CH2CCH


Vibrational and/or electronic energy levels

Go To: Top, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   B


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 30109 U gas A,B-X 290 353 Ramsay and Thistlethwaite, 1966
Atkinson and Hudgens, 1999
To = 29146 ± 17 Ne B-X 294 343 Wyss, Riaplov, et al., 2001
Ar A,B-X 288 359 Jacox and Milligan, 1974


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a' 5 C-C stretch 961 ± 10 gas AB Ramsay and Thistlethwaite, 1966
5 C-C stretch 966 ± 25 Ne AB Wyss, Riaplov, et al., 2001
5 C-C stretch 965 ± 10 Ar AB Jacox and Milligan, 1974
6 CCH bend 661 ± 25 Ne AB Wyss, Riaplov, et al., 2001
8 C3 deform. 301 ± 25 Ne AB Wyss, Riaplov, et al., 2001

State:   A


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

To = 28409 ± 16 Ne A-X 345 352 Wyss, Riaplov, et al., 2001


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a' 8 C3 deform. 285 ± 25 Ne AB Wyss, Riaplov, et al., 2001

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

a1 1 CH stretch 3322.29 gas CC Morter, Domingo, et al., 1992
Yuan, DeSain, et al., 1998
1 CH stretch 3322.15 He CC Kupper, Merritt, et al., 2002
1 CH stretch 3308.5 ± 0.5 m Ar IR Jacox and Milligan, 1974
Huang and Graham, 1990
Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
2 CH stretch 3028.3 ± 0.6 w Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
3 C3 stretch 1935.4 ± 0.4 w Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
4 CH2 scissors 1440.1 ± 0.8 w Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
5 C3 stretch 1061.6 ± 0.8 w Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
b1 6 CH2 wag 687.18 gas DL Sumiyoshi, Imajo, et al., 1994
Tanaka, Harada, et al., 1995
6 CH2 wag 686.5 ± 0.7 m Ar IR Jacox and Milligan, 1974
Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
7 C3 deformation 490 T gas PE Oakes and Ellison, 1983
Robinson, Polak, et al., 1995
7 C3 deformation 483.6 ± 0.7 m Ar IR Jacox and Milligan, 1974
Huang and Graham, 1990
Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
b2 10 Deformation 1016.8 ± 0.6 w Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
11 Deformation 619.5 ± 1.4 Ar IR Jochnowitz, Zhang, et al., 2005
Zhang, Sander, et al., 2010
12 Deformation 344.2 ± 0.8 Ar IR Zhang, Sander, et al., 2010
Zhang, Sander, et al., 2012

Additional references: Jacox, 1994, page 312; Jacox, 1998, page 311; Jacox, 2003, page 314; Tanaka, Sumiyoshi, et al., 1997

Notes

wWeak
mMedium
UUpper bound
TTentative assignment or approximate value
oEnergy separation between the v = 0 levels of the excited and electronic ground states.

References

Go To: Top, Vibrational and/or electronic energy levels, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ramsay and Thistlethwaite, 1966
Ramsay, D.A.; Thistlethwaite, P., THE ELECTRONIC ABSORPTION SPECTRUM OF THE PROPARGYL RADICAL, Can. J. Phys., 1966, 44, 7, 1381, https://doi.org/10.1139/p66-116 . [all data]

Atkinson and Hudgens, 1999
Atkinson, D.B.; Hudgens, J.W., Rate Coefficients for the Propargyl Radical Self-Reaction and Oxygen Addition Reaction Measured Using Ultraviolet Cavity Ring-down Spectroscopy, J. Phys. Chem. A, 1999, 103, 21, 4242, https://doi.org/10.1021/jp990468s . [all data]

Wyss, Riaplov, et al., 2001
Wyss, M.; Riaplov, E.; Maier, J.P., Electronic and infrared spectra of H[sub 2]C[sub 3]H[sup +] and cyclic C[sub 3]H[sub 3][sup +] in neon matrices, J. Chem. Phys., 2001, 114, 23, 10355, https://doi.org/10.1063/1.1367394 . [all data]

Jacox and Milligan, 1974
Jacox, M.E.; Milligan, D.E., Matrix isolation study of the vacuum ultraviolet photolysis of allene and methylacetylene. Vibrational and electronic spectra of the species C3, C3H, C3H2, and C3H3, Chem. Phys., 1974, 4, 1, 45, https://doi.org/10.1016/0301-0104(74)80047-9 . [all data]

