Hydrogen chloride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-22.06 ± 0.024kcal/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas-22.06kcal/molReviewChase, 1998Data last reviewed in September, 1964
Quantity Value Units Method Reference Comment
gas,1 bar44.671 ± 0.001cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar44.670cal/mol*KReviewChase, 1998Data last reviewed in September, 1964

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 7.6778027.628880
B -3.2165520.765579
C 4.748691-0.129431
D -1.6381310.008586
E -0.011872-0.821827
F -24.28791-25.81621
G 54.6574152.16941
H -22.06310-22.06310
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1964 Data last reviewed in September, 1964

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tfus161.15KN/ABeckmann and Waentig, 1910Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.13620atmN/AHenderson, Lewis, et al., 1986Uncertainty assigned by TRC = 0.00006 atm; TRC
Quantity Value Units Method Reference Comment
Tc324.68KN/AHenderson, Lewis, et al., 1986Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Pc81.48atmN/AHenderson, Lewis, et al., 1986Uncertainty assigned by TRC = 0.0813 atm; VP measured up to 219 K and Pc determined from fitted Wagner equation; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
3.87188.CGiauque and Wiebe, 1928AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
122.3 to 188.33.60194535.172-39.847Stull, 1947Coefficents calculated by NIST from author's data.
188.3 to 309.44.56818868.3581.754Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Reference Comment
4.71127.Ser and Larher, 1990Based on data from 121. to 133. K.; AC
4.68142.Ser and Larher, 1990Based on data from 134. to 150. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
MS - José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Chlorine anion + Hydrogen chloride = (Chlorine anion • Hydrogen chloride)

By formula: Cl- + HCl = (Cl- • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr29.6 ± 1.0kcal/molN/AMetz, Kitsopoulos, et al., 1988gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B
Δr23.8 ± 2.0kcal/molTDEqCaldwell and Kebarle, 1985gas phase; B,M
Δr23.1 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr23.70 ± 0.20kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B,M
Δr20.4kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle(Cl-)H2O/HCl, Entropy change calculated or estimated; Keesee and Castleman, 1980; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Cl-)SO2; M
Δr23.5cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M
Δr23.5cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr22.8cal/mol*KN/AUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle(Cl-)H2O/HCl, Entropy change calculated or estimated; Keesee and Castleman, 1980; M
Quantity Value Units Method Reference Comment
Δr16.3 ± 2.0kcal/molIMRELarson and McMahon, 1987gas phase; K = 0.60 for HCl..Cl- + DCL <=> DCl..Cl- + HCl, anchored to Larson and McMahon, 1984, 32; B
Δr17.1 ± 2.6kcal/molTDEqCaldwell and Kebarle, 1985gas phase; B
Δr16.0 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr16.70 ± 0.30kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B
Δr13.6kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle(Cl-)H2O/HCl, Entropy change calculated or estimated; Keesee and Castleman, 1980; M

Chlorine anion + Hydrogen cation = Hydrogen chloride

By formula: Cl- + H+ = HCl

Quantity Value Units Method Reference Comment
Δr333.40kcal/molN/AMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol; B
Δr333.6 ± 2.1kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr329.10kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0; B
Quantity Value Units Method Reference Comment
Δr328.10 ± 0.10kcal/molH-TSMartin and Hepburn, 1998gas phase; Given: ΔHacid(0K)=116288.7±0.6 cm-1, or 332.486±0.002 kcal/mol; B
Δr328.3 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr323.70kcal/molN/ACheck, Faust, et al., 2001gas phase; FeCC-(q); ; ΔS(EA)=5.0; B

(Chlorine anion • Hydrogen chloride) + Hydrogen chloride = (Chlorine anion • 2Hydrogen chloride)

By formula: (Cl- • HCl) + HCl = (Cl- • 2HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr15.20 ± 0.20kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B,M
Δr14.0kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Cl- HCl)SO2; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Cl- HCl)SO2; M
Δr24.4cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr7.90 ± 0.20kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B

Iodide + Hydrogen chloride = (Iodide • Hydrogen chloride)

By formula: I- + HCl = (I- • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr14.8 ± 2.0kcal/molTDAsCaldwell and Kebarle, 1985gas phase; B,M
Δr14.2kcal/molHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr20.0cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M
Δr22.7cal/mol*KHPMSKeesee, Lee, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr8.8 ± 2.6kcal/molTDAsCaldwell and Kebarle, 1985gas phase; B

HO4S- + Hydrogen chloride = (HO4S- • Hydrogen chloride)

By formula: HO4S- + HCl = (HO4S- • HCl)

Quantity Value Units Method Reference Comment
Δr15.7 ± 1.0kcal/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..HSO4-, Bohringer, Fahey, et al., 1984; B,M
Quantity Value Units Method Reference Comment
Δr15.1cal/mol*KN/ABohringer, Fahey, et al., 1984gas phase; switching reaction(HSO4-)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr11.2 ± 1.0kcal/molTDEqBohringer, Fahey, et al., 1984gas phase; Relative to HOH..HSO4-, Bohringer, Fahey, et al., 1984; B,M

(Chlorine anion • Hydrogen chloride • Water) + Hydrogen chloride = (Chlorine anion • 2Hydrogen chloride • Water)

By formula: (Cl- • HCl • H2O) + HCl = (Cl- • 2HCl • H2O)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle,switching reaction(Cl- H2O) HCl, deuterated; Yamdagni and Kebarle, 1974; M
Quantity Value Units Method Reference Comment
Δr20.9cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle,switching reaction(Cl- H2O) HCl, deuterated; Yamdagni and Kebarle, 1974; M

(Chlorine anion • 2Water) + Hydrogen chloride = (Chlorine anion • Hydrogen chloride • 2Water)

By formula: (Cl- • 2H2O) + HCl = (Cl- • HCl • 2H2O)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr13.0kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle(Cl- 2H2O)H2O, deuterated; Keesee and Castleman, 1980; M
Quantity Value Units Method Reference Comment
Δr21.7cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; From thermochemical cycle(Cl- 2H2O)H2O, deuterated; Keesee and Castleman, 1980; M

(Bromine anion • Sulfur dioxide) + Hydrogen chloride = (Bromine anion • Hydrogen chloride • Sulfur dioxide)

By formula: (Br- • O2S) + HCl = (Br- • HCl • O2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr22.4kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; From thermochemical cycle,switching reaction(Br-)SO2; M
Quantity Value Units Method Reference Comment
Δr18.6cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; From thermochemical cycle,switching reaction(Br-)SO2; M

Bromine anion + Hydrogen chloride = (Bromine anion • Hydrogen chloride)

By formula: Br- + HCl = (Br- • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr19.6 ± 2.0kcal/molTDEqCaldwell and Kebarle, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.0cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Br-)SO2; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.6kcal/molTDEqCaldwell and Kebarle, 1985gas phase; B

(Chlorine anion • 2Hydrogen chloride) + Hydrogen chloride = (Chlorine anion • 3Hydrogen chloride)

By formula: (Cl- • 2HCl) + HCl = (Cl- • 3HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr11.70 ± 0.30kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B,M
Quantity Value Units Method Reference Comment
Δr23.4cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr4.70 ± 0.30kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B

