Phenanthrene
- Formula: C14H10
- Molecular weight: 178.2292
- IUPAC Standard InChIKey: YNPNZTXNASCQKK-UHFFFAOYSA-N
- CAS Registry Number: 85-01-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Phenanthren; Phenanthrin; Phenantrin
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 202.2 ± 2.3 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°gas | 201.2 ± 4.7 | kJ/mol | Ccb | Steele, Chirico, et al., 1990 | Δ Hfusion = 15.96±0.05 kJ/mol; ALS |
ΔfH°gas | 206.9 ± 4.6 | kJ/mol | Ccb | Coleman and Pilcher, 1966 | Author was aware that data differs from previously reported values; ALS |
ΔfH°gas | 203.8 | kJ/mol | N/A | Bender and Farber, 1952 | Value computed using ΔfHsolid° value of 113.0 kj/mol from Bender and Farber, 1952 and ΔsubH° value of 90.8 kj/mol from Bender and Farber, 1952.; DRB |
ΔfH°gas | 163.6 | kJ/mol | N/A | Richardson and Parks, 1939 | Value computed using ΔfHsolid° value of 72.8±2.6 kj/mol from Richardson and Parks, 1939 and ΔsubH° value of 90.8 kj/mol from Richardson and Parks, 1939.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
41.35 | 50. | Dorofeeva O.V., 1988 | These functions are also reproduced in the reference book [ Frenkel M., 1994]. Recommended values of S(T) and Cp(T) agree with those calculated by [ Kudchadker S.A., 1979] within 1.3 J/mol*K.; GT |
62.23 | 100. | ||
88.70 | 150. | ||
119.57 | 200. | ||
168.72 | 273.15 | ||
185.7 ± 1.0 | 298.15 | ||
186.91 | 300. | ||
250.42 | 400. | ||
303.40 | 500. | ||
345.75 | 600. | ||
379.61 | 700. | ||
407.06 | 800. | ||
429.65 | 900. | ||
448.46 | 1000. | ||
464.28 | 1100. | ||
477.68 | 1200. | ||
489.09 | 1300. | ||
498.87 | 1400. | ||
507.29 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 110.1 ± 2.2 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB |
ΔfH°solid | 109.8 ± 1.6 | kJ/mol | Ccb | Steele, Chirico, et al., 1990 | Δ Hfusion = 15.96±0.05 kJ/mol; ALS |
ΔfH°solid | 116.1 ± 1.4 | kJ/mol | Ccb | Coleman and Pilcher, 1966 | Author was aware that data differs from previously reported values; ALS |
ΔfH°solid | 113. | kJ/mol | Ccb | Bender and Farber, 1952 | ALS |
ΔfH°solid | 72.8 ± 2.6 | kJ/mol | Ccb | Richardson and Parks, 1939 | High level of uncertainty in the data; Reanalyzed by Cox and Pilcher, 1970, Original value = 70.88 kJ/mol; see Richardson, 1939; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -7040. ± 30. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 215.06 | J/mol*K | N/A | Finke, Messerly, et al., 1977 | DH |
S°solid,1 bar | 211.7 | J/mol*K | N/A | Huffman, Parks, et al., 1931 | Extrapolation below 90 K, 65.19 J/mol*K.; DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
220.3 | 298.15 | Steele, Chirico, et al., 1990 | DH |
220.62 | 298.15 | Finke, Messerly, et al., 1977 | T = 10 to 440 K.; DH |
267.4 | 343. | Rastogi and Bassi, 1964 | T = 343, 404 K.; DH |
134.7 | 298.15 | Ueberreiter and Orthmann, 1950 | T = 293 to 368 K. Equation only.; DH |
207.1 | 298.1 | Eibert, 1944 | T = 20 to 200°C, equations only, in t°C. Cp(c) = 0.2003 + 0.00306t cal/g*K (20 to 98°C); Cp(liq) = 0.292 + 0.000923t cal/g*K (98 to 200°C).; DH |
226.4 | 298.1 | Schmidt, 1941 | T = 20 to 200°C, equations only, in t°C. Cp(c) = 0.2440 + 0.002604t - 0.000011t2 cal/g*K (20 to 98°C); Cp(liq) = 0.3328 + 0.0006760t cal/g*K (98 to 200°C).; DH |
233.5 | 297.5 | Huffman, Parks, et al., 1931 | T = 93 to 304 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 609.2 | K | N/A | Aldrich Chemical Company Inc., 1990 | BS |
