Formyl radical
- Formula: CHO
- Molecular weight: 29.0180
- IUPAC Standard InChIKey: CFHIDWOYWUOIHU-UHFFFAOYSA-N
- CAS Registry Number: 2597-44-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 43.51 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1970 |
ΔfH°gas | 42. ± 4. | kJ/mol | N/A | Tsang, 1996 | |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 224.65 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1970 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 21.13803 | 52.79371 |
B | 40.43610 | 2.666155 |
C | -14.71337 | -0.392339 |
D | 0.969010 | 0.023808 |
E | 0.239639 | -7.457018 |
F | 36.34712 | 11.37797 |
G | 240.1695 | 267.2798 |
H | 43.51402 | 43.51402 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1970 | Data last reviewed in December, 1970 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to CHO+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 8.12 ± 0.04 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 636. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 601.8 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 824. ± 8. | kJ/mol | N/A | N/A | |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH(+) ion,0K | 829.3 ± 7.5 | kJ/mol | N/A | N/A |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.3130 ± 0.0050 | LPES | Murray, Miller, et al., 1986 | B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
8.14 ± 0.04 | PE | Dyke, 1987 | LBLHLM |
8.10 ± 0.05 | DER | Traeger, 1985 | LBLHLM |
8.55 ± 0.01 | PE | Dyke, Jonathan, et al., 1980 | LLK |
10.03 ± 0.17 | EI | Reed and Brand, 1958 | RDSH |
9.83 ± 0.18 | EI | Reed and Brand, 1958 | RDSH |
9.31 ± 0.01 | PE | Dyke, Jonathan, et al., 1980 | Vertical value; LLK |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Marilyn E. Jacox
State: 4p 2Π
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 64073.5 | gas | Stock | |||||
Stock, Li, et al., 1997 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a' | 2 | Bend | 863.8 ± 0.5 | gas | DR | Stock Stock, Li, et al., 1997 | |
State: 3p 2Π
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 45540.1 ± 3.3 | gas | 3p2Π-X | 187 | 222 | Tjossem, Goodwin, et al., 1986 | ||
Tjossem, Cool, et al., 1988 | |||||||
Song and Cool, 1992 | |||||||
Robinson, Foltynowicz, et al., 2002 | |||||||
Prentice, Nicodemus, et al., 2004 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
Σ+ | 1 | CH stretch | 3088.26 | gas | MPI | Prentice, Nicodemus, et al., 2004 | |
Π | 2 | Bend | 797.5 | w | gas | MPI | Song and Cool, 1992 Robinson, Foltynowicz, et al., 2002 |
Σ+ | 3 | CO stretch | 2174.3 | gas | MPI | Tjossem, Cool, et al., 1988 Robinson, Foltynowicz, et al., 2002 | |
State: B
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 38695.48 | gas | B-X | 235 | 475 | Dixon, 1969 | ||
Sappey and Crosley, 1990 | |||||||
Cool and Song, 1992 | |||||||
Adamson, Zhao, et al., 1993 | |||||||
Shiu and Chen, 1994 | |||||||
Lee and Chen, 1995 | |||||||
Tobiason, Dunlop, et al., 1995 | |||||||
Chang, Fan, et al., 1996 | |||||||
Lee, Chen, et al., 1997 | |||||||
Gardner and Miller, 2004 | |||||||