(Chlorine anion • 3Hydrogen chloride) + Hydrogen chloride = (Chlorine anion • 4Hydrogen chloride)

By formula: (Cl- • 3HCl) + HCl = (Cl- • 4HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr10.30 ± 0.70kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B,M
Quantity Value Units Method Reference Comment
Δr26.7cal/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr2.3 ± 1.0kcal/molTDAsYamdagni and Kebarle, 1974gas phase; B

(Chlorine anion • 2Hydrogen chloride) + Water = (Chlorine anion • Water • 2Hydrogen chloride)

By formula: (Cl- • 2HCl) + H2O = (Cl- • H2O • 2HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr7.6kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr15.2cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in Keesee and Castleman, 1986; M

(Chlorine anion • Hydrogen chloride) + Water = (Chlorine anion • Water • Hydrogen chloride)

By formula: (Cl- • HCl) + H2O = (Cl- • H2O • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr10.5kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in Keesee and Castleman, 1986; M

Acetyl chloride + Water = Acetic acid + Hydrogen chloride

By formula: C2H3ClO + H2O = C2H4O2 + HCl

Quantity Value Units Method Reference Comment
Δr-22.58kcal/molCmDevore and O'Neal, 1969liquid phase; Heat of hydrolysis; ALS
Δr-22.06kcal/molCmPritchard and Skinner, 1950liquid phase; Heat of hydrolysis at 298 K, see Carson and Skinner, 1949; ALS
Δr-22.09kcal/molCmCarson and Skinner, 1949liquid phase; ALS

(Chlorine anion • Water • Hydrogen chloride) + Water = (Chlorine anion • 2Water • Hydrogen chloride)

By formula: (Cl- • H2O • HCl) + H2O = (Cl- • 2H2O • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr9.6kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in 86 KEE/CAS; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; deuterated, quoted in 86 KEE/CAS; M

(Chlorine anion • Sulfur dioxide) + Hydrogen chloride = (Chlorine anion • Hydrogen chloride • Sulfur dioxide)

By formula: (Cl- • O2S) + HCl = (Cl- • HCl • O2S)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr13.9kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; From thermochemical cycle; M
Quantity Value Units Method Reference Comment
Δr19.2cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; From thermochemical cycle; M

Ethane, 1,2-dichloro- = Ethene, chloro- + Hydrogen chloride

By formula: C2H4Cl2 = C2H3Cl + HCl

Quantity Value Units Method Reference Comment
Δr12.1 ± 1.0kcal/molCmBuravtsev, Grigor'ev, et al., 1992gas phase; ALS
Δr19.6kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr16.3kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr16.24kcal/molEqkGhosh and Guha, 1951liquid phase; ALS

(Bromine anion • Hydrogen chloride) + Hydrogen chloride = (Bromine anion • 2Hydrogen chloride)

By formula: (Br- • HCl) + HCl = (Br- • 2HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr12.5kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Br-)SO2; M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; switching reaction(Br-)SO2; M

Ethyl Chloride = Ethylene + Hydrogen chloride

By formula: C2H5Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr22.0kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr17.1kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr17.35 ± 0.50kcal/molEqkHowlett, 1955gas phase; ALS
Δr17.1kcal/molEqkLane, Linnett, et al., 1953gas phase; ALS

Ethane, 1,1,1-trichloro- = Ethene, 1,1-dichloro- + Hydrogen chloride

By formula: C2H3Cl3 = C2H2Cl2 + HCl

Quantity Value Units Method Reference Comment
Δr13.6kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr11.7kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr13.61 ± 0.50kcal/molEqkLevanova, Treger, et al., 1975liquid phase; solvent: Nitrobenzene; Flow reactor at 50°C; ALS

Water + Benzoyl chloride = Benzoic acid + Hydrogen chloride

By formula: H2O + C7H5ClO = C7H6O2 + HCl

Quantity Value Units Method Reference Comment
Δr-8.136 ± 0.050kcal/molCmMoselhy and Pritchard, 1975liquid phase; solvent: Diphenyl-ether; see Carson, Pritchard, et al., 1950 and Davies, Dunning, et al., 1972; ALS
Δr-24.35kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Propane, 2-chloro- = Propene + Hydrogen chloride

By formula: C3H7Cl = C3H6 + HCl

Quantity Value Units Method Reference Comment
Δr17.3 ± 0.2kcal/molEqkNoren and Sunner, 1970gas phase; ALS
Δr17.62 ± 0.15kcal/molEqkKabo and Andreevskii, 1963gas phase; At 415.5 K; ALS
Δr17.45 ± 0.50kcal/molEqkHowlett, 1955gas phase; ALS

Propane, 2-chloro-2-methyl- = 1-Propene, 2-methyl- + Hydrogen chloride

By formula: C4H9Cl = C4H8 + HCl

Quantity Value Units Method Reference Comment
Δr17.7 ± 0.5kcal/molEqkHowlett, 1955gas phase; ALS
Δr17.70kcal/molEqkHowlett, 1951gas phase; Hf-gas-(390) -44.4 kcal/mol; ALS
Δr17.1 ± 0.5kcal/molEqkKistiakowsky and Stauffer, 1937gas phase; ALS

Hydrogen chloride + α-Methylstyrene = Benzene, (1-chloro-1-methylethyl)-

By formula: HCl + C9H10 = C9H11Cl

Quantity Value Units Method Reference Comment
Δr-8.80 ± 0.45kcal/molCmArnett and Pienta, 1980liquid phase; solvent: Methylene chloride; Hydrochlorination; ALS
Δr-12.4 ± 1.1kcal/molCmNesterova, Kovzel, et al., 1977liquid phase; Hydrochlorination; ALS

(Chlorine anion • Water) + Hydrogen chloride = (Chlorine anion • Hydrogen chloride • Water)

By formula: (Cl- • H2O) + HCl = (Cl- • HCl • H2O)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr16.0kcal/molHPMSUpschulte, Evans, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr21.8cal/mol*KHPMSUpschulte, Evans, et al., 1986gas phase; M

Methyl cation + Hydrogen chloride = (Methyl cation • Hydrogen chloride)

By formula: CH3+ + HCl = (CH3+ • HCl)

Quantity Value Units Method Reference Comment
Δr51.7kcal/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 48.3 kcal/mol; Foster, Williamson, et al., 1974; M

Propane, 2,2-dichloro- = 1-Propene, 2-chloro- + Hydrogen chloride

By formula: C3H6Cl2 = C3H5Cl + HCl

Quantity Value Units Method Reference Comment
Δr15.6kcal/molEqkLevanova, Rodova, et al., 1983liquid phase; Flow reactor; ALS
Δr14.3 ± 0.2kcal/molEqkShevtsova, Rozhnov, et al., 1970gas phase; Heat of Dehydrochlorination at 392 K; ALS

Ethane, 1,2-dichloro- + 2Hydrogen = Ethane + 2Hydrogen chloride

By formula: C2H4Cl2 + 2H2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-34.18 ± 0.23kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -35.32 ± 0.12 kcal/mol; At 250 C; ALS

