Methyl radical

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase ion energetics data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH3+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.84 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Δf(+) ion1095.kJ/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K1099.kJ/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
0.080 ± 0.030LPESEllison, Engelking, et al., 1978B
<0.499990PDFeldman, Rackwitz, et al., 1977B
<0.6244 ± 0.0053D-EABohme, Lee-Ruff, et al., 1972B
0.12983N/ACheck, Faust, et al., 2001FeBr3; ; ΔS(EA)=9.3; B
1.12747SIPage, 1972The Magnetron method, lacking mass analysis, is not considered reliable.; B
1.0 ± 1.1SIPage and Goode, 1969The Magnetron method, lacking mass analysis, is not considered reliable.; B
1.07543SIGaines and Page, 1968The Magnetron method, lacking mass analysis, is not considered reliable.; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.843 ± 0.002EVALBerkowitz, Ellison, et al., 1994LL
9.84DERNagano, Murthy, et al., 1993LL
9.84 ± 0.02PEHoule and Beauchamp, 1979LLK
9.84 ± 0.05EIReeher, Flesch, et al., 1976LLK
9.6 ± 0.3EIKaposi, Riedel, et al., 1975LLK
9.837 ± 0.005PEGolob, Jonathan, et al., 1973LLK
9.86 ± 0.04PEPotts, Glenn, et al., 1972LLK
9.81 ± 0.02PEJonathan, 1972LLK
9.84 ± 0.03EILossing and Semeluk, 1970RDSH
9.87 ± 0.05EIWilliams and Hamill, 1968RDSH
9.83 ± 0.01PIChupka and Lifshitz, 1968RDSH
9.82 ± 0.04PIElder, Giese, et al., 1962RDSH
9.842 ± 0.002SHerzberg and Shoosmith, 1956RDSH
9.840 ± 0.005PEDyke, Jonathan, et al., 1976Vertical value; LLK
9.82 ± 0.02PEKoenig, Balle, et al., 1975Vertical value; LLK
9.86 ± 0.04PEPotts, Glenn, et al., 1972, 2Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH+15.58 ± 0.30H2EIWaldron, 1956RDSH
CH2+15.09 ± 0.03HPIChupka and Lifshitz, 1968RDSH

Cation De-protonation reactions

CH2- + Hydrogen cation = Methyl cation

By formula: CH2- + H+ = CH3+

Quantity Value Units Method Reference Comment
Δr1711.7 ± 1.7kJ/molD-EALeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B
Quantity Value Units Method Reference Comment
Δr1679.5 ± 2.0kJ/molH-TSLeopold, Murray, et al., 1985gas phase; Singlet-triplet splitting of CH2 = 9.0 kcal; B

Vibrational and/or electronic energy levels

Go To: Top, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   4f 2E'?


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 72508 gas Hudgens, DiGiuseppe, et al., 1983

State:   4p 2A2


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 69853.44 ± 0.13 gas Black and Powis, 1988

State:   3d 2A1'


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 66805 gas 3d2A1'-X 147 150 Herzberg and Shoosmith, 1956
Herzberg, 1961
Tx 3d2A1'-X 150 151 Milligan and Jacox, 1967

State:   3d 2E


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 66536 gas 3d2E''-X 144 150 Herzberg and Shoosmith, 1956
Herzberg, 1961
DiGiuseppe, Hudgens, et al., 1982


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a2 2 OPLA 1372 H gas AB MPI Herzberg, 1961
DiGiuseppe, Hudgens, et al., 1982

State:   3p 2A2


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 59972 gas Hudgens, DiGiuseppe, et al., 1983
Heinze, Heberle, et al., 1994


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1' 1 CH stretch 2931 gas MPI Hudgens, DiGiuseppe, et al., 1983
Zhang, Zhang, et al., 2005
a2 2 OPLA 1323 gas MPI Hudgens, DiGiuseppe, et al., 1983
Zhang, Zhang, et al., 2005
e' 3 CH stretch 3087 gas MPI Zhang, Zhang, et al., 2005
Fu, Hu, et al., 2005
4 Deformation 1428 T gas MPI Zhang, Zhang, et al., 2005

State:   3s 2A1'