Tboil | 613.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 605.15 | K | N/A | Kirby, 1921 | Uncertainty assigned by TRC = 5. K; TRC |
Tboil | 601.15 | K | N/A | Kirby, 1921 | Uncertainty assigned by TRC = 3. K; TRC |
Tboil | 613.15 | K | N/A | Beilstein, 1919 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 372. ± 2. | K | AVG | N/A | Average of 32 out of 35 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 372.38 | K | N/A | Finke, Messerly, et al., 1977, 2 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; C3 - C2 and C2 - C1 are second order transitions; TRC |
Ttriple | 372.38 | K | N/A | Osborn and Douslin, 1975 | Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 869. ± 1. | K | N/A | Tsonopoulos and Ambrose, 1995 | |
Tc | 869.3 | K | N/A | Cheng, 1963 | Uncertainty assigned by TRC = 1. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 78.7 | kJ/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
ΔvapH° | 79.0 ± 1.2 | kJ/mol | GC | Haftka, Parsons, et al., 2006 | Based on data from 413. to 483. K.; AC |
ΔvapH° | 78.7 | kJ/mol | CGC | Chickos, Hesse, et al., 1998 | AC |
ΔvapH° | 78.5 | kJ/mol | CGC | Chickos, Hosseini, et al., 1995 | Based on data from 403. to 453. K.; AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 91. ± 3. | kJ/mol | AVG | N/A | Average of 12 values; Individual data points |
Reduced pressure boiling point
Tboil (K) | Pressure (bar) | Reference | Comment |
---|---|---|---|
485.7 | 0.016 | Weast and Grasselli, 1989 | BS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
87.240 | 350. | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
72.2 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
71.2 | 398. | GC | Hinckley, Bidleman, et al., 1990 | Based on data from 343. to 453. K.; AC |
58.2 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 613. K.; AC |
69.6 | 388. | A | Stephenson and Malanowski, 1987 | Based on data from 373. to 423. K. See also Osborn and Douslin, 1975, 2.; AC |
71.2 | 372. | N/A | Finke, Messerly, et al., 1977 | AC |
69.7 | 390. | N/A | Finke, Messerly, et al., 1977 | AC |
67.5 | 420. | N/A | Finke, Messerly, et al., 1977 | AC |
57.2 | 548. | I | Mortimer and Murphy, 1923 | Based on data from 476. to 620. K.; AC |
61.2 | 491. | I | Mortimer and Murphy, 1923 | Based on data from 476. to 620. K. See also Boublik, Fried, et al., 1984.; AC |
59.3 | 560. | I | NELSON and SENSEMAN, 1922 | Based on data from 505. to 614. K.; AC |
61.2 | 520. | I | NELSON and SENSEMAN, 1922 | Based on data from 505. to 614. K. See also Boublik, Fried, et al., 1984.; AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
249.3 | 350. | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
373. to 423. | 4.51922 | 2428.448 | -70.96 | Osborn and Douslin, 1975, 2 | Coefficents calculated by NIST from author's data. |
476.8 to 619.9 | 4.6894 | 2673.32 | -40.7 | Mortimer and Murphy, 1923 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
90.900 | 298.15 | N/A | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
91.6 ± 0.4 | 323. | ME | Ribeiro da Silva, Monte, et al., 2006 | Based on data from 313. to 333. K.; AC |
95.0 ± 4.4 | 318. | ME | Oja and Suuberg, 1998 | Based on data from 303. to 333. K.; AC |
88.9 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
87.2 ± 1.1 | 350. | DSC | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | AC |