2Hydrogen + Propane, 1,2-dichloro- = Propane + 2Hydrogen chloride

By formula: 2H2 + C3H6Cl2 = C3H8 + 2HCl

Quantity Value Units Method Reference Comment
Δr-30.24 ± 0.26kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -31.21 ± 0.13 kcal/mol; At 250 C; ALS

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Δr-39.05 ± 0.30kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -40.07 ± 0.30 kcal/mol; At 250 C; ALS

2Hydrogen + Ethane, 1,1-dichloro- = Ethane + 2Hydrogen chloride

By formula: 2H2 + C2H4Cl2 = C2H6 + 2HCl

Quantity Value Units Method Reference Comment
Δr-33.66 ± 0.25kcal/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.65 ± 0.12 kcal/mol; At 250C; ALS

Butane, 2,2-dichloro- = 2-Butene, 2-chloro-, (Z)- + Hydrogen chloride

By formula: C4H8Cl2 = C4H7Cl + HCl

Quantity Value Units Method Reference Comment
Δr-2.10 ± 0.02kcal/molEqkLevanova, Rozhnov, et al., 1972gas phase; At 568 K; ALS
Δr13.20 ± 0.06kcal/molEqkLevanova, Rozhnov, et al., 1972gas phase; At 404.5 K; ALS

Butane, 2,2-dichloro- = 2-Butene, 2-chloro-, (E)- + Hydrogen chloride

By formula: C4H8Cl2 = C4H7Cl + HCl

Quantity Value Units Method Reference Comment
Δr-3.3 ± 0.02kcal/molEqkLevanova, Rozhnov, et al., 1972gas phase; At 568 K; ALS
Δr1.2 ± 0.06kcal/molEqkLevanova, Rozhnov, et al., 1972gas phase; At 404.5 K; ALS

2Hydrogen + Ethene, chlorotrifluoro- = 1,1,2-Trifluoroethane + Hydrogen chloride

By formula: 2H2 + C2ClF3 = C2H3F3 + HCl

Quantity Value Units Method Reference Comment
Δr-63.98 ± 0.50kcal/molChydLacher, Kianpour, et al., 1956gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -64.92 kcal/mol; At 410 K; ALS

(Chlorine anion • Hydrogen chloride) + Sulfur dioxide = (Chlorine anion • Sulfur dioxide • Hydrogen chloride)

By formula: (Cl- • HCl) + O2S = (Cl- • O2S • HCl)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr18.5cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

(Bromine anion • Hydrogen chloride) + Sulfur dioxide = (Bromine anion • Sulfur dioxide • Hydrogen chloride)

By formula: (Br- • HCl) + O2S = (Br- • O2S • HCl)

Quantity Value Units Method Reference Comment
Δr12.1kcal/molPHPMSCaldwell and Kebarle, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr18.6cal/mol*KPHPMSCaldwell and Kebarle, 1985gas phase; M

Butane, 2,3-dichloro- = 2-Butene, 2-chloro-, (Z)- + Hydrogen chloride

By formula: C4H8Cl2 = C4H7Cl + HCl

Quantity Value Units Method Reference Comment
Δr16.5kcal/molEqkLevanova, Rodova, et al., 1974gas phase; ALS
Δr15.90 ± 0.22kcal/molEqkRodova, Levanova, et al., 1973gas phase; At 454 K; ALS

1-Chloro-2-ethoxyethane = Ethene, ethoxy- + Hydrogen chloride

By formula: C4H9ClO = C4H8O + HCl

Quantity Value Units Method Reference Comment
Δr16.30 ± 0.50kcal/molEqkFailes and Stimson, 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 16.5 kcal/mol; At 450 K; ALS

Ethane, 1,1,1,2-tetrachloro- = Hydrogen chloride + Trichloroethylene

By formula: C2H2Cl4 = HCl + C2HCl3

Quantity Value Units Method Reference Comment
Δr10.5kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr10.85kcal/molEqkLevanova, Bushneva, et al., 1976liquid phase; At 333 K; ALS

Ethane, pentachloro- = Tetrachloroethylene + Hydrogen chloride

By formula: C2HCl5 = C2Cl4 + HCl

Quantity Value Units Method Reference Comment
Δr10.8 ± 1.1kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; GC; ALS
Δr9.3kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS

2Hydrogen chloride (g) + Aluminum, chlorodiethyl- (l) = AlCl3 (cr) + 2Ethane (g)

By formula: 2HCl (g) + C4H10AlCl (l) = AlCl3 (cr) + 2C2H6 (g)

Quantity Value Units Method Reference Comment
Δr-63.34 ± 0.79kcal/molRSCShaulov and Shmyreva, 1968The reaction enthalpy was derived from data in Shaulov and Shmyreva, 1968.; MS

Butane, 2,3-dichloro-2-methyl- = 2-Butene, 2-chloro-3-methyl- + Hydrogen chloride

By formula: C5H10Cl2 = C5H9Cl + HCl

Quantity Value Units Method Reference Comment
Δr16.2 ± 0.3kcal/molEqkMeged, Levanova, et al., 1980gas phase; ALS
Δr16.3 ± 1.0kcal/molEqkMeged, Levanova, et al., 1980gas phase; ALS

Fluorine anion + Hydrogen chloride = (Fluorine anion • Hydrogen chloride)

By formula: F- + HCl = (F- • HCl)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr60. ± 2.kcal/molICRLarson and McMahon, 1985gas phase; bracketing; M

Butane, 1,1-dichloro- = 1-Butene, 1-chloro-, (Z)- + Hydrogen chloride

By formula: C4H8Cl2 = C4H7Cl + HCl

Quantity Value Units Method Reference Comment
Δr14.6kcal/molEqkLevanova, Rodova, et al., 1974gas phase; ALS
Δr14.61 ± 0.09kcal/molEqkRodova, Shevtsova, et al., 1974gas phase; ALS

Sodium ion (1+) + Hydrogen chloride = (Sodium ion (1+) • Hydrogen chloride)

By formula: Na+ + HCl = (Na+ • HCl)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molFAPerry, Rowe, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KFAPerry, Rowe, et al., 1980gas phase; M

Ethane, 1,1-dichloro- = Ethene, chloro- + Hydrogen chloride

By formula: C2H4Cl2 = C2H3Cl + HCl

Quantity Value Units Method Reference Comment
Δr17.8kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr14.8kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS

Ethane, 1,1,2-trichloro- = Ethene, 1,1-dichloro- + Hydrogen chloride

By formula: C2H3Cl3 = C2H2Cl2 + HCl

Quantity Value Units Method Reference Comment
Δr12.3kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr15.6kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS

Ethane, 1,1,2,2-tetrachloro- = Hydrogen chloride + Trichloroethylene

By formula: C2H2Cl4 = HCl + C2HCl3

Quantity Value Units Method Reference Comment
Δr13.2kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr10.7kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS

C30H28Fe2Ti (cr) + 2(Hydrogen chloride • 4.40Water) (solution) = 2Ferrocene (cr) + Titanocene dichloride (cr)

By formula: C30H28Fe2Ti (cr) + 2(HCl • 4.40H2O) (solution) = 2C10H10Fe (cr) + C10H10Cl2Ti (cr)

Quantity Value Units Method Reference Comment
Δr-60.6 ± 1.1kcal/molRSCDias, Salema, et al., 1982Please also see Calhorda, Dias, et al., 1987.; MS

Benzoyl chloride, 2-chloro- + Water = Benzoic acid, 2-chloro- + Hydrogen chloride

By formula: C7H4Cl2O + H2O = C7H5ClO2 + HCl

Quantity Value Units Method Reference Comment
Δr-9.50 ± 0.06kcal/molCmMoselhy and Pritchard, 1975liquid phase; solvent: Diphenyl-ether; Heat of hydrolysis; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), Constants of diatomic molecules, References, Notes

Data compiled by: Coblentz Society, Inc.