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 46239 gas 3s2A1'-X 216 Herzberg and Shoosmith, 1956
Herzberg, 1961
Callear and Metcalfe, 1976
Westre, Gansberg, et al., 1992
Settersten, Farrow, et al., 2003


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1' 1 CH stretch 2040 T gas Ra Westre, Gansberg, et al., 1992

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1' 1 CH stretch 3004.43 ± 0.02 gas CARS Ra Holt, McCurdy, et al., 1984
Kelly and Westre, 1988
Triggs, Zahedi, et al., 1992
Zahedi, Harrison, et al., 1994
Hadrich, Hefter, et al., 1996
a2 2 OPLA 606.453 gas IR DL Tan, Winer, et al., 1972
Yamada, Hirota, et al., 1981
Wormhoudt and McCurdy, 1989
Stancu, Ropcke, et al., 2005
2 OPLA 617 vs Ne IR Snelson, 1970
2 OPLA 603 Ar IR Milligan and Jacox, 1967
Jacox, 1977
2 OPLA 624.0 p-H2 IR Lee and Lee, 2011
2 OPLA 611 N2 IR Milligan and Jacox, 1967
e' 3 CH stretch 3160.821 gas LD CC Amano, Bernath, et al., 1982
Tanarro, Sanz, et al., 1994
Tanarro, Sanz, et al., 1994, 2
Bethardy and Macdonald, 1995
Davis, Anderson, et al., 1997
3 CH stretch 3160.821 gas CR IR Scherer, Aniolek, et al., 1997
Kawaguchi, 2001
3 CH stretch 3162 w m Ne IR Snelson, 1970
3 CH stretch 3150 Ar IR Pacansky and Bargon, 1975
3 CH stretch 3171.4 H2 IR Momose, Miki, et al., 1995
Tam, Macler, et al., 1997
Hoshina, Fushitani, et al., 2011
3 CH stretch 3170.6 H2 IR Momose, Miki, et al., 1995
Tam, Macler, et al., 1997
Hoshina, Fushitani, et al., 2011
4 Deformation 1396 w Ne IR Snelson, 1970
4 Deformation 1398 Ar IR Jacox, 1977
4 Deformation 1402.7 H2 IR Momose, Miki, et al., 1995
Tam, Macler, et al., 1997
Hoshina, Fushitani, et al., 2011
4 Deformation 1401.6 H2 IR Momose, Miki, et al., 1995
Tam, Macler, et al., 1997
Hoshina, Fushitani, et al., 2011

Additional references: Jacox, 1994, page 125; Jacox, 1998, page 214; Jacox, 2003, page 156; Frye, Sears, et al., 1988; Parker, Wang, et al., 1989; Sears, Frye, et al., 1989; Westre and Kelly, 1989; Miller, Burton, et al., 1989; Fawzy, Sears, et al., 1990; Rudolph, Hall, et al., 1996

Notes

wWeak
mMedium
vsVery strong
H(1/2)(2ν)
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.
xEnergy separation between the band maximum of the excited electronic state and the v = 0 level of the ground state.

References

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Feldman, Rackwitz, et al., 1977
Feldman, D.; Rackwitz, R.; Kaiser, H.J.; Heincke, E., Photodetachment bei einigen neagtiven molekulionen: P2-, As2-, CH2-, CH3-, S3-, Z. Naturforsch. A:, 1977, 32, 600. [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Page, 1972
Page, F.M., Experimental determination of the electron affinities of inorganic radicals, Adv. Chem. Ser., 1972, 36, 68. [all data]

Page and Goode, 1969
Page, F.M.; Goode, G.C., Negative Ions and the Magnetron., Wiley, NY, 1969. [all data]

Gaines and Page, 1968
Gaines, A.F.; Page, F.M., The Stabilities of Negative Ions.I. The Methyl-, Diphenylmethyl, and Triphenylmethyl Negative Ions, Int. J. Mass Spectrom. Ion Phys., 1968, 1, 4-5, 315, https://doi.org/10.1016/0020-7381(68)85008-9 . [all data]

Berkowitz, Ellison, et al., 1994
Berkowitz, J.; Ellison, G.B.; Gutman, D., Three methods to measure RH bond energies, J. Phys. Chem., 1994, 98, 2744. [all data]

