Krypton


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar164.085 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar164.08J/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 20.78603
B 4.850638×10-10
C -1.582916×10-10
D 1.525102×10-11
E 3.196347×10-11
F -6.197341
G 189.2390
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil119.78KN/AZiegler, Yarbrough, et al., 1964Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Ttriple115.76KN/AZiegler, Yarbrough, et al., 1964Uncertainty assigned by TRC = 0.08 K; TRC
Ttriple116.1KN/ALahr and Eversole, 1962Uncertainty assigned by TRC = 0.4 K; TRC
Ttriple115.95KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT for c-l equil.; TRC
Quantity Value Units Method Reference Comment
Ptriple0.7315barN/AZiegler, Yarbrough, et al., 1964Uncertainty assigned by TRC = 0.0006 bar; TRC
Quantity Value Units Method Reference Comment
Tc209.46KN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.02 K; PVT, VP measured up to 208 K. Tc from rect plot, equation. PRT, IPTS-48, PB with differential press. indicator, glc sensitive to 20 ppm impurity, none found.; TRC
Quantity Value Units Method Reference Comment
Pc55.2019barN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.0551 bar; from Vapor pressure equation; TRC
Quantity Value Units Method Reference Comment
ρc11.0mol/lN/ATheeuwes and Bearman, 1970Uncertainty assigned by TRC = 0.109 mol/l; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
126.68 to 208.4.2064539.0048.855Theeuwes and Bearman, 1970, 2Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Cesium ion (1+) + Krypton = (Cesium ion (1+) • Krypton)

By formula: Cs+ + Kr = (Cs+ • Kr)

Quantity Value Units Method Reference Comment
Δr11.7kJ/molIMobGatland, 1984gas phase; M
Δr9.75kJ/molSCATTERINGGislason, 1984gas phase; M
Δr11.4kJ/molIMobViehland, 1984gas phase; M
Δr13.kJ/molIMobTakebe, 1983gas phase; M
Δr12.8kJ/molIMobTakebe, 1983gas phase; values form this reference are too high; M

Methyl cation + Krypton = (Methyl cation • Krypton)

By formula: CH3+ + Kr = (CH3+ • Kr)

Quantity Value Units Method Reference Comment
Δr184.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M
Δr200. ± 10.kJ/molICRHovey and McMahon, 1987gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated; M

Sodium ion (1+) + Krypton = (Sodium ion (1+) • Krypton)

By formula: Na+ + Kr = (Na+ • Kr)

Quantity Value Units Method Reference Comment
Δr20.3kJ/molSCATTERINGGislason, 1984gas phase; M
Δr21.3kJ/molIMobViehland, 1984gas phase; M
Δr24.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Δr27.5kJ/molIMobTakebe, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KDTMcKnight and Sawina, 1973gas phase; M

Chlorine anion + Krypton = (Chlorine anion • Krypton)

By formula: Cl- + Kr = (Cl- • Kr)

Quantity Value Units Method Reference Comment
Δr9.20 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; Given: 0.0957(0.001) eV; B
Δr11.7 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr-12.0 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Bromine anion + Krypton = (Bromine anion • Krypton)

By formula: Br- + Kr = (Br- • Kr)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; given: 0.0795(.001) eV; B
Δr<11.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr8.37kJ/molMoblGatland, 1984, 2gas phase; B,M

Kr+ + Krypton = (Kr+ • Krypton)

By formula: Kr+ + Kr = (Kr+ • Kr)

Quantity Value Units Method Reference Comment
Δr111.kJ/molPIDehmer and Pratt, 1982gas phase; M
Δr110.kJ/molPDissAbouaf, Huber, et al., 1978gas phase; M
Δr111.kJ/molPINg, Trevor, et al., 1977gas phase; M
Δr117.kJ/molSCATTERINGMittman and Weise, 1974gas phase; M

