π2 and 3Π1, respectively; higher levels, and presumably all levels of the unobserved 3Π0 component, are predissociated.
12Fragments of two V shaded emission bands at v0 = 13451.9 and 13985.5 cm-1 have been observed by Meakin and Barrow, 1962 and assigned Barrow and du Parcq, 1965 to a 1Πg1Σu- transition later called e →c Barrow and Du Parcq, 1968. The first band (B' ~ 0.244, B"~ 0.229, predissociated except for low J) is undoubtedly the 0-0 band of the B' 3Πgl → A 3Σu+(0u-) transition, the second presumably the corresponding 1-0 band since the ΔG(1/2) value agrees fairly well with we ~ 500 as estimated from isotope shift studies Narasimham and Apparao, 1966. However, no emission from levels having v'> 0 was reported by other investigators.
13Origins of the 3Π2g3Σu+(1u) and 3Π1g3Σu+(0u-) transitions.
14Vibrational constants from Olsson, 1938, rotational constants from Ikenoue, 1960. Barrow and du Parcq, 1965 give B0 = 0.2235, αe = 0.0018, (i.e. Be = 0.2244) without mentioning whether this is based on a revised analysis. This state is heavily perturbed by a 3Πu state Barrow and du Parcq, 1965; as a result none of the constants are very meaningful.
15Spin splitting constant λ ~ -4.7 for v=0,2,4 (v=6,7 are also inverted) but +9.5 for v=1,3,5 Meyer and Crosley, 1973; see 14. Barrow and du Parcq, 1965 give γ=0.05 for v=0,1,4.
16Breaking-off in emission (at low pressures) above J=61 in v = 8, and J=36 in v=9 (F1 component) Ricks and Barrow, 1969, 2. J=58 in v = 8, and J=37 in v=9 (F2 component) Ricks and Barrow, 1969, 2. J=59 in v = 8, and J=35 in v=9 (F3 component) Ricks and Barrow, 1969, 2. These together with similar breaking-off points in 34S2 and 32S34S yield a predissociation limit at 35636.3 cm-1 above X 3Σg- (v=0,J=0) of 32S2. Bands with v'≥10 are absent in emission [except at high pressure Asundi, 1931, Asundi, 1934, Sugden and Demerdache, 1962] and broadened in absorption. Above v'=18 there is strongly increased diffuseness indicating a second predissociation Herzberg and Mundie, 1940. Pressure effects on the intensity distribution of the absorption bands Kondratjew and Olsson, 1936, Herman and Felenbok, 1963.
17Lifetime τ(v=0...3) = 17 ns Smith, 1969 [phase shift method Smith, 1969]; τ(v=3,4) = 19.5 ns Meyer and Crosley, 1973, 2 [Hanle effect Meyer and Crosley, 1973, 2]. The most recent measurements [single-photon time correlation McGee and Weston, 1977] give τ = 45.0 ns McGee and Weston, 1977.
18Secondary heads on the short-wavelength side of the bands are formed by the forbidden T(R31) branches [ Meakin and Barrow, 1962, see also Tatum and Watson, 1971]. Experimental Franck-Condon factors (v"=0...25) from resonance fluorescence series with v'=3,4 Meyer and Crosley, 1973, 3, see also Yee, Barrow, et al., 1972. Theoretical Franck-Condon factors Herman and Felenbok, 1963, Smith and Liszt, 1971 [see, however, 14] 32S2/34S2 isotope shifts Chaudhry, Upadhya, et al., 1970. Absorption in inert gas matrices at low temperature Brewer, Brabson, et al., 1965.
19The observed position of v'=0 relative to X 3Σg-(v"=0) is at 31659 cm-1; strong vibrational perturbation.
20Λ = -39.0 (and γ = +0.008) derived fron the observed F1(N) - F2(N) splittings Narasimham, Apparao, et al., 1976.
21B+(F2) - B-(F1) = +0.0021.
22z ~ 22000 cm-1, very rough estimate based on the fact that the upper state of B'→ A' is predissociated and, therefore, cannot lie below the dissociation limit 3P+ 3P. A similar value is obtained by extrapolation of the vibrational levels in A' and X to their common limit 3P + 3P.
23Assuming that b is the lower state of the three singlet systems originating from h, i, j.
24 Carleer and Colin, 1970 estimate x ~ 4700 cm-1.
25Refers to the F2 component.
26Spin splitting constants λv= +11.82+0.05(v+1/2) + 0.0024(v+1/2)2, γv= - 0.00659-0.000126(v+1/2), v≤27, from Barrow and Yee, 1974 who give also data for 34S2; see also Barrow and Ketteringham, 1963, Barrow and du Parcq, 1965, Wayne, Davies, et al., 1974. From the pure rotational Raman spectrum Freedman and Jones, 1975 obtain B0 = 0.29443.
27missing note
28Raman sp. 1
29From the predissociation limit in B 3Σu- assuming dissociation at this limit into 3P2 + 3P1 Ricks and Barrow, 1969, 2. The value given here (35240.2 cm-1) is relative to the lowest existing level in X 3Σg-(v=0), i.e. J=0, in accordance with the definition of D00 but at variance with the value given by Ricks and Barrow, 1969, 2 which refers to a hypothetical level (N=0) of the F2 component at 23.1 cm-1 above J=0. D00=4.38 eV by photoionization mass-spectrometry Berkowitz and Chupka, 1969, D00= 4.41 eV from thermal measurements Budininkas, Edwards, et al., 1968. See also Drowart and Goldfinger, 1966.
30By photoionization mass-spectrometry Berkowitz and Lifshitz, 1968, Berkowitz and Chupka, 1969.
31This number, given or implied by Barrow and du Parcq, 1965, Barrow, duParcq, et al., 1969 refers presumably to the F2 levels in both upper and lower state.
32Raman spectra in solid matrices Barletta, Claassen, et al., 1971, Hopkins and Brown, 1975 yield ΔG = 717 Barletta, Claassen, et al., 1971, Hopkins and Brown, 1975.