Nagano, Murthy, et al., 1993
Nagano, Y.; Murthy, S.; Beauchamp, J.L., Thermochemical properties and gas-phase ion chemistry of phenylsilane investigated by FT-ICR spectrometry. Identification of parent- and fragment-ion structural isomers by their specific reactivities, J. Am. Chem. Soc., 1993, 115, 10805. [all data]

Houle and Beauchamp, 1979
Houle, F.A.; Beauchamp, J.L., Photoelectron spectroscopy of methyl, ethyl, isopropyl, and tert-butyl radicals. Implications for the thermochemistry and structures of the radicals and their corresponding carbonium ions, J. Am. Chem. Soc., 1979, 101, 4067. [all data]

Reeher, Flesch, et al., 1976
Reeher, J.R.; Flesch, G.D.; Svec, H.J., The mass spectra and ionization potentials of the neutral fragments produced during the electron bombardment of aromatic compounds, Org. Mass Spectrom., 1976, 11, 154. [all data]

Kaposi, Riedel, et al., 1975
Kaposi, O.; Riedel, M.; Sanchez, G.R., Mass-spectrometric study of electron-impact and heterogeneous pyrolytic decomposition of methyl bromide, Acta Chim. Acad. Sci. Hung., 1975, 85, 361. [all data]

Golob, Jonathan, et al., 1973
Golob, L.; Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J., The first ionization potential of the methyl radical as determined by photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 506. [all data]

Potts, Glenn, et al., 1972
Potts, A.W.; Glenn, K.G.; Price, W.C., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 64. [all data]

Jonathan, 1972
Jonathan, N., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 64. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Chupka and Lifshitz, 1968
Chupka, W.A.; Lifshitz, C., Photoionization of CH3+; heat of formation of CH2, J. Chem. Phys., 1968, 48, 1109. [all data]

Elder, Giese, et al., 1962
Elder, F.A.; Giese, C.; Steiner, B.; Inghram, M., Photo-ionization of alkyl free radicals, J. Chem. Phys., 1962, 36, 3292. [all data]

Herzberg and Shoosmith, 1956
Herzberg, G.; Shoosmith, J., Absorption spectrum of free CH3 and CD3 radicals, Can. J. Phys., 1956, 34, 523. [all data]

Dyke, Jonathan, et al., 1976
Dyke, J.; Jonathan, N.; Lee, E.; Morris, A., Vacuum ultraviolet photoelectron spectroscopy of transient species, J. Chem. Soc. Faraday Trans. 2, 1976, 72, 1385. [all data]

Koenig, Balle, et al., 1975
Koenig, T.; Balle, T.; Snell, W., Helium(I) photoelectron spectra of organic radicals, J. Am. Chem. Soc., 1975, 97, 662. [all data]

Potts, Glenn, et al., 1972, 2
Potts, A.W.; Glenn, K.G.; Price, W.C., General discussion, Faraday Discuss. Chem. Soc., 1972, 54, 65. [all data]

Waldron, 1956
Waldron, J.D., The ionization and dissociation of methyl radicals on electron impact, Metropolitan Vickers Gaz., 1956, 27, 66. [all data]

Leopold, Murray, et al., 1985
Leopold, D.G.; Murray, K.K.; Miller, A.E.S.; Lineberger, W.C., Methylene: A study of the X3B1 and the 1A1 states by photoelectron spectroscopy of CH2- and CD2-, J. Chem. Phys., 1985, 83, 4849. [all data]

Hudgens, DiGiuseppe, et al., 1983
Hudgens, J.W.; DiGiuseppe, T.G.; Lin, M.C., Two photon resonance enhanced multiphoton ionization spectroscopy and state assignments of the methyl radical, J. Chem. Phys., 1983, 79, 2, 571, https://doi.org/10.1063/1.445857 . [all data]

Black and Powis, 1988
Black, J.F.; Powis, I., Rotational structure and predissociation dynamics of the methyl 4pz(v=0) Rydberg state investigated by resonance enhanced multiphoton ionization spectroscopy, J. Chem. Phys., 1988, 89, 7, 3986, https://doi.org/10.1063/1.454832 . [all data]

Herzberg, 1961
Herzberg, G., The Bakerian Lecture. The Spectra and Structures of Free Methyl and Free Methylene, Proc. Roy. Soc. (London) A262, 1961, 262, 1310, 291, https://doi.org/10.1098/rspa.1961.0120 . [all data]