Potassium ion (1+) + Krypton = (Potassium ion (1+) • Krypton)

By formula: K+ + Kr = (K+ • Kr)

Quantity Value Units Method Reference Comment
Δr13.4kJ/molIMobGatland, 1984gas phase; M
Δr12.1kJ/molSCATTERINGGislason, 1984gas phase; M
Δr12.3kJ/molIMobViehland, 1984gas phase; M
Δr15.5kJ/molIMobTakebe, 1983gas phase; M

Copper ion (1+) + Krypton = (Copper ion (1+) • Krypton)

By formula: Cu+ + Kr = (Cu+ • Kr)

Quantity Value Units Method Reference Comment
Δr24.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

Lithium ion (1+) + Krypton = (Lithium ion (1+) • Krypton)

By formula: Li+ + Kr = (Li+ • Kr)

Quantity Value Units Method Reference Comment
Δr44.4kJ/molSCATTERINGGislason, 1984gas phase; M
Δr38.kJ/molIMobViehland, 1984gas phase; M
Δr68.6kJ/molIMobTakebe, 1983gas phase; M

Rubidium ion (1+) + Krypton = (Rubidium ion (1+) • Krypton)

By formula: Rb+ + Kr = (Rb+ • Kr)

Quantity Value Units Method Reference Comment
Δr11.0kJ/molIMobGatland, 1984gas phase; M
Δr11.2kJ/molIMobViehland, 1984gas phase; M
Δr14.0kJ/molIMobTakebe, 1983gas phase; M

(Kr+ • 2Krypton) + Krypton = (Kr+ • 3Krypton)

By formula: (Kr+ • 2Kr) + Kr = (Kr+ • 3Kr)

Quantity Value Units Method Reference Comment
Δr23.3 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr74.5J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 3Krypton) + Krypton = (Kr+ • 4Krypton)

By formula: (Kr+ • 3Kr) + Kr = (Kr+ • 4Kr)

Quantity Value Units Method Reference Comment
Δr9.04 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr62.3J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 4Krypton) + Krypton = (Kr+ • 5Krypton)

By formula: (Kr+ • 4Kr) + Kr = (Kr+ • 5Kr)

Quantity Value Units Method Reference Comment
Δr8.58 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 5Krypton) + Krypton = (Kr+ • 6Krypton)

By formula: (Kr+ • 5Kr) + Kr = (Kr+ • 6Kr)

Quantity Value Units Method Reference Comment
Δr8.54 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

Nitric oxide anion + Krypton = (Nitric oxide anion • Krypton)

By formula: NO- + Kr = (NO- • Kr)

Quantity Value Units Method Reference Comment
Δr9.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr10.5 ± 1.7kJ/molN/ABowen and Eaton, 1988gas phase; B

Xe+ + Krypton = (Xe+ • Krypton)

By formula: Xe+ + Kr = (Xe+ • Kr)

Quantity Value Units Method Reference Comment
Δr37.kJ/molPIDehmer and Pratt, 1982gas phase; M
Δr36.kJ/molPINg, Tiedemann, et al., 1977gas phase; M

H2O+ + Krypton = (H2O+ • Krypton)

By formula: H2O+ + Kr = (H2O+ • Kr)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
32. (+9.6,-0.) PD/KERDKim, Kuo, et al., 1990gas phase; M

O2S+ + Krypton = (O2S+ • Krypton)

By formula: O2S+ + Kr = (O2S+ • Kr)

Quantity Value Units Method Reference Comment
Δr30.kJ/molPDissKim, Jarrold, et al., 1986gas phase; ΔrH<; M

Iodide + Krypton = (Iodide • Krypton)

By formula: I- + Kr = (I- • Kr)

Quantity Value Units Method Reference Comment
Δr4.18kJ/molTherZhao, Yourshaw, et al., 1994gas phase; B

Oxygen cation + Krypton = (Oxygen cation • Krypton)

