Thiophene
- Formula: C4H4S
- Molecular weight: 84.140
- IUPAC Standard InChIKey: YTPLMLYBLZKORZ-UHFFFAOYSA-N
- CAS Registry Number: 110-02-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Thiacyclopentadiene; CP 34; Furan, thio-; Huile HSO; Huile H50; Thiaphene; Thiofuram; Thiofuran; Thiofurfuran; Thiole; Thiophen; Thiotetrole; Divinylene sulfide; USAF EK-1860; Thiofen; UN 2414; Hopkin's lactic acid reagent; NSC 405073
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 218.4 | kJ/mol | N/A | Zaheeruddin and Lodhi, 1991 | Value computed using ΔfHliquid° value of 183.0 kj/mol from Zaheeruddin and Lodhi, 1991 and ΔvapH° value of 35.4 kj/mol from Hubbard, Scott, et al., 1955.; DRB |
ΔfH°gas | 116.4 | kJ/mol | N/A | Sunner, 1963 | Value computed using ΔfHliquid° value of 81.0±0.6 kj/mol from Sunner, 1963 and ΔvapH° value of 35.4 kj/mol from Hubbard, Scott, et al., 1955.; DRB |
ΔfH°gas | 115.0 ± 1.0 | kJ/mol | Ccb | Hubbard, Scott, et al., 1955 | see Waddington, Knowlton, et al., 1949; ALS |
ΔfH°gas | 116.7 | kJ/mol | N/A | Moore, Renquist, et al., 1940 | Value computed using ΔfHliquid° value of 81.3±2.6 kj/mol from Moore, Renquist, et al., 1940 and ΔvapH° value of 35.4 kj/mol from Hubbard, Scott, et al., 1955.; DRB |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: 182.96 kJ/mol; Author's hf_SO2=-320.5 kJ/mol; ALS | ||
ΔfH°liquid | 80.96 ± 0.63 | kJ/mol | Ccr | Sunner, 1963 | Correction of Sunner, 1955; ALS |
ΔfH°liquid | 79.6 ± 1.0 | kJ/mol | Ccb | Hubbard, Scott, et al., 1955 | Reanalyzed by Cox and Pilcher, 1970, Original value = 80.33 ± 1.0 kJ/mol; see Waddington, Knowlton, et al., 1949; ALS |
ΔfH°liquid | 81.3 ± 2.6 | kJ/mol | Ccb | Moore, Renquist, et al., 1940 | Reanalyzed by Cox and Pilcher, 1970, Original value = 81.76 kJ/mol; hf_H2SO4=-135.01; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | Ccb | Zaheeruddin and Lodhi, 1991 | uncertain value: -2649.19 kJ/mol; Author's hf_SO2=-320.5 kJ/mol; ALS | ||
ΔcH°liquid | -2828.8 | kJ/mol | Ccr | Sunner, 1963 | Correction of Sunner, 1955; ALS |
ΔcH°liquid | -2827.6 ± 0.92 | kJ/mol | Ccb | Hubbard, Scott, et al., 1955 | Reanalyzed by Cox and Pilcher, 1970, Original value = -2826.5 ± 0.90 kJ/mol; see Waddington, Knowlton, et al., 1949; ALS |
ΔcH°liquid | -2829.3 ± 2.5 | kJ/mol | Ccb | Moore, Renquist, et al., 1940 | Reanalyzed by Cox and Pilcher, 1970, Original value = -2792.4 ± 2.5 kJ/mol; hf_H2SO4=-135.01; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 181.2 | J/mol*K | N/A | Figuiere, Szwarc, et al., 1985 | DH |
S°liquid | 181.17 | J/mol*K | N/A | Waddington, Knowlton, et al., 1949 | DH |
S°liquid | 176.6 | J/mol*K | N/A | Jacobs and Parks, 1934 | Details of extrapolation below 90 K not given. Scatter in data for solid introduce uncertainty. Value good to about 4 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
122.40 | 298.14 | Figuiere, Szwarc, et al., 1985 | T = 13 to 300 K. Value is unsmoothed experimental datum.; DH |
123.85 | 297.45 | Waddington, Knowlton, et al., 1949 | T = 11 to 336 K. Value is unsmoothed experimental datum.; DH |
123.22 | 289.3 | Jacobs and Parks, 1934 | T = 93 to 294 K. Data for solid, 90 to 237 K, not given (table omitted, apparently). Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Henry's Law data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 357.3 ± 0.6 | K | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 234.93 | K | N/A | Goates, Ott, et al., 1973 | Uncertainty assigned by TRC = 0.05 K; TRC |
Tfus | 234.94 | K | N/A | Timmermans and Hennaut-Roland, 1959 | Uncertainty assigned by TRC = 0.1 K; TRC |