Morter, Domingo, et al., 1992
Morter, C.L.; Domingo, C.; Farhat, S.K.; Cartwright, E.; Glass, G.P.; Curl, R.F., Rotationally resolved spectrum of the ν1 CH stretch of the propargyl radical (H2CCCH), Chem. Phys. Lett., 1992, 195, 4, 316, https://doi.org/10.1016/0009-2614(92)85609-E . [all data]

Yuan, DeSain, et al., 1998
Yuan, L.; DeSain, J.; Curl, R.F., Analysis of theK-Subband Structure of the ν1Fundamental of Propargyl Radical H2CC≡CH, J. Mol. Spectrosc., 1998, 187, 1, 102, https://doi.org/10.1006/jmsp.1997.7487 . [all data]

Kupper, Merritt, et al., 2002
Kupper, J.; Merritt, J.M.; Miller, R.E., Free radicals in superfluid liquid helium nanodroplets: A pyrolysis source for the production of propargyl radical, J. Chem. Phys., 2002, 117, 2, 647, https://doi.org/10.1063/1.1484104 . [all data]

Huang and Graham, 1990
Huang, J.W.; Graham, W.R.M., Fourier transform infrared study of tricarbon hydride radicals trapped in Ar at 10 K, J. Chem. Phys., 1990, 93, 3, 1583, https://doi.org/10.1063/1.459137 . [all data]

Jochnowitz, Zhang, et al., 2005
Jochnowitz, E.B.; Zhang, X.; Nimlos, M.R.; Varner, M.E.; Stanton, J.F.; Ellison, G.B., Propargyl Radical: Ab Initio Anharmonic Modes and the Polarized Infrared Absorption Spectra of Matrix-Isolated HCCCH, J. Phys. Chem. A, 2005, 109, 17, 3812, https://doi.org/10.1021/jp040719j . [all data]

Zhang, Sander, et al., 2010
Zhang, X.; Sander, S.P.; Chaimowitz, A.; Ellison, G.B.; Stanton, J.F., Detection of Vibrational Bending Mode ν, J. Phys. Chem. A, 2010, 114, 45, 12021, https://doi.org/10.1021/jp105605f . [all data]

Sumiyoshi, Imajo, et al., 1994
Sumiyoshi, Y.; Imajo, T.; Tanaka, K.; Tanaka, T., Infrared diode laser spectroscopic detection of the propargyl radical produced in a supersonic jet expansion by UV laser photolysis, Chem. Phys. Lett., 1994, 231, 4-6, 569, https://doi.org/10.1016/0009-2614(94)01286-5 . [all data]

Tanaka, Harada, et al., 1995
Tanaka, K.; Harada, T.; Sakaguchi, K.; Harada, K.; Tanaka, T., Time-resolved diode laser spectroscopy of the ν6 band of propargyl produced by the UV photolysis of allene, J. Chem. Phys., 1995, 103, 15, 6450, https://doi.org/10.1063/1.470422 . [all data]

Oakes and Ellison, 1983
Oakes, J.M.; Ellison, B.G., Photoelectron spectroscopy of the allenyl anion CH2=C=CH-, J. Am. Chem. Soc., 1983, 105, 2969. [all data]

Robinson, Polak, et al., 1995
Robinson, M.S.; Polak, M.L.; Bierbaum, V.M.; DePuy, C.H.; Lineberger, W.C., Experimental Studies of Allene, Methylacetylene, and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase Acidities, and Ion-Molecule Chemistry, J. Am. Chem. Soc., 1995, 117, 25, 6766, https://doi.org/10.1021/ja00130a017 . [all data]

Zhang, Sander, et al., 2012
Zhang, X.; Sander, S.P.; Stanton, J.F., Detection of the Far-IR ν, J. Phys. Chem. A, 2012, 116, 42, 10338, https://doi.org/10.1021/jp305390p . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Tanaka, Sumiyoshi, et al., 1997
Tanaka, K.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y.; Kawaguchi, K., Pulsed discharge nozzle Fourier transform microwave spectroscopy of the propargyl radical (H[sub 2]CCCH), J. Chem. Phys., 1997, 107, 8, 2728, https://doi.org/10.1063/1.474631 . [all data]


Notes

Go To: Top, Vibrational and/or electronic energy levels, NIST Free Links, References