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18847

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for H35Cl
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Rydberg 1            200-210 eV
Hayes and Brown, 1972; Schwarz, 1975
Numerous absorption bands above 123000 cm-1, tentatively assigned to higher members of the Rydberg series starting with L and M and converging to A 2Σ+ of HCl+.
Terwilliger and Smith, 1973
M (1Σ+) (117811) [1529] 2         M ← X 117093
missing citation
L (1Σ+,1Π) 111280 1531 52 3        L ← X 110555
missing citation
4           
Douglas and Greening, 1979
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
K 1Π (89861) [2604.6] Z   [9.230] 5   [-12.6E-4] 5  [1.3654] K ← X R 89680.5 Z
Douglas and Greening, 1979
H 1Σ+ (89120) [2093.8] Z   [8.4410]   [8.93E-4]  [1.4278] H ← X R 88684.5 Z
Douglas and Greening, 1979
E 1Σ+ (84193) [2138.6] Z   [6.6423]   [36.2]  [1.6096] E ← X R 83780.2 Z
Douglas and Greening, 1979
g (3Σ-)1 [84329.7] 6    [10.36] 7   [17E-4] 7  [1.289] g ← X 82847.4 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
f1 3Δ1 [84006.1] 6    [10.270] 8   [-13E-4] 8  [1.294] f1 ← X 82523.8 Z
missing citation
D 1Π [83972.0] 9    [9.794] 10   [20.5E-4] 10  [1.326] D ← X R 82489.7 Z
missing citation
d0 3Π0 [83753.6] 9    [9.404] 11   [-2.2E-4] 11  [1.353] d0 ← X R 82271.3 Z
missing citation
f2 3Δ2 [83497.7] 6    [10.851] 12   [29.5E-4] 12  [1.259] f2 ← X V 82015.4 Z
missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
f3 3Δ3 [83308.2] 6    [9.45] 8   [-1.3E-4] 8  [1.349] f3 ← X R 81825.9 Z
missing citation
d1 3Π1 [83255.6] 9    [9.768] 13   [8E-4] 13  [1.327] d1 ← X R 81773.3 Z
missing citation
d2 3Π2 [83083] 9    [8.632] 14   [-14E-4] 14  [1.412] d2 ← X R 81600.7 Z
missing citation
C 1Π 77575 15 [2684.0] Z 16  [9.333] 16    [1.358] C ← X 17 R 77485.3 Z
missing citation; Tilford, Ginter, et al., 1970
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
V 1Σ+ 77293.0 18 877.16 Z 16.04 19  2.727 -0.026  1.02E-4 19 0.20E-4 2.512 V ↔ X 20 R 76245.3 Z
Jacques, 1959; Jacques and Barrow, 1959; missing citation
V 1Σ+ 21           V → A 
Jacques and Barrow, 1959
b0 3Π0 (75617) 15 [2712]   [10.36] 22     [1.289] b0 ← X 23 75490.4 Z
Price, 1938; missing citation
b1 3Π1 (75195) 15 (2900) (79)  [9.87] 22     [1.320] b1 ← X R 75142.6 Z
Price, 1938; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
b2 3Π2 [76322.2] 15    [9.18] 22     [1.369] b2 ← X 23 R 74839.9 Z
Price, 1938; missing citation
A (1Π) 24 25           A ← X 
Datta and Banerjee, 1941; Romand, 1949
X 1Σ+ 0 2990.9463 26 52.8186 27 0.22437 10.593416 26 28 0.307181 29  5.3194E-4 28 30  1.274552 31 32  
Rank, Eastman, et al., 1962; Rank, Rao, et al., 1965
Rotation spectrum 33 34
Hansler and Oetjen, 1953; Jones and Gordy, 1964; Rosenberg, Lightman, et al., 1972
Raman cross sections
Kaiser, 1970; de Leeuw and Dymanus, 1973
Mol. beam electric reson. 35
Kaiser, 1970; de Leeuw and Dymanus, 1973
Mol. beam magnetic reson. 36
Code, Khosla, et al., 1968