Tfus | 233.15 | K | N/A | Timmermans and Mattaar, 1921 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 235.02 | K | N/A | Figuiere, Szwarc, et al., 1985, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 234.900 | K | N/A | Waddington, Knowlton, et al., 1949, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.08 K; TRC |
Ttriple | 234.95 | K | N/A | Waddington, Knowlton, et al., 1949, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 233.7 | K | N/A | Jacobs and Parks, 1934, 2 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 579.4 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 579.4 | K | N/A | Cheng, McCoubrey, et al., 1962 | Uncertainty assigned by TRC = 0.3 K; Visual (5-cm 2-mm bore tubes) in nitrate-nitrite bath, TE or TH cal. vs NPL thermometer J.C.McCoubrey, A.R.Ubbelohde Trans. Faraday Soc. 1960,56,114; TRC |
Tc | 580. | K | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 57.00 | bar | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 0.6894 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.220 | l/mol | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 0.005 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 34.79 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 34.6 | kJ/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 34.7 ± 0.03 | kJ/mol | V | Hubbard, Scott, et al., 1955 | see Waddington, Knowlton, et al., 1949; ALS |
ΔvapH° | 35.4 | kJ/mol | N/A | Hubbard, Scott, et al., 1955 | DRB |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
31.48 | 357.3 | N/A | Majer and Svoboda, 1985 | |
35.8 | 282. | N/A | Dykyj, Svoboda, et al., 1999 | Based on data from 267. to 381. K.; AC |
34.8 | 348. | I | Eon, Pommier, et al., 1971 | Based on data from 333. to 373. K.; AC |
34.1 | 315. | EB | White, Barnard--Smith, et al., 1952 | Based on data from 300. to 366. K.; AC |
33.7 | 326. | N/A | Waddington, Knowlton, et al., 1949 | Based on data from 311. to 393. K.; AC |
33.6 ± 0.1 | 319. | C | Waddington, Knowlton, et al., 1949 | AC |
32.7 ± 0.1 | 336. | C | Waddington, Knowlton, et al., 1949 | AC |
31.5 ± 0.1 | 357. | C | Waddington, Knowlton, et al., 1949 | AC |
32.6 | 353. | N/A | Fawcett and Rasmussen, 1945 | Based on data from 344. to 363. K.; AC |
35. | 270. | N/A | Milazzo, 1944 | Based on data from 228. to 289. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
319. to 357. | 49.56 | 0.288 | 579.4 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
333.4 to 373.5 | 5.06716 | 1790.319 | -2.805 | Eon, Pommier, et al., 1971 | Coefficents calculated by NIST from author's data. |
312.21 to 392.94 | 4.07358 | 1239.578 | -52.585 | Waddington, Knowlton, et al., 1949 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
46.8 | 213. | Stephenson and Malanowski, 1987 | Based on data from 195. to 228. K. See also Milazzo, 1956.; AC |
49. | 203. | Milazzo, 1944 | Based on data from 192. to 213. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.97 | 235.2 | Domalski and Hearing, 1996 | See also Figuiere, Szwarc, et al., 1985.; AC |
Temperature of phase transition
Ttrs (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|
90.76 | crystaline, V' | crystaline, IV' | Figuiere, Szwarc, et al., 1984 | Metastable transition.; DH |
139.2 | crystaline, IV' | crystaline, III' | Figuiere, Szwarc, et al., 1984 | Metastable transition.; DH |
112.35 | crystaline, V | crystaline, IV | Figuiere, Szwarc, et al., 1984 | DH |
138.5 | crystaline, IV | crystaline, III | Figuiere, Szwarc, et al., 1984 | DH |
170.70 | crystaline, III | crystaline, II | Figuiere, Szwarc, et al., 1984 | DH |
175.03 | crystaline, II | crystaline, I | Figuiere, Szwarc, et al., 1984 | DH |