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Entfellner and Boesl, 2009
Entfellner, M.; Boesl, U., Photodetachment-photoelectron spectroscopy of disulfanide: the ground and first excited electronic state of HS2 and DS2, Phys. Chem. Chem. Phys., 2009, 11, 15, 2657-2662, https://doi.org/10.1039/b820174a . [all data]

Moran and Ellison, 1988
Moran, S.; Ellison, G.B., Photoelectron Spectroscopy of Sulfur Ions, J. Phys. Chem., 1988, 92, 7, 1794, https://doi.org/10.1021/j100318a021 . [all data]

Nimlos and Ellison, 1986
Nimlos, M.R.; Ellison, G.B., Photoelectron spectroscopy of SO2-, S3-, and S2O-, J. Phys. Chem., 1986, 90, 2574. [all data]

Schroeder, Kretzschmar, et al., 2003
Schroeder, D.; Kretzschmar, I.; Schwarz; Armentrout, P.B., Structure, Thermochemistry, and Reactivityof MSn+ Cations (M=V,Mo; n=1-3) in the Gas Phase, Int. J. Mass Spectrom., 2003, 228, 2-3, 439, https://doi.org/10.1016/S1387-3806(03)00137-4 . [all data]

Celotta, Bennett, et al., 1974
Celotta, R.S.; Bennett, R.A.; Hall, J.L., Laser Photodetachment Determination of the Electron Affinities of OH, NH2, NH, SO2, and S2, J. Chem. Phys., 1974, 60, 5, 1740, https://doi.org/10.1063/1.1681268 . [all data]

Hunsicker, Jones, et al., 1995
Hunsicker, S.; Jones, R.O.; Gantefor, G., Rings and chains in sulfur cluster anions S- to S-9(-): Theory (simulated annealing) and experiment (photoelectron detachment), J. Chem. Phys., 1995, 102, 15, 5917, https://doi.org/10.1063/1.469326 . [all data]

Dillard and Franklin, 1968
Dillard, J.G.; Franklin, J.L., Ion-Molecule Reactions of Negative Ions. I. Negative Ions of Sulfur, J. Chem. Phys., 1968, 48, 5, 2349, https://doi.org/10.1063/1.1669435 . [all data]

Thynne, 1972
Thynne, J.C.J., Negative Ion Studies with a Time-of-Flight Mass Spectrometer., Dyn. Mass Spectrom., 1972, 3, 67. [all data]

Bender, Carnovale, et al., 1988
Bender, H.; Carnovale, F.; Peel, J.B.; Wentrup, C., Dinitrogen sulfide, N2S, revealed by photoelectron spectroscopy, J. Am. Chem. Soc., 1988, 110, 3458. [all data]

Liao and Ng, 1986
Liao, C.; Ng, C., Molecular beam photoionization study of S2, J. Chem. Phys., 1986, 84, 788. [all data]

Rosinger, Grade, et al., 1983
Rosinger, W.; Grade, M.; Hirschwald, W., Detection of ion states of S2 to S8 by electron impact, Int. J. Mass Spectrom. Ion Processes, 1983, 47, 239. [all data]

Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W., Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]