96.2 | 335. | GS | SATO, INOMATA, et al., 1986 | Based on data from 323. to 348. K.; AC |
82. ± 2. | 340. | TE | Ferro, Imperatori, et al., 1983 | Based on data from 317. to 362. K.; AC |
95.0 ± 0.6 | 303. | GS | Sonnefeld, Zoller, et al., 1983 | Based on data from 283. to 323. K.; AC |
87.2 | 345. | GS | Macknick and Prausnitz, 1979 | Based on data from 325. to 364. K.; AC |
87.2 | 372. | B | Osborn and Douslin, 1975, 2 | AC |
84.1 ± 2.5 | 297. | TE | Budurov, 1960 | Based on data from 279. to 315. K.; AC |
95.9 | 303. | N/A | Hoyer and Peperle, 1958 | Based on data from 273. to 333. K. See also Cox and Pilcher, 1970, 2.; AC |
95.8 ± 2.9 | 213. | V | Hoyer and Peperle, 1958, 2 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 92.9 kJ/mol; ALS |
86.6 | 310. to 323. | N/A | Bradley and Cleasby, 1953 | See also Cox and Pilcher, 1970, 2.; AC |
86.609 | 309.7 | V | Bradley and Cleasby, 1953, 2 | ALS |
90.7 ± 1.2 | 315. | ME | Inokuchi, Shiba, et al., 1952 | AC |
81.6 | 323. | ME | Inokuchi, 1951 | AC |
84.1 | 293. | V | Magnus, Hartmann, et al., 1951 | ALS |
84.1 ± 0.8 | 313. | N/A | Wolf and Weghofer, 1938 | AC |
84.1 ± 0.8 | 323. | V | Wolf and Weghofer, 1938, 2 | ALS |
Entropy of sublimation
ΔsubS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
304.9 | 298.15 | Torres-Gomez, Barreiro-Rodriguez, et al., 1988 | DH |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
15.720 | 373.81 | N/A | Sabbah and El Watik, 1992 | DH |
18.627 | (373.) | N/A | Rai, Singh, et al., 1987 | DH |
18.000 | 373.2 | N/A | Rastogi and Bassi, 1964 | DH |
16.6 | 367.6 | DSC | Rojas and Orozco, 2003 | Based on data from 353. to 383. K.; AC |
16.2 | 372.9 | DSC | Lisicki and Jamróz, 2000 | AC |
16.46 | 372.4 | N/A | Domalski and Hearing, 1996 | AC |
17.150 | 371.4 | N/A | Eibert, 1944 | DH |
17.138 | 371.7 | N/A | Schmidt, 1941 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
49.9 | (373.) | Rai, Singh, et al., 1987 | DH |
48.2 | 373.2 | Rastogi and Bassi, 1964 | DH |
46.2 | 371.4 | Eibert, 1944 | DH |
46.1 | 371.7 | Schmidt, 1941 | DH |
Temperature of phase transition
Ttrs (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|
~270. | crystaline, III | crystaline, II | Finke, Messerly, et al., 1977 | Second-order glass-type transition.; DH |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
1.000 | 332.2 | crystaline, II | crystaline, I | Petropavlov, Tsygankova, et al., 1988 | DH |
0.218 | 347.5 | crystaline, II | crystaline, I | Finke, Messerly, et al., 1977 | Lambda transition.; DH |
16.4628 | 372.38 | crystaline, I | liquid | Finke, Messerly, et al., 1977 | DH |
2.600 | 342. | crystaline, II | crystaline, I | Ueberreiter and Orthmann, 1950 | DH |
18.620 | 373. | crystaline, I | liquid | Ueberreiter and Orthmann, 1950 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
3.0 | 332.2 | crystaline, II | crystaline, I | Petropavlov, Tsygankova, et al., 1988 | DH |
0.63 | 347.5 | crystaline, II | crystaline, I | Finke, Messerly, et al., 1977 | Lambda; DH |
44.21 | 372.38 | crystaline, I | liquid | Finke, Messerly, et al., 1977 | DH |
7.6 | 342. | crystaline, II | crystaline, I | Ueberreiter and Orthmann, 1950 | DH |
49.9 | 373. | crystaline, I | liquid | Ueberreiter and Orthmann, 1950 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C14H10+ + C14H10 = (C14H10+ • C14H10)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.5 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