Notes

1Rydberg series corresponding to excitation of a 2p electron.
2v=0...5 observed. Assigned as 3pσ3pπ4 5sσ. 39
3Assigned as 3pσ3pπ4 4pσ/π. 39
4Many other absorption bands in the region 83000 - 93000 cm-1 corresponding to Rydberg states strongly perturbed by the V 1Σ+ state which itself gives rise to many perturbed bands.
5Average B, D values; B(R,P)-B(Q) = +0.385.
6Configuration ...σ2π3 4pπ.
7Average B, D values; B(1+)-B(1-) = - 0.060.
8Refers to Δ+; Q branch not resolved.
9Configuration ...σ2π3 4pσ.
10Average B, D values; B(Π+)-B(Π-) = +0.063.
11Average B, D values; B(Π+)-B(Π-) = -0.040.
12Average B, D values; B(Δ+)-B(Δ-) = -0.030.
13Average B, D values; B(Π+)-B(Π-) = -0.160.
14Average B, D values; B(Π+)-B(Π-) = -0.667.
15Configuration σ2π3 4sσ.
16v=1,2,3 are increasingly diffuse; B1 = 9.296. Tilford, Ginter, et al., 1970 give ωe = 2817.5, ωexe = 66.0, Be = 9.44, αe = 0.15.
17A1so observed in inert matrices Boursey, 1975.
18Typica1 "V" state with configuration ... σπ4 σ*.
19missing note
20Very extended progression in absorption, not yet analyzed in detail. The higher vibrational levels are strongly perturbed by Rydberg states Tilford and Ginter, 1971, Douglas and Greening, 1979. The vibrational and rotational constants given were obtained from the emission spectrum with v≤3 Jacques, 1959, Jacques and Barrow, 1959 but because of the perturbations have only very limited meaning.
21Continuous absorption starting at 44000 cm-1, maximum 40 at 65500 cm-1.
22Diffuse rotational structure; 1-0 and 2-0 are increasingly diffuse.
23The b2←X and b0←X components have only 1/50 of the intensity of b1←X.
24Configuration ...σ2π3 σ*.
25Continuous aabsorption starting at 44000 cm-1, maximum at 65500 cm-1.
26Applying the Dunham corrections Rank, Rao, et al., 1965 obtain ωe = 2991.0904 and Be = 10.593553. Additional corrections (adiabatic, non- adiabatic) discussed by Bunker, 1972. Vibrational levels up to v=5 have been observed in infrared absorption Rank, Birtley, et al., 1960, Rank, Eastman, et al., 1962, Rank, Rao, et al., 1965 and emission Mould, Price, et al., 1960, higher levels in the V→X bands Jacques, 1959, Jacques and Barrow, 1959. Dunham potential coefficients Ogilvie and Koo, 1976. Most recent ab initio values of the ground state molecular constants Meyer and Rosmus, 1975; charge distribution Cade, Bader, et al., 1969.
27ωeze = -0.01218 Rank, Rao, et al., 1965.
28Slightly different constants in Plyler and Tidwell, 1960, Levy, Rossi, et al., 1965, Levy, Rossi, et al., 1966. These papers and Webb and Rao, 1968 give also constants for H37Cl.
29+0.0017724(v+1/2)2 - 0.0001201(v+1/2)3.
30-7.510E-6(v+1/2) + 4.00E-7(v+1/2)2; higher order terms in Rank, Rao, et al., 1965. See also Herman and Asgharian, 1966.
31Uncorrected value from the Be(=Y01) given in the table. The internuclear distance at the minimum of the Born-Oppenheimer curve is re = 1.2746149 Bunker, 1972, Watson, 1973.
32Rot.-vibr. Bands 41 34
33Absolute intensity measurements Chamberlain and Gebbie, 1965, Sanderson, 1967.
34Pressure-induced shifts (by foreign gases) of rotation-vibration and rotation lines Rank, Eastman, et al., 1960, Ben-Reuven, Kimel, et al., 1961, Gebbie and Stone, 1963, Jaffe, Friedmann, et al., 1963, Jaffe, Hirshfeld, et al., 1964. For discussions of pressure-induced bands and pure rotation lines (ΔJ=2) see Atwood, Vu, et al., 1967, Weiss and Cole, 1967. Self and foreign-gas line broadening Benedict, Herman, et al., 1956, Babrov, Ameer, et al., 1959, Goldring and Benesch, 1962, Jaffe, Kimel, et al., 1962, Plyler and Thibault, 1962, Alamichel and Legay, 1966, Levy, Mariel-Piollet, et al., 1970, Toth, Hunt, et al., 1970, Rich and Welsh, 1971, Rosenberg, Lightman, et al., 1972. Infrared absorption in liquid and solid phases Katz and Ron, 1970, Khatibi and Vu, 1972.
35μel(v=0,1,2)= 1.1085, 1.1390, 1.1685 D, respectively Kaiser, 1970. Dipole moment function Kaiser, 1970, Smith, 1973; see also Bunker, 1973, Kaiser, 1974. gJ = 0.4594, also quadrupole and other hyperfine coupling constants Kaiser, 1970, de Leeuw and Dymanus, 1973; see also Tokuhiro, 1967, Bunker, 1973.
36Proton spin - rotation interaction constant Leavitt, Baker, et al., 1961, Code, Khosla, et al., 1968.
37From D00(H2), D00(Cl2), and ΔHof0(HCl)
38From the photoelectron spectrum Frost, McDowell, et al., 1967, Lempka, Passmore, et al., 1968, Weiss, Lawrence, et al., 1970; photoionization measurements give similar results Watanabe, Nakayama, et al., 1962, Nicholson, 1965. A somewhat smaller I.P.(12.730 eV) may be derived from the second band system in the photoelectron spectrum at 16.254 eV corresponding to A 2Σ+ of HCl+. Higher ionization potentials at 207.1 and 208.7 eV correspond to the removal of a 2p electron Hayes and Brown, 1972.
39Strongly broadened by preionization (lifetime τ= 1.1E-14 s) Terwilliger and Smith, 1973.
40Absorption coefficient k=40.
41Absolute intensities (cm-2atm-1) of the 1-0 band: 130 Benedict, Herman, et al., 1956 2-0 band: 2.9 Benedict, Herman, et al., 1956 3.70 Jaffe, Kimel, et al., 1962, Toth, Hunt, et al., 1970 3-0 band: 0.023 Benedict, Herman, et al., 1956

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Beckmann and Waentig, 1910
Beckmann, E.; Waentig, P., Cryoscopic Measurements at Low Temperatures, Z. Anorg. Chem., 1910, 67, 17. [all data]

Henderson, Lewis, et al., 1986
Henderson, C.; Lewis, D.G.; Prichard, P.C.; Staveley, L.A.K.; Fonseca, I.M.A.; Lobo, L.Q., Some thermodynamic properties of hydrogen chloride and deuterium chloride, J. Chem. Thermodyn., 1986, 18, 1077. [all data]

Giauque and Wiebe, 1928
Giauque, W.F.; Wiebe, R., THE ENTROPY OF HYDROGEN CHLORIDE. HEAT CAPACITY FROM 16°K. TO BOILING POINT. HEAT OF VAPORIZATION. VAPOR PRESSURES OF SOLID AND LIQUID, J. Am. Chem. Soc., 1928, 50, 1, 101-122, https://doi.org/10.1021/ja01388a013 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Ser and Larher, 1990
Ser, Frederic; Larher, Yves, Sublimation pressures of hydrogen chloride, The Journal of Chemical Thermodynamics, 1990, 22, 4, 407-412, https://doi.org/10.1016/0021-9614(90)90129-E . [all data]

Metz, Kitsopoulos, et al., 1988
Metz, R.B.; Kitsopoulos, T.; Weaver, A.; Neumark, D.M., Study of the Transition State Region in the Cl+HCl Reaction by Photoelectron Spectroscopy of ClHCl-, J. Chem. Phys., 1988, 88, 2, 1463, https://doi.org/10.1063/1.454218 . [all data]

Caldwell and Kebarle, 1985
Caldwell, G.; Kebarle, P., The hydrogen bond energies of the bihalide ions XHX- and YHX-, Can. J. Chem., 1985, 63, 1399. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Yamdagni and Kebarle, 1974
Yamdagni, R.; Kebarle, P., The hydrogen bond energies in ClHCl- and Cl-(HCl)n, Can. J. Chem., 1974, 52, 2449. [all data]

Upschulte, Evans, et al., 1986
Upschulte, B.L.; Evans, D.H.; Keesee, R.G.; Castleman, A.W., Unpublished results, referred to in Keesee and Castleman, 1986, 1986. [all data]

Keesee and Castleman, 1980
Keesee, R.G.; Castleman, A.W., Jr., Gas phase studies of hydration complexes of Cl- and I- and comparison to electrostatic calculations in the gas phase, Chem. Phys. Lett., 1980, 74, 139. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Isotope Effects in Proton Transfer Reactions. An Ion Cyclotron Resonance Determination of the Equilibrium Deuterium Isotope Effect in the Bichloride Ion, J. Phys. Chem., 1987, 91, 3, 554, https://doi.org/10.1021/j100287a013 . [all data]

Larson and McMahon, 1984, 3
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ion cyclotron resonance halide-exchange equilibria, J. Phys. Chem., 1984, 88, 1083. [all data]

Martin and Hepburn, 1998
Martin, J.D.D.; Hepburn, J.W., Determination of bond dissociation energies by threshold ion-pair production spectroscopy: An improved D-0(HCl), J. Chem. Phys., 1998, 109, 19, 8139-8142, https://doi.org/10.1063/1.477476 . [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Keesee, Lee, et al., 1980
Keesee, R.G.; Lee, N.; Castleman, A.W., Jr., Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions, J. Chem. Phys., 1980, 73, 2195. [all data]