Lau, Brittain, et al., 1982
Lau, K.H.; Brittain, R.D.; Hildenbrand, D.L., Vaporization of As2S3 and the dissociation energy of AsS, J. Phys. Chem., 1982, 86, 4429. [all data]

Coppens, Reynaert, et al., 1979
Coppens, P.; Reynaert, J.C.; Drowart, J., Mass spectrometric study of the photoionization of carbon disulphide in the wavelength interval 125-60nm, J. Chem. Soc. Faraday Trans. 2, 1979, 75, 292. [all data]

Tal'roze, Butkovskaya, et al., 1978
Tal'roze, V.L.; Butkovskaya, N.I.; Larichev, M.N.; Leipunskii, I.O.; Morozov, I.I.; Dodonov, A.F.; Kudrov, B.V.; Zelenov, V.V.; Raznikov, V.V., Advances in the mass spectrometry of free radicals, Adv. Mass Spectrom., 1978, 7, 693. [all data]

Smoes, Drowart, et al., 1977
Smoes, S.; Drowart, J.; Welter, J.M., Thermodynamic study of the vaporization of europium monosulfide by Knudsen-cell mass spectrometry atomization energies of EuS(g), Eu2S(g), EuS2(g), Eu2O(g), Eu2O2(g), Eu2OS(g), and Eu2S2(g), J. Chem. Thermodyn., 1977, 9, 275. [all data]

Piacente, Bardi, et al., 1976
Piacente, V.; Bardi, G.; di Paolo, V.; Ferro, D., The vapour pressure over Ga2S2 and Ga2Se2, J. Chem. Thermodyn., 1976, 8, 391. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Vertical ionization potential of the CF2 radical, Chem. Phys. Lett., 1975, 32, 30. [all data]

Golob, Jonathan, et al., 1975
Golob, L.; Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J.; Smith, D.J., Vacuum ultraviolet photoelectron spectroscopy of transient species, J. Chem. Soc. Faraday Trans. 2, 1975, 71, 1026. [all data]

Berkowitz, 1975
Berkowitz, J., PES of high temperature vapors. VII. S2 and Te2, J. Chem. Phys., 1975, 62, 4074. [all data]

Muenow and Margrave, 1972
Muenow, D.W.; Margrave, J.L., Mass spectrometric observations of gaseous phosphorus sulfides and oxysulfides, J. Inorg. Nucl. Chem., 1972, 34, 89. [all data]

Hildenbrand, 1972
Hildenbrand, D.L., Thermochemistry of the molecules CS and CS+, Chem. Phys. Lett., 1972, 15, 379. [all data]

Donovan, Husain, et al., 1970
Donovan, R.J.; Husain, D.; Stevenson, C.D., Vacuum ultra-violet spectra of transient molecules and radicals. Part 1. CS and S2, J. Chem. Soc. Faraday Trans., 1970, 66, 1. [all data]

Barrow, duParcq, et al., 1969
Barrow, R.F.; duParcq, R.P.; Ricks, J.M., Rotational analysis of the C 3Σu--X 3g- system of 32S2, J. Phys. B:, 1969, 2, 413. [all data]

Berkowitz and Lifshitz, 1968
Berkowitz, J.; Lifshitz, C., Photoionization of high temperature vapors. II. Sulfur molecular species, J. Chem. Phys., 1968, 48, 4346. [all data]

Wu and Fehlner, 1976
Wu, M.; Fehlner, T.P., Valence level photoelectron spectra of some heavy group 4-6 diatomic molecules, J. Am. Chem. Soc., 1976, 98, 7578. [all data]

Berkowitz and Chupka, 1969
Berkowitz, J.; Chupka, W.A., Photoionization of high-temperature vapors. VI. S2, Se2, and Te2, J. Chem. Phys., 1969, 50, 4245. [all data]

Goodings, Bohme, et al., 1986
Goodings, J.M.; Bohme, D.K.; Elguindi, K.; Fox, A., Sulphur Anion Chemistry in Hydrocarbon Flames with H2S, OCS, and SO2 Additives, Can. J. Chem., 1986, 64, 4, 689, https://doi.org/10.1139/v86-110 . [all data]

Mahajan, Lakshminarayana, et al., 1976
Mahajan, C.G.; Lakshminarayana, G.; Narasimham, N.A., Rydberg transitions of S2, Indian J. Pure Appl. Phys., 1976, 14, 488. [all data]

Tanaka and Ogawa, 1962
Tanaka, Y.; Ogawa, M., Emission spectrum of S2 in the vacuum ultraviolet region, J. Chem. Phys., 1962, 36, 726. [all data]