37. | 320. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: C14H11+ + C14H10 = (C14H11+ • C14H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.7 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 320. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: 7H2 + C14H10 = C14H24
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -565. | kJ/mol | Eqk | Frye, 1962 | gas phase; ALS |
By formula: 2H2 + C14H10 = C14H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -130. | kJ/mol | Eqk | Frye, 1962 | gas phase; ALS |
By formula: 4H2 + C14H10 = C14H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -250. | kJ/mol | Eqk | Frye, 1962 | gas phase; ALS |
By formula: H2 + C14H10 = C14H12
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -50. | kJ/mol | Eqk | Frye, 1962 | gas phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C14H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.891 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 825.7 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 795.0 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
-0.01 ± 0.040 | LPES | Tschurl, Boesl, et al., 2006 | Extrapolated from EAs of (H2O)n..phenanthrene-.; B |
<0.269 ± 0.035 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.05 eV, unbound anion; B |
0.3070 ± 0.0070 | ECD | Becker and Chen, 1966 | B |
0.2 | ECD | Wentworth and Becker, 1962 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
820.1 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
793.7 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C6H4+ | 29. ± 1. | ? | EI | Nounou, 1968 | RDSH |
C9H7+ | 23.9 ± 0.2 | ? | EI | Nounou, 1968 | RDSH |
C10H6+ | 20.8 ± 0.3 | 2C2H2 | EI | Nounou, 1968 | RDSH |
C10H6+ | 20.9 ± 0.3 | 2C2H2 | EI | Natalis and Franklin, 1965 | RDSH |
C11H7+ | 21.1 ± 0.2 | ? | EI | Nounou, 1968 | RDSH |
C11H7+ | 21.1 ± 0.3 | ? | EI | Natalis and Franklin, 1965 | RDSH |
C12H7+ | 18.8 ± 0.1 | ? | EI | Nounou, 1968 | RDSH |
C12H7+ | 19.63 ± 0.05 | ? | EI | Natalis and Franklin, 1965 | RDSH |
C12H8+ | 11.23 | C2H2 | EVAL | Gotkis, Oleinikova, et al., 1993 | T = 0K; LL |
C12H8+ | 14.46 | C2H2 | TRPI | Gotkis, Oleinikova, et al., 1993 | LL |
C12H8+ | 15.7 ± 0.2 | ? | EI | Nounou, 1968 | RDSH |
C12H8+ | 16.63 ± 0.05 | ? | EI | Natalis and Franklin, 1965 | RDSH |
C13H7+ | 20.0 ± 0.3 | ? | EI | Nounou, 1968 | RDSH |
C14H7+ | 18.2 ± 0.2 | H2+H | EI | Nounou, 1968 | RDSH |
C14H8+ | 16.2 ± 0.2 | H2 | EI | Nounou, 1968 | RDSH |
C14H8+ | 18.6 ± 0.1 | H2 | EI | Natalis and Franklin, 1965 | RDSH |
C14H9+ | 11.99 | H | EVAL | Gotkis, Oleinikova, et al., 1993 | T = 0K; LL |
C14H9+ | 14.88 | H | TRPI | Gotkis, Oleinikova, et al., 1993 | LL |
C14H9+ | 15.5 ± 0.1 | H | EI | Nounou, 1968 | RDSH |
C14H9+ | 16.3 ± 0.1 | H | EI | Natalis and Franklin, 1965 | RDSH |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: C14H10+ + C14H10 = (C14H10+ • C14H10)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.5 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
37. | 320. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
By formula: C14H11+ + C14H10 = (C14H11+ • C14H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 65.7 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
28. | 320. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compiled by: Coblentz Society, Inc.
