Titanium dioxide (anatase)
- Formula: O2Ti
- Molecular weight: 79.866
- IUPAC Standard InChIKey: GWEVSGVZZGPLCZ-UHFFFAOYSA-N
- CAS Registry Number: 13463-67-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Titanium dioxide (rutile); titanium dioxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -305.43 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1973 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 260.14 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1973 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 4000. to 6000. |
---|---|
A | 63.82818 |
B | -4.418178 |
C | 1.080707 |
D | -0.058816 |
E | -5.216235 |
F | -336.0739 |
G | 323.0094 |
H | -305.4324 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1973 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -894.05 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1973 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 72.32 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1973 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 2130. to 4000. |
---|---|
A | 100.4160 |
B | 5.991573×10-8 |
C | -1.796728×10-8 |
D | 1.839876×10-9 |
E | 3.592186×10-8 |
F | -955.6758 |
G | 145.6358 |
H | -894.0539 |
Reference | Chase, 1998 |
Comment | Data last reviewed in December, 1973 |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.5 ± 0.5 | EI | Balducci, Gigli, et al., 1985 | LBLHLM |
9. ± 0.5 | EI | Balducci, Gigli, et al., 1985, 2 | LBLHLM |
10.4 ± 1.0 | EI | Banon, Chatillon, et al., 1982 | LBLHLM |
9.5 ± 0.1 | EI | Hildenbrand, 1976 | LLK |
10.2 ± 0.2 | EI | Rauh and Ackermann, 1974 | LLK |
11.56 ± 0.14 | EI | Wu and Wahlbeck, 1972 | LLK |
8.5 ± 0.5 | EI | Balducci, De Maria, et al., 1972 | LLK |
9. ± 0.2 | EI | Mesnard, Uzan, et al., 1966 | RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
OTi+ | 13.7 ± 0.5 | O | EI | Banon, Chatillon, et al., 1982 | LBLHLM |
TiO+ | 8. ± 0.5 | O | EI | Mesnard, Uzan, et al., 1966 | RDSH |
Ti+ | 14.6 ± 0.5 | O2 | EI | Banon, Chatillon, et al., 1982 | LBLHLM |
Ti+ | 20. ± 0.2 | ? | EI | Mesnard, Uzan, et al., 1966 | RDSH |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Marilyn E. Jacox
State: A
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 17593 ± 5 | gas | A-X | 530 | 571 | Wu and Wang, 1997 | ||
Wang, Steimle, et al., 2009 | |||||||
Zhuang, Le, et al., 2010 | |||||||
To = 19084 ± 5 | Ne | A-X | 405 | 524 | McIntyre, Thompson, et al., 1971 | ||
Garkusha, Nagy, et al., 2008 | |||||||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a1 | 1 | Sym. stretch | 874 ± 5 | gas | MPI | Zhuang, Le, et al., 2010 | |
1 | Sym. stretch | 850 | T | Ne | AB | Garkusha, Nagy, et al., 2008 | |
2 | Bend | 185 ± 5 | gas | MPI | Zhuang, Le, et al., 2010 | ||
2 | Bend | 180 | T | Ne | AB | Garkusha, Nagy, et al., 2008 | |
b2 | 3 | Asym. stretch | 324 | H | gas | MPI | Zhuang, Le, et al., 2010 |
State: a
Energy (cm-1) |
Med. | Transition | λmin (nm) |
λmax (nm) |
References | ||
---|---|---|---|---|---|---|---|
To = 15800 ± 800 | gas | Wu and Wang, 1997 | |||||
To = 15924 ± 5 | Ne | a-X | 509 | 628 | Garkusha, Nagy, et al., 2008 | ||
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
Σg+ | 1 | Sym. stretch | 826 ± 5 | Ne | AB | Garkusha, Nagy, et al., 2008 | |
State: X
Vib. sym. |
No. | Approximate type of mode |
cm-1 | Med. | Method | References | |
---|---|---|---|---|---|---|---|
a1 | 1 | Sym. stretch | 959 | gas | IR LF | DeVore and Gallaher, 1983 Wu and Wang, 1997 Zhuang, Le, et al., 2010 | |
1 | Sym. stretch | 962.0 | Ne | IR | McIntyre, Thompson, et al., 1971 | ||
1 | Sym. stretch | 946.9 | Ar | IR | Chertihin and Andrews, 1995 | ||
2 | Bend | 323 | w | gas | LF | Wang, Steimle, et al., 2009 Zhuang, Le, et al., 2010 | |
b2 | 3 | Asym. stretch | 944 | gas | IR | DeVore and Gallaher, 1983 | |
3 | Asym. stretch | 934.8 | Ne | IR | McIntyre, Thompson, et al., 1971 Garkusha, Nagy, et al., 2008 | ||
3 | Asym. stretch | 917.1 | Ar | IR | Chertihin and Andrews, 1995 | ||
Additional references: Jacox, 1998, page 176; Jacox, 2003, page 103; Brunken, Mullere, et al., 2008; Kania, Hermanns, et al., 2011
Notes
w | Weak |
H | (1/2)(2ν) |