Milligan and Jacox, 1967
Milligan, D.E.; Jacox, M.E., Infrared and Ultraviolet Spectroscopic Study of the Products of the Vacuum-Ultraviolet Photolysis of Methane in Ar and N2 Matrices. The Infrared Spectrum of the Free Radical CH3, J. Chem. Phys., 1967, 47, 12, 5146, https://doi.org/10.1063/1.1701772 . [all data]

DiGiuseppe, Hudgens, et al., 1982
DiGiuseppe, T.G.; Hudgens, J.W.; Lin, M.C., Multiphoton ionization of methyl radicals in the gas phase, J. Phys. Chem., 1982, 86, 1, 36, https://doi.org/10.1021/j100390a008 . [all data]

Heinze, Heberle, et al., 1994
Heinze, J.; Heberle, N.; Kohse-Hoinghaus, K., The CH3 3pz2A2´´ ← X 2A2´´ 000 band at temperatures up to 1700 K investigated by REMPI spectroscopy, Chem. Phys. Lett., 1994, 223, 4, 305, https://doi.org/10.1016/0009-2614(94)00469-2 . [all data]

Zhang, Zhang, et al., 2005
Zhang, B.; Zhang, J.; Liu, K., Imaging the "missing" bands in the resonance-enhanced multiphoton ionization detection of methyl radical, J. Chem. Phys., 2005, 122, 10, 104310, https://doi.org/10.1063/1.1859277 . [all data]

Fu, Hu, et al., 2005
Fu, H.B.; Hu, Y.J.; Bernstein, E.R., IR/UV double resonant spectroscopy of the methyl radical: Determination of ν[sub 3] in the 3p[sub z] Rydberg state, J. Chem. Phys., 2005, 123, 23, 234307, https://doi.org/10.1063/1.2135772 . [all data]

Callear and Metcalfe, 1976
Callear, A.B.; Metcalfe, M.P., Oscillator strengths of the bands of the B2 A´1---X2 A´´2 system of CD3 and a spectroscopic measurement of the recombination rate comparison with CH3, Chem. Phys., 1976, 14, 2, 275, https://doi.org/10.1016/0301-0104(76)80045-6 . [all data]

Westre, Gansberg, et al., 1992
Westre, S.G.; Gansberg, T.E.; Kelly, P.B.; Ziegler, L.D., Structure and dynamics of higher vibronic levels in the methyl radical Rydberg 3s state, J. Phys. Chem., 1992, 96, 9, 3610, https://doi.org/10.1021/j100188a012 . [all data]

Settersten, Farrow, et al., 2003
Settersten, T.B.; Farrow, R.L.; Gray, J.A., Coherent infrared--ultraviolet double-resonance spectroscopy of CH3, Chem. Phys. Lett., 2003, 370, 1-2, 204, https://doi.org/10.1016/S0009-2614(03)00062-9 . [all data]

Holt, McCurdy, et al., 1984
Holt, P.L.; McCurdy, K.E.; Weisman, R.B.; Adams, J.S.; Engel, P.S., Transient CARS spectroscopy of the ν1 band of methyl radical, J. Chem. Phys., 1984, 81, 7, 3349, https://doi.org/10.1063/1.448000 . [all data]

Kelly and Westre, 1988
Kelly, P.B.; Westre, S.G., Resonance Raman spectroscopy of the methyl radical, Chem. Phys. Lett., 1988, 151, 3, 253, https://doi.org/10.1016/0009-2614(88)85284-9 . [all data]

Triggs, Zahedi, et al., 1992
Triggs, N.E.; Zahedi, M.; Nibler, J.W.; DeBarber, P.; Valentini, J.J., High resolution study of the ν1 vibration of CH3 by coherent Raman photofragment spectroscopy, J. Chem. Phys., 1992, 96, 3, 1822, https://doi.org/10.1063/1.462083 . [all data]

Zahedi, Harrison, et al., 1994
Zahedi, M.; Harrison, J.A.; Nibler, J.W., 266 nm CH3I photodissociation: CH3 spectra and population distributions by coherent Raman spectroscopy, J. Chem. Phys., 1994, 100, 6, 4043, https://doi.org/10.1063/1.466342 . [all data]