- SOLID (1% IN KI); Not specified, most likely a prism, grating, or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLID (OIL MULL); Not specified, most likely a prism, grating, or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 4000-1340, 10% IN CS2 FOR 1340-430, AND 10% IN CCl4 FOR 440-200 CM-1); BECKMAN IR-12 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 2 cm-1 resolution
- SOLUTION (SATURATED IN HEPTANE); Not specified, most likely a prism, grating, or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY
4, 4 cm-1 resolution - SOLUTION 4.5% (CS2 FOR 2-15 microns, AND C2Cl4 FOR 6.2-7.3 microns); PERKIN-ELMER 21 (GRATING); DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY; 2 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Steele, Chirico, et al., 1990
Steele, W.V.; Chirico, R.D.; Nguyen, A.; Hossenlopp, I.A.; Smith, N.K.,
Determination of ideal-gas enthalpies of formation for key compounds,
Am. Inst. Chem. Eng. Symp. Ser. (AIChE Symp. Ser.), 1990, 138-154. [all data]
Coleman and Pilcher, 1966
Coleman, D.J.; Pilcher, G.,
Heats of combustion of biphenyl, bibenzyl, naphthalene, anthracene, and phenanthrene,
Trans. Faraday Soc., 1966, 62, 821-827. [all data]
Bender and Farber, 1952
Bender, P.; Farber, J.,
The heats of combustion of anthracene transannular peroxide and dianthracene,
J. Am. Chem. Soc., 1952, 74, 1450-1452. [all data]
Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S.,
Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen,
J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Kudchadker S.A., 1979
Kudchadker S.A.,
Chemical thermodynamic properties of anthracene and phenathrene,
J. Chem. Thermodyn., 1979, 11, 1051-1059. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Richardson, 1939
Richardson, J.W.,
Precise determination of the heats of combustion of some representative organic compounds, Ph.D. Thesis for Standford University, 1939, 1-122. [all data]
Finke, Messerly, et al., 1977
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R.,
Comprehensive thermodynamic studies of seven aromatic hydrocarbons,
J. Chem. Thermodyn., 1977, 9, 937-956. [all data]
Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M.,
Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons,
J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]
Rastogi and Bassi, 1964
Rastogi, R.P.; Bassi, P.S.,
Mechanism of eutectic crystallization,
J. Phys. Chem., 1964, 68, 2398-2406. [all data]
Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J.,
Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme,
Z. Natursforsch. 5a, 1950, 101-108. [all data]
Eibert, 1944
Eibert, J.,
Thesis Washington University (St. Louis), 1944. [all data]
Schmidt, 1941
Schmidt, W.R.,
Thesis Washington University (St. Louis), 1941. [all data]
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Kirby, 1921
Kirby, W.,
Determination of the Melting and Boiling Points of Anthracene, Phenanthrene and Carbazole,
J. Soc. Chem. Ind., London, Trans. Commun., 1921, 40, 274T. [all data]
Beilstein, 1919
Beilstein,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1919, 93, 641. [all data]
Finke, Messerly, et al., 1977, 2
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R.,
Comprehensive thermodynamic studies of seven aromatic hydrocarbons,
J. Chem. Thermodyn., 1977, 9, 937. [all data]
Osborn and Douslin, 1975
Osborn, A.G.; Douslin, D.R.,
Vapor Pressure and Derived Enthalpies of Vaporization for Some Condensed Ring Hydrocarbons,
J. Chem. Eng. Data, 1975, 20, 229-31. [all data]
Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D.,
Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons,
J. Chem. Eng. Data, 1995, 40, 547-558. [all data]
Cheng, 1963
Cheng, D.C.H.,
Critical temperatures and volumes of some binary systems,
Chem. Eng. Sci., 1963, 18, 715. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J.,
Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography,
Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050
. [all data]
Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul,
Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements,
Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2
. [all data]
Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.,
Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times,
Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3
. [all data]
Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A.,
A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry,
Thermochim. Acta, 1988, 124, 229-233. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Hinckley, Bidleman, et al., 1990