By formula: O2+ + Kr = (O2+ • Kr)

Quantity Value Units Method Reference Comment
Δr32.kJ/molPDissJarrold, Misev, et al., 1984gas phase; M

CO2+ + Krypton = (CO2+ • Krypton)

By formula: CO2+ + Kr = (CO2+ • Kr)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPIJarrold, Illies, et al., 1985gas phase; M

Iron ion (1+) + Krypton = (Iron ion (1+) • Krypton)

By formula: Fe+ + Kr = (Fe+ • Kr)

Quantity Value Units Method Reference Comment
Δr30. ± 7.1kJ/molCIDTRodgers and Armentrout, 2000RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.00251900.LN/A
0.00241500.MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to Kr+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)13.99961 ± 0.00001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)424.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity402.4kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
13.99961EVALLide, 1992LL
13.99EIWetzel, Baiocchi, et al., 1987LBLHLM
14.000SKelly, 1987LBLHLM
14.000PEKimura, Katsumata, et al., 1981LLK
13.99963 ± 0.00001SYoshino and Tanaka, 1979LLK
14.6655 ± 0.00002SYoshino and Tanaka, 1979LLK
14.0009 ± 0.0012SChaghtai and Hassan, 1973LLK
13.992 ± 0.002TESpohr, Guyon, et al., 1971LLK
14.661 ± 0.002TESpohr, Guyon, et al., 1971LLK
13.99962SMoore, 1970RDSH
13.974 ± 0.004CIHotop and Niehaus, 1969RDSH
14.00 ± 0.05EIGallegos and Klaver, 1967RDSH
14.01 ± 0.01PIDibeler, Reese, et al., 1966RDSH
13.999 ± 0.002PINicholson, 1965RDSH
14.05PEAl-Joboury and Turner, 1963RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Krypton = (Bromine anion • Krypton)

By formula: Br- + Kr = (Br- • Kr)

Quantity Value Units Method Reference Comment
Δr4.60 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; given: 0.0795(.001) eV; B
Δr<11.3kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Δr8.37kJ/molMoblGatland, 1984, 2gas phase; B,M

Methyl cation + Krypton = (Methyl cation • Krypton)

By formula: CH3+ + Kr = (CH3+ • Kr)

Quantity Value Units Method Reference Comment
Δr184.kJ/molPHPMSMcMahon, Heinis, et al., 1988gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M
Δr200. ± 10.kJ/molICRHovey and McMahon, 1987gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated; M

CO2+ + Krypton = (CO2+ • Krypton)

By formula: CO2+ + Kr = (CO2+ • Kr)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPIJarrold, Illies, et al., 1985gas phase; M

Chlorine anion + Krypton = (Chlorine anion • Krypton)

By formula: Cl- + Kr = (Cl- • Kr)

Quantity Value Units Method Reference Comment
Δr9.20 ± 0.42kJ/molLPESYourshaw, Lenzer, et al., 1998gas phase; Given: 0.0957(0.001) eV; B
Δr11.7 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B
Quantity Value Units Method Reference Comment
Δr-12.0 ± 1.7kJ/molTDAsWada, Kikkawa, et al., 2007gas phase; B

Cesium ion (1+) + Krypton = (Cesium ion (1+) • Krypton)

By formula: Cs+ + Kr = (Cs+ • Kr)

Quantity Value Units Method Reference Comment
Δr11.7kJ/molIMobGatland, 1984gas phase; M
Δr9.75kJ/molSCATTERINGGislason, 1984gas phase; M
Δr11.4kJ/molIMobViehland, 1984gas phase; M
Δr13.kJ/molIMobTakebe, 1983gas phase; M
Δr12.8kJ/molIMobTakebe, 1983gas phase; values form this reference are too high; M

Copper ion (1+) + Krypton = (Copper ion (1+) • Krypton)

By formula: Cu+ + Kr = (Cu+ • Kr)