Bohringer, Fahey, et al., 1984
Bohringer, H.; Fahey, D.W.; Fehsenfeld, F.C.; Ferguson, E.E., Bond energies of the molecules H2O, SO2, H2O2, and HCl to various atmospheric negative ions, J. Chem. Phys., 1984, 81, 2805. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Devore and O'Neal, 1969
Devore, J.A.; O'Neal, H.E., Heats of formation of the acetyl halides and of the acetyl radical, J. Phys. Chem., 1969, 73, 2644-2648. [all data]

Pritchard and Skinner, 1950
Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the chloro-substituted acetyl chlorides, J. Chem. Soc., 1950, 272-276. [all data]

Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A., 201. Carbon-halogen bond energies in the acetyl halides, J. Chem. Soc., 1949, 936-939. [all data]

Buravtsev, Grigor'ev, et al., 1992
Buravtsev, N.N.; Grigor'ev, A.S.; Zaidman, O.A.; Kolbanovskii, Yu.A.; Markelov, M.YU.; Sadogurskii, M.N.; Treger, Yu.A., Dehydrochlorination of chloroalkanes under rigid homogeneous conditions. II. Effect of small additions of oxygen to the kinetics of high-temperature decomposition of 1,2-dichloroethane under adiabatic compression, Khim. Fiz., 1992, 11, 218-226. [all data]

Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S., Thermodynamic stability of chloroethanes in dehydrochlorination reactions, J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]

Ghosh and Guha, 1951
Ghosh, J.C.; Guha, S.R.D., Catalytic dehydrochlorination of ethylene dichloride, Petroleum (London), 1951, 14, 261-264. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G., A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria, Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]

Levanova, Treger, et al., 1975
Levanova, S.V.; Treger, Yu.A.; Velichko, S.M.; Rozhnov, A.M.; Bshneva, L.I.; Talanov, A.I., Equilibrium of the vinylidene chloride-methylchloroform system, Zh. Prikl. Khim. (Leningrad), 1975, 42, 480-481. [all data]

Moselhy and Pritchard, 1975
Moselhy, G.M.; Pritchard, H.O., The thermochemistry of the chloro-benzoyl chlorides, J. Chem. Thermodyn., 1975, 7, 977-982. [all data]

Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the benzoyl halides, J. Chem. Soc., 1950, 656-659. [all data]

Davies, Dunning, et al., 1972
Davies, J.V.; Dunning, B.K.; Pritchard, H.O., The enthalpy of formation of benzoyl chloride, J. Chem. Thermodyn., 1972, 4, 731-737. [all data]

Noren and Sunner, 1970
Noren, I.; Sunner, S., The enthalpy of formation of 2-chloropropane from equilibrium studies, J. Chem. Thermodyn., 1970, 2, 597-602. [all data]

Kabo and Andreevskii, 1963
Kabo, G.Ya.; Andreevskii, D.N., Equilibrium of 2-chloropropane dehydrochlorination, Neftekhimiya, 1963, 3, 764-770. [all data]

Howlett, 1951
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part I. Equilibria in the system tert.-butyl chloride, isobutene, hydrogen chloride, J. Chem. Soc., 1951, 1409-1412. [all data]

Kistiakowsky and Stauffer, 1937
Kistiakowsky, G.B.; Stauffer, C.H., The kinetics of gaseous addition of halogen acids to isobutene, 1937, 165-170. [all data]

Arnett and Pienta, 1980
Arnett, E.M.; Pienta, N.J., Stabilities of carbonium ions in solution. 12. Heats of formation of alkyl chlorides as an entree to heats of solvation of aliphatic carbonium ions, J. Am. Chem. Soc., 1980, 102, 3329-3334. [all data]

Nesterova, Kovzel, et al., 1977
Nesterova, T.N.; Kovzel, E.N.; Karaseva, S.Ya.; Rozhnov, A.M., Heats of reaction of the hydrohalogenation of styrene and α-methylstyrene, Vses. Konf. Kalorim. Rasshir. Tezisy Dokl. 7th, 1977, 1, 132. [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Levanova, Rodova, et al., 1983
Levanova, S.V.; Rodova, R.M.; Tereshkina, T.P.; Zabrodina, T.I., Thermocatalytic reactions of bromochloropropanes, Russ. J. Phys. Chem. (Engl. Transl.), 1983, 57, 1142-1146. [all data]

Shevtsova, Rozhnov, et al., 1970
Shevtsova, L.A.; Rozhnov, A.M.; Andreevskii, D.N., Equilibrium Dehydrochlorination of 2,2-dichloropropane, Russ. J. Phys. Chem. (Engl. Transl.), 1970, 44, 852-855. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Levanova, Rozhnov, et al., 1972
Levanova, S.V.; Rozhnov, A.M.; Bortnik, O.K., Isomerization of dibromoethylenes, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1972, 15, 1821-1823. [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Levanova, Rodova, et al., 1974
Levanova, S.V.; Rodova, R.M.; Rozhnov, A.M.; Shevtsova, L.A., Thermodynamic calculation of the equilibrium composition of chlorobutene mixtures, Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1113-1114. [all data]

Rodova, Levanova, et al., 1973
Rodova, R.M.; Levanova, S.V.; Shevtsova, L.A.; Rozhnov, A.M.; Porfir'eva, E.I., Reversible reactions of 2,3-dichlorobutane, Russ. J. Phys. Chem. (Engl. Transl.), 1973, 47, 607. [all data]

Failes and Stimson, 1967
Failes, R.L.; Stimson, V.R., The thermal decomposition of 1-ethoxyethyl chloride and the reverse combination, Aust. J. Chem., 1967, 20, 1553-1560. [all data]

Levanova, Bushneva, et al., 1976
Levanova, S.V.; Bushneva, L.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A., Liquid-phase dehydrochlorination of asymmetric tetrachloroethane, Zh. Fiz. Khim., 1976, 50, 2701-2702. [all data]

Shaulov and Shmyreva, 1968
Shaulov, Yu.Kh.; Shmyreva, G.O., Russ. J. Phys. Chem., 1968, 42, 1008. [all data]

Meged, Levanova, et al., 1980
Meged, V.M.; Levanova, S.V.; Rozhnov, A.M., Dehydrohalogenation of dihalomethylbutanes. 2., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1980, 23, 149-151. [all data]

Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B., Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria, J. Am. Chem. Soc., 1985, 107, 766. [all data]

Rodova, Shevtsova, et al., 1974
Rodova, R.M.; Shevtsova, L.A.; Levanova, S.V.; Rozhnov, A.M.; Garkushin, I.K., Dehydrochlorination of 1,1-dichlorobutane and isomerization of chlorobutenes, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1974, 17, 379-381. [all data]

Perry, Rowe, et al., 1980
Perry, R.A.; Rowe, B.R.; Viggiano, A.A.; Albritton, D.L.; Ferguson, E.E.; Fehsenfeld, F.C., Laboratory Measurements of Stratospheric Sodium Ion Measurements, Geophys. Res. Lett., 1980, 7, 9, 693, https://doi.org/10.1029/GL007i009p00693 . [all data]