Hinckley, Daniel A.; Bidleman, Terry F.; Foreman, William T.; Tuschall, Jack R.,
Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatograhic retention data,
J. Chem. Eng. Data, 1990, 35, 3, 232-237, https://doi.org/10.1021/je00061a003
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Osborn and Douslin, 1975, 2
Osborn, Ann G.; Douslin, Donald R.,
Vapor pressures and derived enthalpies of vaporization for some condensed-ring hydrocarbons,
J. Chem. Eng. Data, 1975, 20, 3, 229-231, https://doi.org/10.1021/je60066a022
. [all data]
Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v.,
The Vapor Pressures of Some Substances Found in Coal Tar.,
Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
NELSON and SENSEMAN, 1922
NELSON, O.A.; SENSEMAN, C.E.,
Vapor Pressure Determinations on Naphthalene, Anthracene, Phecanthrene, and Anthraquinone between Their Melting and Boiling Points,
J. Ind. Eng. Chem., 1922, 14, 1, 58-62, https://doi.org/10.1021/ie50145a028
. [all data]
Ribeiro da Silva, Monte, et al., 2006
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Santos, Luís M.N.B.F.,
The design, construction, and testing of a new Knudsen effusion apparatus,
The Journal of Chemical Thermodynamics, 2006, 38, 6, 778-787, https://doi.org/10.1016/j.jct.2005.08.013
. [all data]
Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M.,
Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives,
J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO,
Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method.,
J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145
. [all data]
Ferro, Imperatori, et al., 1983
Ferro, Daniela; Imperatori, Patrizia; Quagliata, Claudio,
Study of the stability of the phenanthrene- and 1,2-benzanthracene-choleic acids by vapor pressure measurements,
J. Chem. Eng. Data, 1983, 28, 2, 242-244, https://doi.org/10.1021/je00032a031
. [all data]
Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E.,
Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons,
Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022
. [all data]
Macknick and Prausnitz, 1979
Macknick, A. Brian; Prausnitz, John M.,
Vapor pressures of high-molecular-weight hydrocarbons,
J. Chem. Eng. Data, 1979, 24, 3, 175-178, https://doi.org/10.1021/je60082a012
. [all data]
Budurov, 1960
Budurov, S.,
Izv. Khim. Inst. Bulg. Akad. Nauk, 1960, 7, 281. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Hoyer and Peperle, 1958, 2
Hoyer, H.; Peperle, W.,
Dampfdrunkmessungen an organischen substanzen und ihre sublimationswarmen,
Z. Electrochem., 1958, 62, 61-66. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G.,
346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid,
J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681
. [all data]
Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G.,
The vapour pressure and lattice energy of some aromatic ring compounds,
J. Am. Chem. Soc., 1953, 1690-16. [all data]
Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo,
Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons,
Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299
. [all data]
Inokuchi, 1951
Inokuchi, H.,
J. Chem. Soc. Jpn. Pure Chem. Sect., 1951, 72, 552. [all data]
Magnus, Hartmann, et al., 1951
Magnus, A.; Hartmann, H.; Becker, F.,
Verbrennungswarmen und resonanzenergien von mehrkernigen aromatischen kohlenwasserstoffen,
Z. Phys. Chem., 1951, 197, 75-91. [all data]
Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z.,
Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]
Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H.,
Uber sublimationswarmen,
Z. Phys. Chem., 1938, 39, 194-208. [all data]
Sabbah and El Watik, 1992
Sabbah, R.; El Watik, L.,
New reference materials for the calibration (temperature and energy) of differential thermal analysers and scanning calorimeters,
J. Therm. Anal., 1992, 38(4), 855-863. [all data]
Rai, Singh, et al., 1987
Rai, U.S.; Singh, O.P.; Singh, N.B.,
Some thermodynamic aspects of organic eutectics, succinonitrile-phenanthrene system,
Indian J. Chem., 1987, 26A, 947-949. [all data]
Rojas and Orozco, 2003
Rojas, Aarón; Orozco, Eulogio,
Measurement of the enthalpies of vaporization and sublimation of solids aromatic hydrocarbons by differential scanning calorimetry,
Thermochimica Acta, 2003, 405, 1, 93-107, https://doi.org/10.1016/S0040-6031(03)00139-4
. [all data]
Lisicki and Jamróz, 2000
Lisicki, Zygmunt; Jamróz, Malgorzata E.,
(Solid + liquid) equilibria in (polynuclear aromatic+ tertiary amide) systems,
The Journal of Chemical Thermodynamics, 2000, 32, 10, 1335-1353, https://doi.org/10.1006/jcht.2000.0685