235.03 | crystaline, I | liquid | Figuiere, Szwarc, et al., 1984 | DH |
111.3 | crystaline, V | crystaline, IV | Andre, Dworkin, et al., 1982 | DH |
136.8 | crystaline, IV | crystaline, III | Andre, Dworkin, et al., 1982 | DH |
170.5 | crystaline, III | crystaline, II | Andre, Dworkin, et al., 1982 | DH |
174.5 | crystaline, II | crystaline, I | Andre, Dworkin, et al., 1982 | DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.428 | 44. to 170. | crystaline, V | crystaline, III | Figuiere, Szwarc, et al., 1985 | DH |
0.8097 | 170.70 | crystaline, III | crystaline, II | Figuiere, Szwarc, et al., 1985 | DH |
1.836 | 37. to 216. | crystaline, II' | crystaline, I | Figuiere, Szwarc, et al., 1985 | DH |
5.040 | 235.02 | crystaline, I | liquid | Figuiere, Szwarc, et al., 1985 | DH |
0.6376 | 171.6 | crystaline, II | crystaline, I | Waddington, Knowlton, et al., 1949 | Anomalous heat capacity 100 to 150 K. Apparently two second order transitions at about 112, 138 K, with small energies involved.; DH |
5.0861 | 234.95 | crystaline, I | liquid | Waddington, Knowlton, et al., 1949 | DH |
1.209 | 171.1 | crystaline, II | crystaline, I | Jacobs and Parks, 1934 | DH |
4.966 | 233.7 | crystaline, I | liquid | Jacobs and Parks, 1934 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
4.0 | 44. to 170. | crystaline, V | crystaline, III | Figuiere, Szwarc, et al., 1985 | DH |
4.74 | 170.70 | crystaline, III | crystaline, II | Figuiere, Szwarc, et al., 1985 | DH |
15.0 | 37. to 216. | crystaline, II' | crystaline, I | Figuiere, Szwarc, et al., 1985 | DH |
21.43 | 235.02 | crystaline, I | liquid | Figuiere, Szwarc, et al., 1985 | DH |
3.72 | 171.6 | crystaline, II | crystaline, I | Waddington, Knowlton, et al., 1949 | Anomalous; DH |
21.65 | 234.95 | crystaline, I | liquid | Waddington, Knowlton, et al., 1949 | DH |
7.1 | 171.1 | crystaline, II | crystaline, I | Jacobs and Parks, 1934 | DH |
21.3 | 233.7 | crystaline, I | liquid | Jacobs and Parks, 1934 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.34 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.44 | 3700. | M | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
LL - Sharon G. Lias and Joel F. Liebman
View reactions leading to C4H4S+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.86 ± 0.02 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 815.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 784.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.85 | PE | Klasinc, Sabljic, et al., 1982 | LBLHLM |
8.85 | PE | Galasso, Klasinc, et al., 1981 | LLK |
9.0 ± 0.1 | CEMS | Tedder and Vidaud, 1980 | LLK |
8.87 ± 0.01 | PE | Butler and Baer, 1980 | LLK |
~8.8 | EI | Van Veen, 1976 | LLK |
8.80 ± 0.05 | EI | Thorstad and Undheim, 1974 | LLK |
8.90 | PE | Clark, Gleiter, et al., 1973 | LLK |
9.05 | CTS | Aloisi and Pignataro, 1973 | LLK |
8.874 ± 0.005 | S | DiLonardo, Galloni, et al., 1972 | LLK |
9.12 ± 0.05 | EI | Linda, Marino, et al., 1971 | LLK |
8.87 ± 0.01 | PE | Derrick, Asbrink, et al., 1971 | LLK |
8.86 ± 0.01 | PI | Potapov and Bazhenov, 1970 | RDSH |
8.80 ± 0.05 | PE | Baker, Betteridge, et al., 1970 | RDSH |
8.87 ± 0.05 | PE | Eland, 1969 | RDSH |
8.860 ± 0.005 | PI | Watanabe, Nakayama, et al., 1962 | RDSH |
8.95 ± 0.02 | S | Price and Walsh, 1941 | RDSH |
8.85 | PE | Bajic, Humski, et al., 1985 | Vertical value; LBLHLM |
8.90 | PE | Bock and Roth, 1983 | Vertical value; LBLHLM |
8.90 | PE | Mellink and Janssen, 1978 | Vertical value; LLK |
8.85 | PE | Bozic, Humski, et al., 1977 | Vertical value; LLK |
8.87 | PE | Schafer, Schweig, et al., 1973 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CHS+ | 13.0 ± 0.2 | C3H3 | CEMS | Tedder and Vidaud, 1980 | LLK |