Hadrich, Hefter, et al., 1996
Hadrich, S.; Hefter, S.; Pfelzer, B.; Doerk, T.; Jauernik, P.; Uhlenbusch, J., Determination of the absolute Raman cross section of methyl, Chem. Phys. Lett., 1996, 256, 1-2, 83, https://doi.org/10.1016/0009-2614(96)00411-3 . [all data]

Tan, Winer, et al., 1972
Tan, L.Y.; Winer, A.M.; Pimentel, G.C., Infrared Spectrum of Gaseous Methyl Radical by Rapid Scan Spectroscopy, J. Chem. Phys., 1972, 57, 9, 4028, https://doi.org/10.1063/1.1678876 . [all data]

Yamada, Hirota, et al., 1981
Yamada, C.; Hirota, E.; Kawaguchi, K., Diode laser study of the ν2 band of the methyl radical, J. Chem. Phys., 1981, 75, 11, 5256, https://doi.org/10.1063/1.441991 . [all data]

Wormhoudt and McCurdy, 1989
Wormhoudt, J.; McCurdy, K.E., A measurement of the strength of the ν2 band of CH3, Chem. Phys. Lett., 1989, 156, 1, 47, https://doi.org/10.1016/0009-2614(89)87078-2 . [all data]

Stancu, Ropcke, et al., 2005
Stancu, G.D.; Ropcke, J.; Davies, P.B., Line strengths and transition dipole moment of the ν[sub 2] fundamental band of the methyl radical, J. Chem. Phys., 2005, 122, 1, 014306, https://doi.org/10.1063/1.1812755 . [all data]

Snelson, 1970
Snelson, A., Infrared matrix isolation spectrum of the methyl radical produced by pyrolysis of methyl iodide and dimethyl mercury, J. Phys. Chem., 1970, 74, 3, 537, https://doi.org/10.1021/j100698a011 . [all data]

Jacox, 1977
Jacox, M.E., Matrix isolation study of the infrared spectrum and structure of the CH3 free radical, J. Mol. Spectrosc., 1977, 66, 2, 272, https://doi.org/10.1016/0022-2852(77)90217-X . [all data]

Lee and Lee, 2011
Lee, Y.-F.; Lee, Y.-P., Infrared absorption of CH3SO2 observed upon irradiation of a p-H2 matrix containing CH3I and SO2, J. Chem. Phys., 2011, 1334, 12, 124314, https://doi.org/10.1063/1.3567117 . [all data]

Amano, Bernath, et al., 1982
Amano, T.; Bernath, P.F.; Yamada, C.; Endo, Y.; Hirota, E., Difference frequency laser spectroscopy of the ν3 band of the CH3 radical, J. Chem. Phys., 1982, 77, 11, 5284, https://doi.org/10.1063/1.443797 . [all data]

Tanarro, Sanz, et al., 1994
Tanarro, I.; Sanz, M.M.; Bermejo, D.; Domingo, C.; Santos, J., Double modulation-high resolution infrared spectroscopic technique: The ν3 band of the CH3 radical and excited states of CH4 in a hollow cathode discharge, J. Chem. Phys., 1994, 100, 1, 238, https://doi.org/10.1063/1.466991 . [all data]

Tanarro, Sanz, et al., 1994, 2
Tanarro, I.; Sanz, M.M.; Domingo, C.; Bermejo, D.; Santos, J.; Domenech, J.L., Transition dipole moment of the .nu.3 band of CH3, J. Phys. Chem., 1994, 98, 23, 5862, https://doi.org/10.1021/j100074a009 . [all data]

Bethardy and Macdonald, 1995
Bethardy, G.A.; Macdonald, R.G., Direct measurement of the transition dipole moment of the v3 asymmetric C--H stretching vibration of the CH3 radical, J. Chem. Phys., 1995, 103, 8, 2863, https://doi.org/10.1063/1.470499 . [all data]

Davis, Anderson, et al., 1997
Davis, S.; Anderson, D.T.; Duxbury, G.; Nesbitt, D.J., Jet-cooled molecular radicals in slit supersonic discharges: Sub-Doppler infrared studies of methyl radical, J. Chem. Phys., 1997, 107, 15, 5661, https://doi.org/10.1063/1.474259 . [all data]