To = 38595 ± 35 | Ar | B-X | 210 | 260 | Milligan and Jacox, 1969 | ||
Jacox, 1978 | |||||||
To = 38567 ± 35 | CO | B-X | 210 | 260 | Milligan and Jacox, 1969 | ||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a' | 1 | CH stretch | 2596.4 ± 0.2 | gas | EM LF | Dixon, 1969 Sappey and Crosley, 1990 Adamson, Zhao, et al., 1993 Shiu and Chen, 1994 | |
1 | CH stretch | 2596.4 ± 0.2 | gas | MPI | Cool and Song, 1992 | ||
1 | CH stretch | 2570 ± 30 | Ar | AB | Milligan and Jacox, 1969 Jacox, 1978 | ||
1 | CH stretch | 2570 ± 30 | CO | AB | Milligan and Jacox, 1969 | ||
2 | 1380.0 ± 0.2 | gas | LF MPI | Sappey and Crosley, 1990 Cool and Song, 1992 Adamson, Zhao, et al., 1993 Shiu and Chen, 1994 | |||
2 | 1375 ± 35 | Ar | UV | Milligan and Jacox, 1969 Jacox, 1978 | |||
2 | 1375 ± 35 | CO | UV | Milligan and Jacox, 1969 | |||
3 | 1065.9 ± 0.2 | gas | LF MPI | Sappey and Crosley, 1990 Cool and Song, 1992 Adamson, Zhao, et al., 1993 Shiu and Chen, 1994 | |||
3 | 1035 ± 35 | Ar | UV | Milligan and Jacox, 1969 Jacox, 1978 | |||
3 | 1035 ± 35 | CO | UV | Milligan and Jacox, 1969 | |||
State: A
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 9297 ± 3 | gas | A-X | 460 | 860 | Herzberg and Ramsay, 1955 | ||
Johns, Priddle, et al., 1963 | |||||||
Brown and Ramsay, 1975 | |||||||
Rumbles, Valentini, et al., 1989 | |||||||
Rumbles, Lee, et al., 1990 | |||||||
Hall, Suits, et al., 1993 | |||||||
Scherer and Rakestraw, 1997 | |||||||
Flad, Brown, et al., 2006 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a' | 1 | CH stretch | 3319 ± 3 | gas | UV | Herzberg and Ramsay, 1955 Johns, Priddle, et al., 1963 Brown and Ramsay, 1975 | |
2 | Bend | 805 | gas | UV | Herzberg and Ramsay, 1955 Johns, Priddle, et al., 1963 Brown and Ramsay, 1975 | ||
3 | CO stretch | 1812.2 | gas | UV | Herzberg and Ramsay, 1955 Johns, Priddle, et al., 1963 Brown and Ramsay, 1975 | ||
State: X
Additional references: Jacox, 1994, page 40; Jacox, 1998, page 146; Jacox, 2003, page 34; Austin, Levy, et al., 1974; Lowe and McKellar, 1981; Konig and Lademann, 1983; Blake, Sastry, et al., 1984; Endo and Hirota, 1988; Meier, Hunziker, et al., 1991; Shiu and Chen, 1994, 2; Tobiason, Dunlop, et al., 1995, 2; Tobiason and Rohlfing, 1996; Lee and Chen, 1996; Gripp, Kuczmann, et al., 2000; Rowling, Reid, et al., 2011
Notes
w | Weak |
m | Medium |
s | Strong |
vs | Very strong |
o | Energy separation between the v = 0 levels of the excited and electronic ground states. |
References
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Tsang, 1996
Tsang, W.,
Heats of Formation of Organic Free Radicals by Kinetic Methods
in Energetics of Organic Free Radicals, Martinho Simoes, J.A.; Greenberg, A.; Liebman, J.F., eds., Blackie Academic and Professional, London, 1996, 22-58. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C.,
Laser photoelectron spectroscopy of the Formylf anion,
J. Chem. Phys., 1986, 84, 2520. [all data]
Dyke, 1987
Dyke, J.M.,
Properties of gas-phase ions,
J. Chem. Soc. Faraday Trans., 1987, 83, 69. [all data]
Traeger, 1985
Traeger, J.C.,