CHS+ | 13.19 ± 0.04 | C3H3 | PE | Butler and Baer, 1980 | LLK |
CHS+ | 13.0 ± 0.2 | ? | EI | Khvostenko, 1962 | RDSH |
C2H2S+ | 12.5 ± 0.2 | C2H2 | CEMS | Tedder and Vidaud, 1980 | LLK |
C2H2S+ | 12.1 ± 0.1 | C2H2 | PE | Butler and Baer, 1980 | LLK |
C2H2S+ | 10.8 ± 0.2 | ? | EI | Khvostenko, 1962 | RDSH |
C3HS+ | 12.95 ± 0.05 | CH3 | PE | Butler and Baer, 1980 | LLK |
C3H3+ | 13.0 ± 0.2 | CHS | CEMS | Tedder and Vidaud, 1980 | LLK |
C3H3+ | 13.06 ± 0.05 | CHS | PE | Butler and Baer, 1980 | LLK |
C3H3+ | 12.8 ± 0.2 | ? | EI | Khvostenko, 1962 | RDSH |
C4H3S+ | 12.93 ± 0.07 | H | PE | Butler and Baer, 1980 | LLK |
S+ | 20.0 ± 0.5 | ? | EI | Stepanov, Perov, et al., 1988 | LL |
De-protonation reactions
C4H3S- + =
By formula: C4H3S- + H+ = C4H4S
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1595. ± 13. | kJ/mol | G+TS | DePuy, Kass, et al., 1988 | gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1561. ± 13. | kJ/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Between MeOH, EtOH. D exchange implies anion at C-2.; B |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H.,
Enthalpies of formation of some cyclic compounds,
Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]
Hubbard, Scott, et al., 1955
Hubbard, W.N.; Scott, D.W.; Frow, F.R.; Waddington, G.,
Thiophene: Heat of combustion and chemical thermodynamic properties,
J. Am. Chem. Soc., 1955, 77, 5855-58. [all data]
Sunner, 1963
Sunner, S.,
Corrected heat of combustion and formation values for a number of organic sulphur compounds,
Acta Chem. Scand., 1963, 17, 728-730. [all data]
Waddington, Knowlton, et al., 1949
Waddington, G.; Knowlton, J.W.; Scott, D.W.; Oliver, G.D.; Todd, S.S.; Hubbard, W.N.; Smith, J.C.; Huffman, H.M.,
Thermodynamic propertie of thiophene,
J. Am. Chem. Soc., 1949, 71, 797-808. [all data]
Moore, Renquist, et al., 1940
Moore, G.E.; Renquist, M.L.; Parks, G.S.,
Thermal data on organic compounds. XX. Modern combustion data for two methylnonanes, methyl ethyl ketone, thiophene and six cycloparaffins,
J. Am. Chem. Soc., 1940, 62, 1505-1507. [all data]
Sunner, 1955
Sunner, S.,
Thermochemical investigations on organic sulfur compounds. V. On the resonance energy of thiolacetic acid, thiourea, thiosemicarbzaide, thiophene and thianthrene,
Acta Chem. Scand., 1955, 9, 847-854. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Figuiere, Szwarc, et al., 1985
Figuiere, P.; Szwarc, H.; Oguni, M.; Suga, H.,
Calorimetric study of thiophene from 13 to 300 K. Emergence of two glassy crystalline states,
J. Chem. Thermodynam., 1985, 17, 949-966. [all data]
Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S.,
Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances,
J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]
Goates, Ott, et al., 1973
Goates, J.R.; Ott, J.B.; Reeder, J.,
Solid + liquid phae equilibria and solid compound formation in hexafluorobenzene + benzene, + pyridine, + furan, and + thiophen,
J. Chem. Thermodyn., 1973, 5, 135. [all data]
Timmermans and Hennaut-Roland, 1959
Timmermans, J.; Hennaut-Roland, M.,
Work of the International Bureau of Physico-Chemical Properties physical constants of twenty organic compounds,
J. Chim. Phys. Phys.-Chim. Biol., 1959, 56, 984-1023. [all data]
Timmermans and Mattaar, 1921
Timmermans, J.; Mattaar, J.F.,
Freezing points of orgainic substances VI. New experimental determinations.,
Bull. Soc. Chim. Belg., 1921, 30, 213. [all data]
Figuiere, Szwarc, et al., 1985, 2
Figuiere, P.; Szwarc, H.; Oguni, M.; Suga, H.,
Calorimetric study of thiophene from 13 to 300 K. Emergence of two glassy crystalline states,