Quantity Value Units Method Reference Comment
Δr24.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KHPMSEl-Shall, Schriver, et al., 1989gas phase; Cu+ from laser desrption; M

Iron ion (1+) + Krypton = (Iron ion (1+) • Krypton)

By formula: Fe+ + Kr = (Fe+ • Kr)

Quantity Value Units Method Reference Comment
Δr30. ± 7.1kJ/molCIDTRodgers and Armentrout, 2000RCD

H2O+ + Krypton = (H2O+ • Krypton)

By formula: H2O+ + Kr = (H2O+ • Kr)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
32. (+9.6,-0.) PD/KERDKim, Kuo, et al., 1990gas phase; M

Iodide + Krypton = (Iodide • Krypton)

By formula: I- + Kr = (I- • Kr)

Quantity Value Units Method Reference Comment
Δr4.18kJ/molTherZhao, Yourshaw, et al., 1994gas phase; B

Potassium ion (1+) + Krypton = (Potassium ion (1+) • Krypton)

By formula: K+ + Kr = (K+ • Kr)

Quantity Value Units Method Reference Comment
Δr13.4kJ/molIMobGatland, 1984gas phase; M
Δr12.1kJ/molSCATTERINGGislason, 1984gas phase; M
Δr12.3kJ/molIMobViehland, 1984gas phase; M
Δr15.5kJ/molIMobTakebe, 1983gas phase; M

Kr+ + Krypton = (Kr+ • Krypton)

By formula: Kr+ + Kr = (Kr+ • Kr)

Quantity Value Units Method Reference Comment
Δr111.kJ/molPIDehmer and Pratt, 1982gas phase; M
Δr110.kJ/molPDissAbouaf, Huber, et al., 1978gas phase; M
Δr111.kJ/molPINg, Trevor, et al., 1977gas phase; M
Δr117.kJ/molSCATTERINGMittman and Weise, 1974gas phase; M

(Kr+ • 2Krypton) + Krypton = (Kr+ • 3Krypton)

By formula: (Kr+ • 2Kr) + Kr = (Kr+ • 3Kr)

Quantity Value Units Method Reference Comment
Δr23.3 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr74.5J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 3Krypton) + Krypton = (Kr+ • 4Krypton)

By formula: (Kr+ • 3Kr) + Kr = (Kr+ • 4Kr)

Quantity Value Units Method Reference Comment
Δr9.04 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr62.3J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 4Krypton) + Krypton = (Kr+ • 5Krypton)

By formula: (Kr+ • 4Kr) + Kr = (Kr+ • 5Kr)

Quantity Value Units Method Reference Comment
Δr8.58 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

(Kr+ • 5Krypton) + Krypton = (Kr+ • 6Krypton)

By formula: (Kr+ • 5Kr) + Kr = (Kr+ • 6Kr)

Quantity Value Units Method Reference Comment
Δr8.54 ± 0.63kJ/molPHPMSHiraoka and Mori, 1990gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Mori, 1990gas phase; M

Lithium ion (1+) + Krypton = (Lithium ion (1+) • Krypton)

By formula: Li+ + Kr = (Li+ • Kr)

Quantity Value Units Method Reference Comment
Δr44.4kJ/molSCATTERINGGislason, 1984gas phase; M
Δr38.kJ/molIMobViehland, 1984gas phase; M
Δr68.6kJ/molIMobTakebe, 1983gas phase; M

Nitric oxide anion + Krypton = (Nitric oxide anion • Krypton)

By formula: NO- + Kr = (NO- • Kr)

Quantity Value Units Method Reference Comment
Δr9.6 ± 3.8kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr10.5 ± 1.7kJ/molN/ABowen and Eaton, 1988gas phase; B

Sodium ion (1+) + Krypton = (Sodium ion (1+) • Krypton)

By formula: Na+ + Kr = (Na+ • Kr)