Scherer, Aniolek, et al., 1997
Scherer, J.J.; Aniolek, K.W.; Cernansky, N.P.; Rakestraw, D.J., Determination of methyl radical concentrations in a methane/air flame by infrared cavity ringdown laser absorption spectroscopy, J. Chem. Phys., 1997, 107, 16, 6196, https://doi.org/10.1063/1.474284 . [all data]

Kawaguchi, 2001
Kawaguchi, K., High-resolution Fourier transform infrared spectra of the CH, Can. J. Phys., 2001, 79, 2-3, 449, https://doi.org/10.1139/p00-093 . [all data]

Pacansky and Bargon, 1975
Pacansky, J.; Bargon, J., Low temperature photochemical studies on acetyl benzoyl peroxide. Observation of methyl and phenyl radicals by matrix isolation infrared spectroscopy, J. Am. Chem. Soc., 1975, 97, 23, 6896, https://doi.org/10.1021/ja00856a066 . [all data]

Momose, Miki, et al., 1995
Momose, T.; Miki, M.; Uchida, M.; Shimizu, T.; Yoshizawa, I.; Shida, T., Infrared spectroscopic studies on photolysis of methyl iodide and its clusters in solid parahydrogen, J. Chem. Phys., 1995, 103, 4, 1400, https://doi.org/10.1063/1.469763 . [all data]

Tam, Macler, et al., 1997
Tam, S.; Macler, M.; Fajardo, M.E., Matrix isolation spectroscopy of laser ablated carbon species in Ne, D[sub 2], and H[sub 2] matrices, J. Chem. Phys., 1997, 106, 22, 8955, https://doi.org/10.1063/1.474028 . [all data]

Hoshina, Fushitani, et al., 2011
Hoshina, H.; Fushitani, M.; Momose, T., Infrared spectroscopy of rovibrational transitions of methyl radicals (CH3, CD3) in solid parahydrogen, J. Mol. Spectrosc., 2011, 268, 1-2, 164, https://doi.org/10.1016/j.jms.2011.04.014 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Frye, Sears, et al., 1988
Frye, J.M.; Sears, T.J.; Leitner, D., Diode laser spectroscopy of the ν2 band of CD3, J. Chem. Phys., 1988, 88, 9, 5300, https://doi.org/10.1063/1.454588 . [all data]

Parker, Wang, et al., 1989
Parker, D.H.; Wang, Z.W.; Janssen, M.H.M.; Chandler, D.W., Laser ionization spectroscopy of CD3 via the 3pz 2A'2 Rydberg state, J. Chem. Phys., 1989, 90, 1, 60, https://doi.org/10.1063/1.456466 . [all data]

Sears, Frye, et al., 1989
Sears, T.J.; Frye, J.M.; Spirko, V.; Kraemer, W.P., Extended measurements of the ν2 band of CD3 and the determination of the vibrational potential function for methyl, J. Chem. Phys., 1989, 90, 4, 2125, https://doi.org/10.1063/1.456006 . [all data]

Westre and Kelly, 1989
Westre, S.G.; Kelly, P.B., Examination of CD3 vibrational structure by resonance Raman spectroscopy, J. Chem. Phys., 1989, 90, 12, 6977, https://doi.org/10.1063/1.456273 . [all data]

Miller, Burton, et al., 1989
Miller, J.T.; Burton, K.A.; Weisman, R.B.; Wu, W.-X.; Engel, P.S., Cars spectroscopy of gas phase CD3, Chem. Phys. Lett., 1989, 158, 3-4, 179, https://doi.org/10.1016/0009-2614(89)87317-8 . [all data]

Fawzy, Sears, et al., 1990
Fawzy, W.M.; Sears, T.J.; Davies, P.B., Infrared diode laser spectroscopy of the ν3 fundamental of the CD3 radical, J. Chem. Phys., 1990, 92, 12, 7021, https://doi.org/10.1063/1.458242 . [all data]

Rudolph, Hall, et al., 1996
Rudolph, R.N.; Hall, G.E.; Sears, T.J., Measurement of the ν3 fundamental transition moment and vibrational relaxation rates of the CD3 radical, J. Chem. Phys., 1996, 105, 18, 7889, https://doi.org/10.1063/1.472704 . [all data]


Notes

Go To: Top, Gas phase ion energetics data, Vibrational and/or electronic energy levels, References