J. Chem. Thermodyn., 1985, 17, 10, 949, https://doi.org/10.1016/0021-9614(85)90008-4
. [all data]
Waddington, Knowlton, et al., 1949, 2
Waddington, G.; Knowlton, J.W.; Scott, D.W.; Oliver, G.D.; Todd, S.S.; Hubbard, W.N.; Smith, J.C.; Huffman, H.M.,
Thermodynamic Properties of Thiophene,
J. Am. Chem. Soc., 1949, 71, 797. [all data]
Jacobs and Parks, 1934, 2
Jacobs, C.J.; Parks, G.S.,
Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances,
J. Am. Chem. Soc., 1934, 56, 1513-17. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G.,
Critical Temperatures of Some Organic Cyclic Compounds,
Trans. Faraday Soc., 1962, 58, 224. [all data]
Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P.,
Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds,
J. Chem. Eng. Data, 1956, 1, 50. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R.,
Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]
Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G.,
Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives,
J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008
. [all data]
White, Barnard--Smith, et al., 1952
White, P.T.; Barnard--Smith, D.G.; Fidler, F.A.,
Vapor Pressure--Temperature Relationships of Sulfur Compounds Related to Petroleum,
Ind. Eng. Chem., 1952, 44, 6, 1430-1438, https://doi.org/10.1021/ie50510a064
. [all data]
Fawcett and Rasmussen, 1945
Fawcett, Frank S.; Rasmussen, Herbert E.,
Physical Properties of Thiophene 1,
J. Am. Chem. Soc., 1945, 67, 10, 1705-1709, https://doi.org/10.1021/ja01226a026
. [all data]
Milazzo, 1944
Milazzo, G.,
Gazz. Chim. Ital., 1944, 74, 58. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Milazzo, 1956
Milazzo, G.,
Ann. Chim. (Rome), 1956, 46, 1105. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Figuiere, Szwarc, et al., 1984
Figuiere, P.; Szwarc, H.; Oguni, M.; Suga, H.,
Crystalline thiophene - calorimetric evidence for a glassy crystalline state in both phase sequences, J. Phys.,
Lett., 1984, 45(24), L1167-L1173. [all data]
Andre, Dworkin, et al., 1982
Andre, D.; Dworkin, A.; Figuiere, P.; Fuchs, A.H.; Szwarc, H.,
Heat capacity of stable and metastable phases of crystalline thiophene, C. R. Seances Acad. Sci.,
Ser. 2, 1982, 295, 145-147. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Klasinc, Sabljic, et al., 1982
Klasinc, L.; Sabljic, A.; Kluge, G.; Rieger, J.; Scholz, M.,
Chemistry of excited states. Part 13. Assignment of lowest .PI.-ionizations in photoelectron spectra of thiophen, furan, and pyrrole,
J. Chem. Soc. Perkin Trans. 2, 1982, 539. [all data]
Galasso, Klasinc, et al., 1981
Galasso, V.; Klasinc, L.; Sabluic, A.; Trinajstic, N.; Pappalardo, G.C.; Steglich, W.,
Conformation and photoelectron spectra of 2-(2-Furyl)pyrrole and 2-(2-tThienyl)pyrrole,
J. Chem. Soc. Perkin Trans. 2, 1981, 127. [all data]
Tedder and Vidaud, 1980
Tedder, J.M.; Vidaud, P.H.,
Charge exchange mass spectra of thiophene, pyrrole and furan,
J. Chem. Soc. Faraday Trans. 2, 1980, 76, 1516. [all data]
Butler and Baer, 1980
Butler, J.J.; Baer, T.,
Thermochemistry and dissociation dynamics of state-selected C4H4X ions. 1. Thiophene,
J. Am. Chem. Soc., 1980, 102, 6764. [all data]
Van Veen, 1976
Van Veen, E.H.,
Triplet π-π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy,
Chem. Phys. Lett., 1976, 41, 535. [all data]
Thorstad and Undheim, 1974
Thorstad, O.; Undheim, K.,
Mass spectrometry of onium compounds. XXIV. Ionisation potential in structure analysis of pyridodiazo-oxides,
Chem. Scr., 1974, 6, 222. [all data]
Clark, Gleiter, et al., 1973
Clark, P.A.; Gleiter, R.; Heilbronner, E.,