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Petropavlov, Tsygankova, et al., 1988
Petropavlov, N.N.; Tsygankova, I.G.; Teslenko, L.A.,
Microcalorimetric investigation of polymorphic transitions in organic crystals,
Sov. Phys. Crystallogr., 1988, 33(6), 853-855. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Frye, 1962
Frye, C.G.,
Equilibria in the hydrogenation of polycyclic aromatics,
J. Chem. Eng. Data, 1962, 7, 592-595. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Tschurl, Boesl, et al., 2006
Tschurl, M.; Boesl, U.; Gilb, S.,
The electron affinity of phenanthrene,
J. Chem. Phys., 2006, 125, 19, 194310, https://doi.org/10.1063/1.2387175
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Thantu and Weber, 1993
Thantu, N.; Weber, P.M.,
Dependence of two-photon ionization photoelectron spectra on laser coherence band width,
Chem. Phys. Lett., 1993, 214, 276. [all data]
Gotkis, Oleinikova, et al., 1993
Gotkis, Y.; Oleinikova, M.; Naor, M.; Lifshitz, C.,
Time-independent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene,
J. Phys. Chem., 1993, 97, 12282. [all data]
Hager and Wallace, 1988
Hager, J.W.; Wallace, S.C.,
Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules,
Anal. Chem., 1988, 60, 5. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Clar and Schmidt, 1979
Clar, E.; Schmidt, W.,
Correlations between photoelectron and UV absorption spectra of polycyclic hydrocarbons. The pyrene series,
Tetrahedron, 1979, 35, 1027. [all data]
Eland, 1972
Eland, J.H.D.,
Photoelectron spectra and ionization potentials of aromatic hydrocarbons,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 214. [all data]
Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons,
Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]
Rowland, 1971
Rowland, C.G.,
Kinetic energy distributions of C12H8 fragment ions in the mass spectra of anthracene, phenanthrene and diphenylacetylene,
Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 79. [all data]
Dewar, Haselbach, et al., 1970
Dewar, M.J.S.; Haselbach, E.; Worley, S.D.,
Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s.c.f. m.o. methods,
Proc. Roy. Soc. (London), 1970, A315, 431. [all data]
Mukherjee, 1969
Mukherjee, T.K.,
Charge-transfer donor abilities of o,o'bridged biphenyls,
J. Phys. Chem., 1969, 73, 3442. [all data]
Kitagawa, 1968
Kitagawa, T.,
Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region,
J. Mol. Spectry., 1968, 26, 1. [all data]
Nounou, 1966
Nounou, P.,
Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle,
J. Chim. Phys., 1966, 63, 994. [all data]
Natalis and Franklin, 1965
Natalis, P.; Franklin, J.L.,
Ionization and dissociation of diphenyl and condensed ring aromatics by electron impact. I. Biphenyl, diphenylacetylene, and phenanthrene,
J. Phys. Chem., 1965, 69, 2935. [all data]
Bonnier, Gelus, et al., 1965
Bonnier, J.-M.; Gelus, M.; Nounou, P.,
Contribution a l'etude de l'effet inductif et de l'effet d'hyperconjugaison dans quelques methylaromatiques,
J. Chim. Phys., 1965, 10, 1191. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Wacks and Dibeler, 1959
Wacks, M.E.; Dibeler, V.H.,
Electron impact studies of aromatic hydrocarbons. I. Benzene, naphthalene, anthracene, and phenanthrene,
J. Chem. Phys., 1959, 31, 1557. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Akiyama, Li, et al., 1979
Akiyama, I.; Li, K.C.; LeBreton, P.R.; Fu, P.P.; Harvey, R.G.,
Ultraviolet photoelectron studies of polycyclic aromatic hydrocarbons. The ground-state electronic structure of aryloxiranes and metabolites of benzo[a]pyrene,
J. Phys. Chem., 1979, 83, 2997. [all data]
Ruscic, Kovac, et al., 1978
Ruscic, B.; Kovac, B.; Klasinc, L.; Gusten, H.,
Photoelectron spectroscopy of J. Heterocycl. Chem.. Fluorene analogues,
Z. Naturforsch. A:, 1978, 33, 1006. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Hush, Cheung, et al., 1975
Hush, N.S.; Cheung, A.S.; Hilton, P.R.,
Binding energies of π- and "lone pair"-levels in mono- and diaza-phenanthrenes and anthracenes: an He(I) photoelectron spectroscopic study,
J. Electron Spectrosc. Relat. Phenom., 1975, 7, 385. [all data]
Maier and Turner, 1972
Maier, J.P.; Turner, D.W.,
Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part I. Biphenyls,
Faraday Discuss. Chem. Soc., 1972, 54, 149. [all data]
Nounou, 1968
Nounou, P.,
Application of the quasi-equilibrium theory of, mass spectra to large aromatic molecules,
Advan. Mass Spectrom., 1968, 4, 551. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Ttrs Temperature of phase transition ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔsubS Entropy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.