Heat of formation for the formyl cation by photoionization mass spectrometry,
Int. J. Mass Spectrom. Ion Processes, 1985, 66, 271. [all data]
Dyke, Jonathan, et al., 1980
Dyke, J.M.; Jonathan, N.B.H.; Morris, A.; Winter, M.J.,
The first ionization potential of the formyl radical, HCO(X2A'), studied using photoelectron spectroscopy,
Mol. Phys., 1980, 39, 629. [all data]
Reed and Brand, 1958
Reed, R.I.; Brand, J.C.D.,
Electron impact studies. Part 4. Glyoxal, methylglyoxal and diacetyl,
J. Chem. Soc. Faraday Trans., 1958, 54, 478. [all data]
Stock
Stock, C.,
Ber. Max-Planck-Inst. Stromungsforsch. 1996, 10. [all data]
Stock, Li, et al., 1997
Stock, C.; Li, X.; Keller, H.-M.; Schinke, R.; Temps, F.,
Unimolecular dissociation dynamics of highly vibrationally excited DCO (X 2A). I. Investigation of dissociative resonance states by stimulated emission pumping spectroscopy,
J. Chem. Phys., 1997, 106, 13, 5333, https://doi.org/10.1063/1.473603
. [all data]
Tjossem, Goodwin, et al., 1986
Tjossem, P.J.H.; Goodwin, P.M.; Cool, T.A.,
Two-photon resonance REMPI detection of the formyl radical,
J. Chem. Phys., 1986, 84, 10, 5334, https://doi.org/10.1063/1.449944
. [all data]
Tjossem, Cool, et al., 1988
Tjossem, P.J.H.; Cool, T.A.; Webb, D.A.; Grant, E.R.,
Spectroscopy of the 3p 2Π Rydberg state of HCO by resonance-enhanced multiphoton ionization,
J. Chem. Phys., 1988, 88, 2, 617, https://doi.org/10.1063/1.454188
. [all data]
Song and Cool, 1992
Song, X.-M.; Cool, T.A.,
Resonance ionization spectroscopy of HCO and DCO. I. The 3p 2Π Rydberg state,
J. Chem. Phys., 1992, 96, 12, 8664, https://doi.org/10.1063/1.462273
. [all data]
Robinson, Foltynowicz, et al., 2002
Robinson, J.D.; Foltynowicz, R.J.; Prentice, K.; Bell, P.; Grant, E.R.,
Laser-assisted (1+1´)-photon ionization-detected absorption spectrum of the 3pπ [sup 2]Π state of HCO and DCO,
J. Chem. Phys., 2002, 116, 19, 8384, https://doi.org/10.1063/1.1467329
. [all data]
Prentice, Nicodemus, et al., 2004
Prentice, K.; Nicodemus, R.; Rajaram, B.; Grant, E.R.,
Higher Vibrationally Excited Levels of the 3pπ,
J. Phys. Chem. A, 2004, 108, 45, 10010, https://doi.org/10.1021/jp040413c
. [all data]
Dixon, 1969
Dixon, R.N.,
Rotational structure of some hydrocarbon flame bands,
Trans. Faraday Soc., 1969, 65, 3141, https://doi.org/10.1039/tf9696503141
. [all data]
Sappey and Crosley, 1990
Sappey, A.D.; Crosley, D.R.,
Laser-induced fluorescence in the B--X system of the HCO radical,
J. Chem. Phys., 1990, 93, 11, 7601, https://doi.org/10.1063/1.459391
. [all data]
Cool and Song, 1992
Cool, T.A.; Song, X.-M.,
Resonance ionization spectroscopy of HCO and DCO. II. The B 2A' state,
J. Chem. Phys., 1992, 96, 12, 8675, https://doi.org/10.1063/1.462274
. [all data]
Adamson, Zhao, et al., 1993
Adamson, G.W.; Zhao, X.; Field, R.W.,
The HCO B2A´ ↔ X2A´ System: Fluorescence Excitation and Stimulated Emission Pumping Spectra,
J. Mol. Spectrosc., 1993, 160, 1, 11, https://doi.org/10.1006/jmsp.1993.1154
. [all data]
Shiu and Chen, 1994
Shiu, Y.J.; Chen, I-C.,
Fluorescence Excitation Spectra of HCO in a Supersonic Jet,
