Di-n-propyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-70.0 ± 0.5kcal/molCcbColomina, Pell, et al., 1965ALS
Δfgas-71.4kcal/molCcbMurrin and Goldhagen, 1957ALS
Quantity Value Units Method Reference Comment
gas101.0cal/mol*KN/AAndon R.J.L., 1975GT

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
43.726360.00Andon R.J.L., 1975GT
45.595380.01
47.431399.98
50.170430.05
52.832460.01

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H15O+ + Di-n-propyl ether = (C6H15O+ • Di-n-propyl ether)

By formula: C6H15O+ + C6H14O = (C6H15O+ • C6H14O)

Bond type: Hydrogen bonds of the type OH-O between organics

Bond type: Hydrogen bonds between protonated and neutral organics

Quantity Value Units Method Reference Comment
Δr30.9kcal/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1994gas phase; switching reaction(C2H5)COH+((C2H5)2CO
Δr29.9kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986
Quantity Value Units Method Reference Comment
Δr40.0cal/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1994gas phase; switching reaction(C2H5)COH+((C2H5)2CO
Δr31.9cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986
Quantity Value Units Method Reference Comment
Δr20.4kcal/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986

C5H6N+ + Di-n-propyl ether = (C5H6N+ • Di-n-propyl ether)

By formula: C5H6N+ + C6H14O = (C5H6N+ • C6H14O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr23.5kcal/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr31.cal/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.0500.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated

C6H14N+ + Di-n-propyl ether = (C6H14N+ • Di-n-propyl ether)

By formula: C6H14N+ + C6H14O = (C6H14N+ • C6H14O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr25.4kcal/molPHPMSMeot-Ner, 1984gas phase
Quantity Value Units Method Reference Comment
Δr31.2cal/mol*KPHPMSMeot-Ner, 1984gas phase

CH6N+ + Di-n-propyl ether = (CH6N+ • Di-n-propyl ether)

By formula: CH6N+ + C6H14O = (CH6N+ • C6H14O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr24.0kcal/molPHPMSMeot-Ner, 1984gas phase
Quantity Value Units Method Reference Comment
Δr26.7cal/mol*KPHPMSMeot-Ner, 1984gas phase

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.30 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)200.3kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity193.7kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.32 ± 0.01PECocksey, Eland, et al., 1971LLK
9.27 ± 0.05PIWatanabe, Nakayama, et al., 1962RDSH
9.53PEAue and Bowers, 1979Vertical value; LLK
9.49PEBenoit and Harrison, 1977Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H7+11.97?EIWilliams and Hamill, 1968RDSH
C3H7O+12.9 ± 0.1C3H7EIWilliams and Hamill, 1968RDSH

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Colomina, Pell, et al., 1965
Colomina, M.; Pell, A.S.; Skinner, H.A.; Coleman, D.J., Heats of combustion of four dialkylethers, Trans. Faraday Soc., 1965, 61, 2641. [all data]

Murrin and Goldhagen, 1957
Murrin, J.W.; Goldhagen, S., Determination of the C-O bond energy from the heats of combustion of four aliphatic ethers, NAVORD Report No. 5491, U.S. Naval Powder Factory Res. & Dev. Dept., 1957, 1-14. [all data]

Andon R.J.L., 1975
Andon R.J.L., Thermodynamic properties of organic oxygen compounds. 39. Heat capacity of n-propyl ether, J. Chem. Thermodyn., 1975, 7, 587-592. [all data]

Meot-Ner (Mautner), Sieck, et al., 1994
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S.; Duan, X., The Ionic Hydrogen Bond. 5. Polydentate and Solvent-Bridged Structures. Complexing of the Proton and the Hydronium Ions by Polyethers, J. Am. Chem. Soc., 1994, 116, 17, 7848, https://doi.org/10.1021/ja00096a047 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T., Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References