Photoelectron spectra of planar sulfur J. Heterocycl. Chem.,
Tetrahedron, 1973, 29, 3085. [all data]
Aloisi and Pignataro, 1973
Aloisi, G.G.; Pignataro, S.,
Molecular complexes of substituted thiophens with σ and π acceptors,
J. Chem. Soc. Faraday Trans. 1, 1973, 69, 534. [all data]
DiLonardo, Galloni, et al., 1972
DiLonardo, G.; Galloni, G.; Trombetti, A.; Zauli, C.,
Electronic spectrum of thiophen and some deuterated thiophens,
J. Chem. Soc. Faraday Trans., 1972, 68, 2009. [all data]
Linda, Marino, et al., 1971
Linda, P.; Marino, G.; Pignataro, S.,
A comparison of sensitivities to substituent effects of five- membered heteroaromatic rings in gas phase ionization,
J. Chem. Soc. B, 1971, 1585. [all data]
Derrick, Asbrink, et al., 1971
Derrick, P.J.; Asbrink, L.; Edqvist, O.; Lindholm, E.,
Photoelectron-spectroscopical study of the vibrations of furan, thiophene, pyrrole and cyclopentadiene,
Spectrochim. Acta, 1971, 27A, 2525. [all data]
Potapov and Bazhenov, 1970
Potapov, V.K.; Bazhenov, B.A.,
The photionization of pyrrole, furan, and thiophene,
High Energy Chem., 1970, 505, In original 553. [all data]
Baker, Betteridge, et al., 1970
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E.,
Application of photoelectron spectrometry to pesticide analysis. Photoelectron spectra of fivemembered heterocycles and related molecules,
Anal. Chem., 1970, 42, 1064. [all data]
Eland, 1969
Eland, J.H.D.,
Photoelectron spectra of conjugated hydrocarbons and heteromolecules,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]
Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J.,
Ionization potentials of some molecules,
J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]
Price and Walsh, 1941
Price, W.C.; Walsh, A.D.,
The absorption spectra of the cyclic dienes in the vacuum ultra-violet,
Proc. Roy. Soc. (London), 1941, A179, 201. [all data]
Bajic, Humski, et al., 1985
Bajic, M.; Humski, K.; Klasinc, L.; Ruscic, B.,
Substitution effects on electronic structure of thiophene,
Z. Naturforsch. B:, 1985, 40, 1214. [all data]
Bock and Roth, 1983
Bock, H.; Roth, B.,
Radical ions. 49. Redox reactions of some thiophene derivatives,
Phosphorus Sulfur, 1983, 14, 211. [all data]
Mellink and Janssen, 1978
Mellink, W.A.; Janssen, M.J.,
Photoelectron spectra of aromatic sulphides and sulphones,
J. Chem. Res. Synop., 1978, 422. [all data]
Bozic, Humski, et al., 1977
Bozic, Z.; Humski, K.; Cvitas, T.; Klasinc, L.,
Photoelectron spectra of bromo- and iodo- thiophens,
J. Chem. Soc. Perkin Trans. 2, 1977, 1413. [all data]
Schafer, Schweig, et al., 1973
Schafer, W.; Schweig, A.; Gronowitz, S.; Taticchi, A.; Fringuelli, F.,
Reversal in the sequence of two highest occupied molecular orbitals in the series thiophen, selenophen, and tellurophen,
J. Chem. Soc. Chem. Commun., 1973, 541. [all data]
Khvostenko, 1962
Khvostenko, V.I.,
Ionisation of thiophen and some of its derivatives by electron impact,
Zh. Fiz. Khim., 1962, 36, 384, In original 197. [all data]
Stepanov, Perov, et al., 1988
Stepanov, A.N.; Perov, A.A.; Kabanov, S.P.; Simonov, A.P.,
Formation of long-lived, highly excited atoms during dissociative excitation of CH3CN, CH3CH2OH, CH3COOH, HCOOH, and C4H4S molecules on electron impact,
Russ. J. Phys. Chem., 1988, 22, 81. [all data]
DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P.,
Formation and Reactions of Heteroaromatic Anions in the Gas Phase,
J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, References
- Symbols used in this document:
AE Appearance energy Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Ttrs Temperature of phase transition Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.