Dias, Salema, et al., 1982
Dias, A.R.; Salema, M.S.; Martinho Simões, J.A., Organometallics, 1982, 1, 971. [all data]

Calhorda, Dias, et al., 1987
Calhorda, M.J.; Dias, A.R.; Minas da Piedade M.E.; Salema, M.S.; Martinho Simões J.A., Organometallics, 1987, 6, 734. [all data]

Hayes and Brown, 1972
Hayes, W.; Brown, F.C., Absorption by some molecular gases in the extreme ultraviolet, Phys. Rev. A: Gen. Phys., 1972, 6, 21. [all data]

Schwarz, 1975
Schwarz, W.H.E., Interpretation of the core electron excitation spectra of hydride molecules and the properties of hydride radicals, Chem. Phys., 1975, 11, 217. [all data]

Terwilliger and Smith, 1973
Terwilliger, D.T.; Smith, A.L., Analysis of autoionizing Rydberg states in the vacuum ultraviolet absorption spectrum of HCl and DCl, J. Mol. Spectrosc., 1973, 45, 366. [all data]

Douglas and Greening, 1979
Douglas; Greening, Unpublished cited in Huber and Herzberg, 1979, 1979, 287. [all data]

Tilford, Ginter, et al., 1970
Tilford, S.G.; Ginter, M.L.; Vanderslice, J.T., Electronic spectra and structure of the hydrogen halides. The b3Πi and C1Π states of HCl and DCl, J. Mol. Spectrosc., 1970, 33, 505. [all data]

Jacques, 1959
Jacques, D. Phil. Thesis, Oxford, 1959, 1. [all data]

Jacques and Barrow, 1959
Jacques, J.K.; Barrow, R.F., The transition v1Σ+-x1Σ+ in hydrogen chloride, Proc. Phys. Soc. London, 1959, 73, 538. [all data]

Price, 1938
Price, W.C., The absorption spectra of the halogen acids in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1938, A167, 216. [all data]

Datta and Banerjee, 1941
Datta, S.; Banerjee, S., The continuous absorption spectra of the hydrogen-halides. Part II. HCl, Proc. Natl. Inst. Sci. India, 1941, 7, 305. [all data]

Romand, 1949
Romand, J., Absorption ultraviolette dans la region de Schumann etude de: ClH, BrH et lH gazeux, Ann. Phys. (Paris), 1949, 4, 527. [all data]

Rank, Eastman, et al., 1962
Rank, D.H.; Eastman, D.P.; Rao, B.S.; Wiggins, T.A., Rotational and vibrational constants of the HCl35 and DCl35 molecules, J. Opt. Soc. Am., 1962, 52, 1. [all data]

Rank, Rao, et al., 1965
Rank, D.H.; Rao, B.S.; Wiggins, T.A., Molecular constants of HCl35, J. Mol. Spectrosc., 1965, 17, 122. [all data]

Hansler and Oetjen, 1953
Hansler, R.L.; Oetjen, R.A., The infrared spectra of HCl, DCl, HBr, and NH3 in the region from 40 to 140 microns, J. Chem. Phys., 1953, 21, 1340. [all data]

Jones and Gordy, 1964
Jones, G.; Gordy, W., Extension of submillimeter wave spectroscopy below a half-millimeter wavelength, Phys. Rev., 1964, 135, 295. [all data]

Rosenberg, Lightman, et al., 1972
Rosenberg, A.; Lightman, A.; Ben-Reuven, A., Interferometric measurements of the pure rotational spectra of HCl and DCl, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 219. [all data]

Kaiser, 1970
Kaiser, E.W., Dipole moment and hyperfine parameters of H35Cl and D35Cl, J. Chem. Phys., 1970, 53, 1686. [all data]

de Leeuw and Dymanus, 1973
de Leeuw, F.H.; Dymanus, A., Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy, J. Mol. Spectrosc., 1973, 48, 427. [all data]

Code, Khosla, et al., 1968
Code, R.F.; Khosla, A.; Ozier, I.; Ramsey, N.F.; Yi, P.N., Nuclear magnetic hyperfine spectra of H35Cl and H37Cl, J. Chem. Phys., 1968, 49, 1895. [all data]

Boursey, 1975
Boursey, E., Electronic excitation of HCl trapped in inert matrices, J. Chem. Phys., 1975, 62, 3353. [all data]

Tilford and Ginter, 1971
Tilford, S.G.; Ginter, M.L., Electronic spectra and structure of the hydrogen halides: states associated with the (σ2π3) cπ and (σ2π3) cσ configurations of HCl and DCl, J. Mol. Spectrosc., 1971, 40, 568. [all data]

Bunker, 1972
Bunker, P.R., On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule, J. Mol. Spectrosc., 1972, 5, 478. [all data]

Rank, Birtley, et al., 1960
Rank, D.H.; Birtley, W.B.; Eastman, D.P.; Rao, B.S.; Wiggins, T.A., Precise measurements of some infrared bands of hydrogen chloride, J. Opt. Soc. Am., 1960, 50, 1275. [all data]

Mould, Price, et al., 1960
Mould, H.M.; Price, W.C.; Wilkinson, G.R., Infra-red emission from gases excited by a radio-frequency discharge, Spectrochim. Acta, 1960, 16, 479. [all data]

Ogilvie and Koo, 1976
Ogilvie, J.F.; Koo, D., Dunham potential energy coefficients of the hydrogen halides and carbon monoxide, J. Mol. Spectrosc., 1976, 61, 332-336. [all data]

Meyer and Rosmus, 1975
Meyer, W.; Rosmus, P., PNO-Cl and CEPA studies of electron correlation effects. III. Spectroscopic constants and dipole moment functions for the ground states of the first-row and second-row diatomic hydrides, J. Chem. Phys., 1975, 63, 2356. [all data]

Cade, Bader, et al., 1969
Cade, P.E.; Bader, R.F.W.; Henneker, W.H.; Keaveny, I., Molecular charge distributions and chemical binding. IV. The second-row diatomic hydrides AH, J. Chem. Phys., 1969, 50, 5313. [all data]

Plyler and Tidwell, 1960
Plyler, E.K.; Tidwell, E.D., The rotational constants of hydrogen chloride, Z. Elektrochem., 1960, 64, 717. [all data]

Levy, Rossi, et al., 1965
Levy, A.; Rossi, I.; Joffrin, C.; Van Thanh, N., Spectre de vibration-rotation de l'acide chlorhydrique gazeux. Etude de la bande v0→2 a 1,7 micron, J. Chim. Phys. Phys.-Chim. Biol., 1965, 62, 600. [all data]

Levy, Rossi, et al., 1966
Levy, A.; Rossi, I.; Haeusler, C., Constantes de vibration-rotation de l'acide chlorhydrique gazeux etude des bandes vo→2 et vo→3, J. Phys. (Paris), 1966, 27, 526. [all data]

Webb and Rao, 1968
Webb, D.U.; Rao, K.N., Vibration rotation bands of heated hydrogen halides, J. Mol. Spectrosc., 1968, 28, 121. [all data]

Herman and Asgharian, 1966
Herman, R.M.; Asgharian, A., Finite nuclear mass effects on the centrifugal stretching constant in H35Cl, J. Chem. Phys., 1966, 45, 2433. [all data]