Ricks and Barrow, 1969
Ricks, J.M.; Barrow, R.F., The D3Π state of S2, J. Phys. B:, 1969, 2, 906. [all data]

Barrow and Du Parcq, 1968
Barrow, R.F.; Du Parcq, R.P., 1Δu-1Δg transitions in gaseous S2, J. Phys. B:, 1968, 1, 283. [all data]

Wieland, Wehrli, et al., 1934
Wieland, K.; Wehrli, M.; Miescher, E., Ein neues absorptionsspektrum von zweiatomarem schwefeldampf im Schumanngebiet, Helv. Phys. Acta, 1934, 7, 843. [all data]

Carleer and Colin, 1970
Carleer, M.; Colin, R., The f1Δu-a1Δg band system of S2 in absorption, J. Phys. B:, 1970, 3, 1715. [all data]

Narasimham, 1964
Narasimham, N.A., The emission spectrum of S2 molecule, Curr. Sci., 1964, 33, 261. [all data]

Narasimham and Apparao, 1966
Narasimham, N.A.; Apparao, K.V.S.R., Isotope shifts in the near infra-red bands of diatomic sulphur, Nature (London), 1966, 210, 1034. [all data]

Meakin and Barrow, 1962
Meakin, J.E.; Barrow, R.F., The electronic spectrum of S2, Can. J. Phys., 1962, 40, 377. [all data]

Olsson, 1938
Olsson, Dissertation, Stockholm, 1938, 0. [all data]

Ikenoue, 1960
Ikenoue, K., Rotational structure of the band spectrum of S2 molecule. Part II., Sci. Light (Tokyo), 1960, 9, 79. [all data]

Barrow and du Parcq, 1965
Barrow, R.F.; du Parcq, R.P., Electronic spectrum and electronic states of S2 in Elemental Sulphur, Meyer, ed(s)., Interscience, New York, 1965, 251-263. [all data]

Yee, Barrow, et al., 1972
Yee, K.K.; Barrow, R.F.; Rogstad, A., Resonance fluorescence and Raman spectra of gaseous sulphur, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1808. [all data]

Freedman and Jones, 1975
Freedman, P.A.; Jones, W.J., Rotational Raman spectrum of sulphur dimer, J. Chem. Soc. Faraday Trans. 2, 1975, 71, 286. [all data]

Wayne, Davies, et al., 1974
Wayne, F.D.; Davies, P.B.; Thrush, B.A., The gas-phase E.P.R. spectrum of diatomic sulphur molecules, Mol. Phys., 1974, 28, 989. [all data]

Channappa, Pendlebury, et al., 1967
Channappa, K.H.; Pendlebury, J.M.; Smith, K.F., Atomic beam radiofrequency spectroscopy of S32 S32 molecules in La structure hyperfine magnetique des atomes et des molecules, Moser and Lefebvre, ed(s)., Paris, 1967, 73-81. [all data]

Donovan, Husain, et al., 1968
Donovan, R.J.; Husain, D.; Jackson, P.T., Transient species in the photolysis of sulphur monochloride, including S2(a 1? g )., Trans. Faraday Soc., 1968, 64, 1798, https://doi.org/10.1039/tf9686401798 . [all data]

Asundi, 1965
Asundi, R.K., Quantum characterization of electronic levels in molecules, J. Chem. Phys., 1965, 43, 24. [all data]

Narasimham and Gopal, 1965
Narasimham, N.A.; Gopal, K.S., On Rosen-Desirant ultra-violet bands of sulphur, Curr. Sci., 1965, 34, 454. [all data]

Rosen and Desirant, 1935
Rosen, B.; Desirant, M., Note au sujet de quelques nouveaux systemes de bandes observes dans les vapeurs de soufre et de selenium, Bull. Soc. R. Sci. Liege, 1935, 4, 233. [all data]

Haranath, 1963
Haranath, P.B.V., A new emission band spectrum of sulphur, Z. Phys., 1963, 173, 428. [all data]

Narasimham and Brody, 1964
Narasimham, N.A.; Brody, J.K., On the fine structure of the ultraviolet bands of S2, Proc. Indian Acad. Sci. Sect. A, 1964, 59, 345. [all data]

Narasimham and Bhagvat, 1965
Narasimham, N.A.; Bhagvat, K.M.N., Vibrational analysis of 2620 Å and 2760 Å bands of 32S34S, Proc. Indian Acad. Sci. Sect. A, 1965, 61, 75. [all data]

Meyer and Crosley, 1973
Meyer, K.A.; Crosley, D.R., Rotational satellite intensities and triplet splitting in the B3Σu- state of S2, Can. J. Phys., 1973, 51, 2119. [all data]