J. Mol. Spectrosc., 1994, 165, 2, 457, https://doi.org/10.1006/jmsp.1994.1148
. [all data]
Lee and Chen, 1995
Lee, S.-H.; Chen, I-C.,
Predissociation mechanism and spin-rotation constant of the HCO B 2A´ state,
J. Chem. Phys., 1995, 103, 1, 104, https://doi.org/10.1063/1.469648
. [all data]
Tobiason, Dunlop, et al., 1995
Tobiason, J.D.; Dunlop, J.R.; Rohlfing, E.A.,
The unimolecular dissociation of HCO: A spectroscopic study of resonance energies and widths,
J. Chem. Phys., 1995, 103, 4, 1448, https://doi.org/10.1063/1.470699
. [all data]
Chang, Fan, et al., 1996
Chang, H.-A.; Fan, Y.-H.; Chen, I-C.,
J. Chin, 1996, Chem. Soc. 43, 217. [all data]
Lee, Chen, et al., 1997
Lee, S.-H.; Chen, I-C.; Adamson, G.W.; Field, R.W.,
The Fluorescence Excitation Spectrum of HCO2A´--X2A´, 000Band,
J. Mol. Spectrosc., 1997, 182, 2, 385, https://doi.org/10.1006/jmsp.1996.7228
. [all data]
Gardner and Miller, 2004
Gardner, J.L.; Miller, S.M.,
B[sup 2]A[sup ´]-X[sup 2]A[sup ´] detection of vibrationally excited HCO produced by the O([sup 3]P)+C[sub 2]H[sub 4] reaction,
J. Chem. Phys., 2004, 121, 12, 5920, https://doi.org/10.1063/1.1774984
. [all data]
Milligan and Jacox, 1969
Milligan, D.E.; Jacox, M.E.,
Matrix-Isolation Study of the Infrared and Ultraviolet Spectra of the Free Radical HCO. The Hydrocarbon Flame Bands,
J. Chem. Phys., 1969, 51, 1, 277, https://doi.org/10.1063/1.1671720
. [all data]
Jacox, 1978
Jacox, M.E.,
Assignment of the hydrocarbon flame bands. The C«58872»X transition of HCO,
Chem. Phys. Lett., 1978, 56, 1, 43, https://doi.org/10.1016/0009-2614(78)80182-1
. [all data]
Herzberg and Ramsay, 1955
Herzberg, G.; Ramsay, D.A.,
The 7500 to 4500 angstrom Absorption System of the Free HCO Radical,
Proc. Roy. Soc. (London) A233, 1955, 233, 1192, 34, https://doi.org/10.1098/rspa.1955.0244
. [all data]
Johns, Priddle, et al., 1963
Johns, J.W.C.; Priddle, S.H.; Ramsay, D.A.,
Electronic absorption spectra of HCO and DCO radicals,
Discuss. Faraday Soc., 1963, 35, 90, https://doi.org/10.1039/df9633500090
. [all data]
Brown and Ramsay, 1975
Brown, J.M.; Ramsay, D.A.,
Axis Switching in the Transition of HCO: Determination of Molecular Geometry,
Can. J. Phys., 1975, 53, 19, 2232, https://doi.org/10.1139/p75-269
. [all data]
Rumbles, Valentini, et al., 1989
Rumbles, G.; Valentini, J.J.; Stone, B.M.; Lee, E.K.C.,
Laser-induced fluorescence from the predissociating formyl radical. 1. Mechanism for the predissociation of the A2A" state,
J. Phys. Chem., 1989, 93, 4, 1303, https://doi.org/10.1021/j100341a026
. [all data]
Rumbles, Lee, et al., 1990
Rumbles, G.; Lee, E.K.C.; Valentini, J.J.,
J. Chem. Soc., 1990, Faraday Trans. 86, 3837. [all data]
Hall, Suits, et al., 1993
Hall, G.; Suits, A.G.; Whitaker, B.J.,
Resonant degenerate four wave mixing detection of HCO,
Chem. Phys. Lett., 1993, 203, 2-3, 277, https://doi.org/10.1016/0009-2614(93)85401-9
. [all data]
Scherer and Rakestraw, 1997
Scherer, J.J.; Rakestraw, D.J.,
Cavity ringdown laser absorption spectroscopy detection of formyl (HCO) radical in a low pressure flame,
Chem. Phys. Lett., 1997, 265, 1-2, 169, https://doi.org/10.1016/S0009-2614(96)01403-0