Watson, 1973
Watson, J.K.G., The isotope dependence of the equilibrium rotational constants in 1Σ states of diatomic molecules, J. Mol. Spectrosc., 1973, 45, 99. [all data]

Chamberlain and Gebbie, 1965
Chamberlain, J.E.; Gebbie, H.A., Sub-millimetre dispersion and rotational line strengths of the hydrogen halides, Nature (London), 1965, 208, 480. [all data]

Sanderson, 1967
Sanderson, R.B., Measurement of rotational line strengths in HCl by asymmetric Fourier transform techniques, Appl. Opt., 1967, 6, 1527. [all data]

Rank, Eastman, et al., 1960
Rank, D.H.; Eastman, D.P.; Birtley, W.B.; Wiggins, T.A., Perturbation of molecular rotation-vibration energy levels by rare gases, J. Chem. Phys., 1960, 33, 323. [all data]

Ben-Reuven, Kimel, et al., 1961
Ben-Reuven, A.; Kimel, S.; Hirshfeld, M.A.; Jaffe, J.H., Theory and measurement of pressure-induced shifts of HCl lines due to noble gases, J. Chem. Phys., 1961, 35, 955. [all data]

Gebbie and Stone, 1963
Gebbie, H.A.; Stone, N.W.B., Measurement of widths and shifts of pure rotation lines of hydrogen chloride perturbed by rare gases, Proc. Phys. Soc. London, 1963, 82, 309. [all data]

Jaffe, Friedmann, et al., 1963
Jaffe, J.H.; Friedmann, H.; Hirshfeld, M.A.; Ben-Reuven, A., Pressure-induced shifts of molecular lines in emission and in absorption, J. Chem. Phys., 1963, 39, 1447. [all data]

Jaffe, Hirshfeld, et al., 1964
Jaffe, J.H.; Hirshfeld, M.A.; Ben-Reuven, A., Pressure-induced shifts of DCl lines due to HCl: shift oscillation, J. Chem. Phys., 1964, 40, 1705. [all data]

Atwood, Vu, et al., 1967
Atwood, M.R.; Vu, H.; Vodar, B., Forme et structures fines de la bande induite par la pression dans la bande fondamentale de vibration-rotation des molecules HF, HCl et HBr, Spectrochim. Acta, 1967, 23, 553. [all data]

Weiss and Cole, 1967
Weiss, S.; Cole, R.H., Pressure-induced rotational quadrupole spectra of HCl and HBr, J. Chem. Phys., 1967, 46, 644. [all data]

Benedict, Herman, et al., 1956
Benedict, W.S.; Herman, R.; Moore, G.E.; Silverman, S., The strengths, widths, and shapes of infrared lines. II. The HCl fundamental, Can. J. Phys., 1956, 34, 850. [all data]

Babrov, Ameer, et al., 1959
Babrov, H.; Ameer, G.; Benesch, W., Line strengths and widths in the HCl fundamental band, J. Mol. Spectrosc., 1959, 3, 185. [all data]

Goldring and Benesch, 1962
Goldring, H.; Benesch, W., Widths of HCl overtone lines at various temperatures, Can. J. Phys., 1962, 40, 1801. [all data]

Jaffe, Kimel, et al., 1962
Jaffe, J.H.; Kimel, S.; Hirshfeld, M.A., Refraction spectrum of gases in the infrared intensities and widths of lines in the 2-0 band of HCl, Can. J. Phys., 1962, 40, 113. [all data]

Plyler and Thibault, 1962
Plyler, E.K.; Thibault, R.J., Foreign gas broadening of the lines of hydrogen chloride and carbon monoxide, J. Res. Nat. Bur. Stand. Sect. A, 1962, 66, 435. [all data]

Alamichel and Legay, 1966
Alamichel, C.; Legay, F., Etude de la dispersion dans le doublet isotopique R2 de la premiere bande harmonique de vibration-rotation de HCl, J. Phys. (Paris), 1966, 27, 233. [all data]

Levy, Mariel-Piollet, et al., 1970
Levy, A.; Mariel-Piollet, E.; Bouanich, J.-P.; Haeusler, C., Spectre de vibration-rotation du gaz chlorhydrique comprime. Intensites et largeurs de raies dans la bande v0-2, J. Quant. Spectrosc. Radiat. Transfer, 1970, 10, 203. [all data]

Toth, Hunt, et al., 1970
Toth, R.A.; Hunt, R.H.; Plyler, E.K., Line strengths, line widths, and dipole moment function for HCl, J. Mol. Spectrosc., 1970, 35, 110. [all data]

Rich and Welsh, 1971
Rich, N.H.; Welsh, H.L., Measurement of the pressure broadening of the rotational Raman lines of HCl, Chem. Phys. Lett., 1971, 11, 292. [all data]

Katz and Ron, 1970
Katz, B.; Ron, A., Far infrared spectra of HCl and DCl in a nitrogen matrix, Chem. Phys. Lett., 1970, 7, 357. [all data]

Khatibi and Vu, 1972
Khatibi, P.; Vu, H., Spectres d'absorption infrarouge de HCl et de HBr en phases denses. I. Spectres dans le fondamental de vibration-rotation, J. Chim. Phys. Phys.-Chim. Biol., 1972, 69, 654. [all data]

Smith, 1973
Smith, F.G., Dipole moment function and vibration-rotation matrix elements of HCl35 and DCl35, J. Quant. Spectrosc. Radiat. Transfer, 1973, 13, 717. [all data]

Bunker, 1973
Bunker, P.R., The breakdown of the Born-Oppenheimer approximation for a diatomic molecule: the dipole moment and nuclear quadrupole coupling constants, J. Mol. Spectrosc., 1973, 45, 151. [all data]

Kaiser, 1974
Kaiser, E.W., Note: Comment to "Dipole moment function and vibration-rotation matrix elements of HCl35 and DCl35", J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 317. [all data]

Tokuhiro, 1967
Tokuhiro, T., Vibrational and rotational effects on the nuclear quadrupole coupling constants in hydrogen, deuterium, and tritium halides, J. Chem. Phys., 1967, 47, 109. [all data]

Leavitt, Baker, et al., 1961
Leavitt, J.A.; Baker, M.R.; Nelson, H.M.; Ramsey, N.F., Proton radio-frequency spectrum of HCl35, Phys. Rev., 1961, 124, 1482. [all data]

Frost, McDowell, et al., 1967
Frost, D.C.; McDowell, C.A.; Vroom, D.A., Photoelectron spectra of the halogens and the hydrogen halides, J. Chem. Phys., 1967, 46, 4255. [all data]

Lempka, Passmore, et al., 1968
Lempka, H.J.; Passmore, T.R.; Price, W.C., The photoelectron spectra and ionized states of the halogen acids, Proc. Roy. Soc. (London), 1968, A304, 53. [all data]

Weiss, Lawrence, et al., 1970
Weiss, M.J.; Lawrence, G.M.; Young, R.A., Photoelectron spectroscopy of HCI and DCI using molecular beams, J. Chem. Phys., 1970, 52, 2867. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Constants of diatomic molecules, References