Ricks and Barrow, 1969, 2
Ricks, J.M.; Barrow, R.F., The dissociation energy of gaseous diatomic sulfur, Can. J. Phys., 1969, 47, 2423. [all data]

Asundi, 1931
Asundi, R.K., The emission bands of sulphur, Nature (London), 1931, 127, 93. [all data]

Asundi, 1934
Asundi, R.K., Additional bands in the band system of sulphur, Curr. Sci., 1934, 3, 154. [all data]

Sugden and Demerdache, 1962
Sugden, T.M.; Demerdache, A., Emission spectra of sulphur, Nature (London), 1962, 195, 596. [all data]

Herzberg and Mundie, 1940
Herzberg, G.; Mundie, L.G., On the predissociation of several diatomic molecules, J. Chem. Phys., 1940, 8, 263. [all data]

Kondratjew and Olsson, 1936
Kondratjew, V.; Olsson, E., Die induzierte pradissoziation im absorptionsspektrum des schwefels, Z. Phys., 1936, 99, 671. [all data]

Herman and Felenbok, 1963
Herman, L.; Felenbok, P., Effet des collisions sur la predissociation de S2, J. Quant. Spectrosc. Radiat. Transfer, 1963, 3, 247. [all data]

Smith, 1969
Smith, W.H., Absolute transition probabilities for some electronic states of CS, SO and S2, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1191. [all data]

Meyer and Crosley, 1973, 2
Meyer, K.A.; Crosley, D.R., Hanle effect lifetime measurements on selectively excited diatomic sulfur, J. Chem. Phys., 1973, 59, 1933. [all data]

McGee and Weston, 1977
McGee, T.H.; Weston, R.E., Jr., Lifetime of the B3Σu- state of S2, Chem. Phys. Lett., 1977, 47, 352. [all data]

Tatum and Watson, 1971
Tatum, J.B.; Watson, J.K.G., Rotational line strengths in 3Σ±-3Σ± transitions with intermediate coupling, Can. J. Phys., 1971, 49, 2693. [all data]

Meyer and Crosley, 1973, 3
Meyer, K.A.; Crosley, D.R., Franck-Condon factors from selectively excited resonance fluorescence in the B-X system of S2, J. Chem. Phys., 1973, 59, 3153. [all data]

Smith and Liszt, 1971
Smith, W.H.; Liszt, H.S., Franck-Condon factors and absolute oscillator strengths for NH, SiH, S2 and SO, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 45. [all data]

Chaudhry, Upadhya, et al., 1970
Chaudhry, A.K.; Upadhya, K.N.; Nair, K.P.R., Isotope shift in the bands of B3Σu - X3Σg system of S2 molecule, Indian J. Pure Appl. Phys., 1970, 8, 52. [all data]

Brewer, Brabson, et al., 1965
Brewer, L.; Brabson, G.D.; Meyer, B., UV absorption spectrum of trapped S2, J. Chem. Phys., 1965, 42, 1385. [all data]

Narasimham, Apparao, et al., 1976
Narasimham, N.A.; Apparao, K.V.S.R.; Balasubramanian, T.K., Near-infrared bands of S2: 3Πgi-3Σu+ system, J. Mol. Spectrosc., 1976, 59, 244. [all data]

Barrow and Yee, 1974
Barrow, R.F.; Yee, K.K., The 3Σ- ground states of the group VI-VI molecules, O2, SO ..... Te2, Acta Phys. Acad. Sci. Hung., 1974, 35, 239. [all data]

Barrow and Ketteringham, 1963
Barrow, R.F.; Ketteringham, J.M., Triplet splitting in the ground state, X3Σg-, of S2, Can. J. Phys., 1963, 41, 419. [all data]

Budininkas, Edwards, et al., 1968
Budininkas, P.; Edwards, R.K.; Wahlbeck, P.G., Dissociation energies of group VIa gaseous homonuclear diatomic molecules. I. Sulfur, J. Chem. Phys., 1968, 48, 2859. [all data]

Drowart and Goldfinger, 1966
Drowart, J.; Goldfinger, P., The dissociation energies of the group VIA diatomic molecules, Q. Rev. Chem. Soc., 1966, 20, 545. [all data]

Barletta, Claassen, et al., 1971
Barletta, R.E.; Claassen, H.H.; McBeth, R.L., Raman spectrum of S2, J. Chem. Phys., 1971, 55, 5409. [all data]

Hopkins and Brown, 1975
Hopkins, A.G.; Brown, C.W., Additional evidence for the Raman band of S2, J. Chem. Phys., 1975, 62, 1598. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, References