. [all data]
Flad, Brown, et al., 2006
Flad, J.E.; Brown, S.S.; Burkholder, J.B.; Stark, H.; Ravishankara, A.R.,
Absorption cross sections for the ?2A? (0,90,0) ? X?2A? (0,01,0) band of the HCO radical,
Phys. Chem. Chem. Phys., 2006, 8, 31, 3636, https://doi.org/10.1039/b607185f
. [all data]
Stone, Noble, et al., 1985
Stone, B.M.; Noble, M.; Lee, E.K.C.,
Laser-induced fluorescence emission from HCO produced by 308 nm excimer laser photodissociation of acetaldehyde,
Chem. Phys. Lett., 1985, 118, 1, 83, https://doi.org/10.1016/0009-2614(85)85271-4
. [all data]
Dane, Lander, et al., 1988
Dane, C.B.; Lander, D.R.; Curl, R.F.; Tittel, F.K.; Guo, Y.; Ochsner, M.I.F.; Moore, C.B.,
Infrared flash kinetic spectroscopy of HCO,
J. Chem. Phys., 1988, 88, 4, 2121, https://doi.org/10.1063/1.454095
. [all data]
McKellar, Burkholder, et al., 1988
McKellar, A.R.W.; Burkholder, J.B.; Orlando, J.J.; Howard, C.J.,
Fourier transform infrared spectrum of the ν3 band of HCO,
J. Mol. Spectrosc., 1988, 130, 2, 445, https://doi.org/10.1016/0022-2852(88)90091-4
. [all data]
Pettersson, Khriachtchev, et al., 1999
Pettersson, M.; Khriachtchev, L.; Jolkkonen, S.; Rasanen, M.,
Photochemistry of HNCO in Solid Xe: Channels of UV Photolysis and Creation of H,
J. Phys. Chem. A, 1999, 103, 45, 9154, https://doi.org/10.1021/jp992224d
. [all data]
Milligan and Jacox, 1964
Milligan, D.E.; Jacox, M.E.,
Infrared Spectrum of HCO,
J. Chem. Phys., 1964, 41, 10, 3032, https://doi.org/10.1063/1.1725669
. [all data]
Landsberg, Merer, et al., 1977
Landsberg, B.M.; Merer, A.J.; Oka, T.,
Infrared spectroscopy of short-lived molecules,
J. Mol. Spectrosc., 1977, 67, 1-3, 459, https://doi.org/10.1016/0022-2852(77)90052-2
. [all data]
Johns, McKellar, et al., 1977
Johns, J.W.C.; McKellar, A.R.W.; Riggin, M.,
Laser magnetic resonance spectroscopy of the ν2 fundamental band of HCO at 9.25 μm,
J. Chem. Phys., 1977, 67, 6, 2427, https://doi.org/10.1063/1.435215
. [all data]
Maier and Lautz
Maier, G.; Lautz, C.,
Eur. J. Org. Chem. 1998, 769.. [all data]
Ewing, Thompson, et al., 1960
Ewing, G.E.; Thompson, W.E.; Pimentel, G.C.,
Infrared Detection of the Formyl Radical HCO,
J. Chem. Phys., 1960, 32, 3, 927, https://doi.org/10.1063/1.1730819
. [all data]
Reilly, Clark, et al., 1978
Reilly, J.P.; Clark, J.H.; Moore, C.B.; Pimentel, G.C.,
HCO production, vibrational relaxation, chemical kinetics, and spectroscopy following laser photolysis of formaldehyde,
J. Chem. Phys., 1978, 69, 10, 4381, https://doi.org/10.1063/1.436449
. [all data]
Brown, Buttenshaw, et al., 1980
Brown, J.M.; Buttenshaw, J.; Carrington, A.; Dumper, K.; Parent, C.R.,
The laser magnetic resonance spectrum of the HCO radical at 5.3 μm,
J. Mol. Spectrosc., 1980, 79, 1, 47, https://doi.org/10.1016/0022-2852(80)90291-X
. [all data]
Jacox, 1994
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]
Jacox, 1998
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement A,
J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017
. [all data]
Jacox, 2003
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement B,