T | Tentative assignment or approximate value |
o | Energy separation between the v = 0 levels of the excited and electronic ground states. |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Balducci, Gigli, et al., 1985
Balducci, G.; Gigli, G.; Guido, M.,
Identification and stability determinations for the gaseous titanium oxide molecules Ti2O3 and Ti2O4,
J. Chem. Phys., 1985, 83, 1913. [all data]
Balducci, Gigli, et al., 1985, 2
Balducci, G.; Gigli, G.; Guido, M.,
Mass spectrometric study of the thermochemistry of gaseous EuTiO3 and TiO2,
J. Chem. Phys., 1985, 83, 1909. [all data]
Banon, Chatillon, et al., 1982
Banon, S.; Chatillon, C.; Allibert, M.,
High temperature mass spectrometric study of ionization and fragmentation of TiO and TiO2 gas under electron impact,
High Temp. Sci., 1982, 15, 17. [all data]
Hildenbrand, 1976
Hildenbrand, D.L.,
Mass spectrometric studies of the thermochemistry of gaseous TiO and TiO2,
Chem. Phys. Lett., 1976, 44, 281. [all data]
Rauh and Ackermann, 1974
Rauh, E.G.; Ackermann, R.J.,
First ionization potentials of some refractory oxide vapors,
J. Chem. Phys., 1974, 60, 1396. [all data]
Wu and Wahlbeck, 1972
Wu, H.Y.; Wahlbeck, P.G.,
Vapor pressures of TiO(g) in equilibrium with Ti2O3(s) Ti3O5(s, β); dissociation energy of TiO(g),
J. Chem. Phys., 1972, 56, 4534. [all data]
Balducci, De Maria, et al., 1972
Balducci, G.; De Maria, G.; Guido, M.; Piacente, V.,
Dissociation energy of TiO and TiO2 gaseous molecules,
J. Chem. Phys., 1972, 56, 3422. [all data]
Mesnard, Uzan, et al., 1966
Mesnard, G.; Uzan, R.; Cabaud, B.,
Etude au spectrometre de masse des produits d'evaporation du bioxyde de titane et du titanate de baryum,
Rev. Phys. Appl., 1966, 1, 123. [all data]
Wu and Wang, 1997
Wu, H.; Wang, L.-S.,
Electronic Structures of Titanium Oxide Clusters: TiOy (y=1-3) and (TiO2)n (n=1-4),
J. Phys. Chem., 1997, 107, 20, 8221, https://doi.org/10.1063/1.475026
. [all data]
Wang, Steimle, et al., 2009
Wang, H.; Steimle, T.C.; Apetrei, C.; Maier, J.P.,
Characterization of the X 1A1 and à 1B2 electronic states of titanium dioxide, TiO2,
Phys. Chem. Chem. Phys., 2009, 11, 15, 2649, https://doi.org/10.1039/b821849h
. [all data]
Zhuang, Le, et al., 2010
Zhuang, X.; Le, A.; Steimle, T.C.; Nagarajan, R.; Gupta, V.; Maier, J.P.,
Visible spectrum of titanium dioxide,
Phys. Chem. Chem. Phys., 2010, 12, 45, 15018, https://doi.org/10.1039/c0cp00861c
. [all data]
McIntyre, Thompson, et al., 1971
McIntyre, N.S.; Thompson, K.R.; Weltner, W., Jr.,
Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4.deg.K,
J. Phys. Chem., 1971, 75, 21, 3243, https://doi.org/10.1021/j100690a008
. [all data]
Garkusha, Nagy, et al., 2008
Garkusha, I.; Nagy, A.; Guennoun, Z.; Maier, J.P.,
Electronic absorption spectrum of titanium dioxide in neon matrices,
Chem. Phys., 2008, 353, 1-3, 115, https://doi.org/10.1016/j.chemphys.2008.08.003
. [all data]
DeVore and Gallaher, 1983
DeVore, T.C.; Gallaher, T.N.,
High Temp. Sci., 1983, 16, 269. [all data]
Chertihin and Andrews, 1995
Chertihin, G.V.; Andrews, L.,
Reactions of Laser Ablated Titanium, Zirconium, and Hafnium Atoms with Oxygen Molecules in Condensing Argon,
J. Phys. Chem., 1995, 99, 17, 6356, https://doi.org/10.1021/j100017a015
. [all data]
Jacox, 1998
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement A,
J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017
. [all data]
Jacox, 2003
Jacox, M.E.,
Vibrational and electronic energy levels of polyatomic transient molecules: supplement B,
J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629
. [all data]
Brunken, Mullere, et al., 2008
Brunken, S.; Mullere, H.S.P.; Menten, K.M.; McCarthy, M.C.; Thaddeus, P.,
The Rotational Spectrum of TiO,
Astrophys. J., 2008, 676, 2, 1367, https://doi.org/10.1086/528934
. [all data]
Kania, Hermanns, et al., 2011
Kania, P.; Hermanns, M.; Brunken, S.; Muller, H.S.P.; Giesen, T.F.,
Millimeter-wave spectroscopy of titanium dioxide, TiO2,
J. Mol. Spectrosc., 2011, 268, 1-2, 173, https://doi.org/10.1016/j.jms.2011.04.013
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
AE Appearance energy S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.