J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629
. [all data]
Austin, Levy, et al., 1974
Austin, J.A.; Levy, D.H.; Gottlieb, C.A.; Radford, H.E.,
Microwave spectrum of the HCO radical,
J. Chem. Phys., 1974, 60, 1, 207, https://doi.org/10.1063/1.1680769
. [all data]
Lowe and McKellar, 1981
Lowe, R.S.; McKellar, A.R.W.,
Laser magnetic resonance spectroscopy of the ν1 and ν3 fundamental bands of DCO,
J. Chem. Phys., 1981, 74, 5, 2686, https://doi.org/10.1063/1.441437
. [all data]
Konig and Lademann, 1983
Konig, R.; Lademann, J.,
Laser-induced fluorescence detection of HCO produced by laser photolysis of formaldehyde,
Chem. Phys. Lett., 1983, 94, 2, 152, https://doi.org/10.1016/0009-2614(83)87563-0
. [all data]
Blake, Sastry, et al., 1984
Blake, G.A.; Sastry, K.V.L.N.; De Lucia, F.C.,
The laboratory millimeter and submillimeter spectrum of HCOa),
J. Chem. Phys., 1984, 80, 1, 95, https://doi.org/10.1063/1.446411
. [all data]
Endo and Hirota, 1988
Endo, Y.; Hirota, E.,
The millimeter- and submillimeter-wave spectrum of the DCO radical,
J. Mol. Spectrosc., 1988, 127, 2, 540, https://doi.org/10.1016/0022-2852(88)90141-5
. [all data]
Meier, Hunziker, et al., 1991
Meier, U.; Hunziker, L.E.; Crosley, D.R.,
Collisional quenching of the ~B2A' (000) state of formyl,
J. Phys. Chem., 1991, 95, 13, 5163, https://doi.org/10.1021/j100166a046
. [all data]
Shiu and Chen, 1994, 2
Shiu, Y.J.; Chen, I-C.,
Radiative lifetime of the HCO B2A´ state,
Chem. Phys. Lett., 1994, 222, 3, 245, https://doi.org/10.1016/0009-2614(94)00343-2
. [all data]
Tobiason, Dunlop, et al., 1995, 2
Tobiason, J.D.; Dunlop, J.R.; Rohlfing, E.A.,
Dispersed fluorescence spectroscopy of jet-cooled DCO,
Chem. Phys. Lett., 1995, 235, 3-4, 268, https://doi.org/10.1016/0009-2614(95)00102-A
. [all data]
Tobiason and Rohlfing, 1996
Tobiason, J.D.; Rohlfing, E.A.,
Lifetimes of vibrational levels in the B2A´ state of HCO,
Chem. Phys. Lett., 1996, 252, 5-6, 333, https://doi.org/10.1016/0009-2614(96)00163-7
. [all data]
Lee and Chen, 1996
Lee, S.-H.; Chen, I-C.,
Axis switching in the B 2A´--X 2A´ transition of HCO and fluorescence lifetimes of the B 2A´(0,0,0) rotational states,
J. Chem. Phys., 1996, 105, 7, 2583, https://doi.org/10.1063/1.472545
. [all data]
Gripp, Kuczmann, et al., 2000
Gripp, J.; Kuczmann, A.; Stock, C.; Temps, F.; Trollsch, A.,
The (B 2A´←X 2A´) laser induced fluorescence excitation spectrum of DCO in a supersonic jet expansion,
Phys. Chem. Chem. Phys., 2000, 2, 8, 1653, https://doi.org/10.1039/a910318j
. [all data]
Rowling, Reid, et al., 2011
Rowling, S.J.; Reid, S.A.; Nauta, K.; Kable, S.H.,
Electronic spectroscopy of the transition of DCO and lifetimes and relative quantum yields of the state,
J. Mol. Spectrosc., 2011, 270, 1, 33, https://doi.org/10.1016/j.jms.2011.08.005
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
EA Electron affinity IE (evaluated) Recommended ionization energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH(+) ion,0K Enthalpy of formation of positive ion at 0K ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.