Quantity Value Units Method Reference Comment
Δr20.3kJ/molSCATTERINGGislason, 1984gas phase; M
Δr21.3kJ/molIMobViehland, 1984gas phase; M
Δr24.kJ/molDTMcKnight and Sawina, 1973gas phase; M
Δr27.5kJ/molIMobTakebe, 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KDTMcKnight and Sawina, 1973gas phase; M

Oxygen cation + Krypton = (Oxygen cation • Krypton)

By formula: O2+ + Kr = (O2+ • Kr)

Quantity Value Units Method Reference Comment
Δr32.kJ/molPDissJarrold, Misev, et al., 1984gas phase; M

O2S+ + Krypton = (O2S+ • Krypton)

By formula: O2S+ + Kr = (O2S+ • Kr)

Quantity Value Units Method Reference Comment
Δr30.kJ/molPDissKim, Jarrold, et al., 1986gas phase; ΔrH<; M

Rubidium ion (1+) + Krypton = (Rubidium ion (1+) • Krypton)

By formula: Rb+ + Kr = (Rb+ • Kr)

Quantity Value Units Method Reference Comment
Δr11.0kJ/molIMobGatland, 1984gas phase; M
Δr11.2kJ/molIMobViehland, 1984gas phase; M
Δr14.0kJ/molIMobTakebe, 1983gas phase; M

Xe+ + Krypton = (Xe+ • Krypton)

By formula: Xe+ + Kr = (Xe+ • Kr)

Quantity Value Units Method Reference Comment
Δr37.kJ/molPIDehmer and Pratt, 1982gas phase; M
Δr36.kJ/molPINg, Tiedemann, et al., 1977gas phase; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin ATLANTIC REFINING CO., PHILADELPHIA, PENNSYLVANIA
NIST MS number 34227

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Ziegler, Yarbrough, et al., 1964
Ziegler, W.T.; Yarbrough, D.W.; Mullins, J.C., Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids below One Atmosphere Pressure. VI. Krypton, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-764, Tech. Rep. No. 1, 1964. [all data]

Lahr and Eversole, 1962
Lahr, P.H.; Eversole, W.G., Compression Isotherms of Argon, Krypton, and Xenon Through the Freezing Zone, J. Chem. Eng. Data, 1962, 7, 42-47. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

Theeuwes and Bearman, 1970
Theeuwes, F.; Bearman, R.J., The p,V,T behaviour of dense fluids III. The vapor pressure and orthobaric densities of krypton, J. Chem. Thermodyn., 1970, 2, 179-85. [all data]

Theeuwes and Bearman, 1970, 2
Theeuwes, F.; Bearman, R.J., The p,V,T Behavior of Dense Fluids. III. The Vapor Pressure and Orthobaric Density of Krypton, J. Chem. Thermodyn., 1970, 2, 2, 179-185, https://doi.org/10.1016/0021-9614(70)90081-9 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P., Methyl Cation Affinities, J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002 . [all data]

Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L., Photoionization mass spectrometry of trans-azomethane, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]

Hovey and McMahon, 1987
Hovey, J.K.; McMahon, T.B., Bond Strength in the Methylkryptonium Ion Determined from Ion Cyclotron Resonance Methyl Cation Exchange Equilibria, J. Phys. Chem., 1987, 91, 17, 4560, https://doi.org/10.1021/j100301a028 . [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Yourshaw, Lenzer, et al., 1998
Yourshaw, I.; Lenzer, T.; Reiser, G.; Neumark, D.M., Zero electron kinetic energy spectroscopy of the KrBr-, XeBr-, and KrCl- anions, J. Chem. Phys., 1998, 109, 13, 5247-5256, https://doi.org/10.1063/1.477141 . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Gatland, 1984, 2
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Abouaf, Huber, et al., 1978
Abouaf, R.; Huber, B.A.; Cosby, P.C.; Saxon, R.P.; Moseley, J.T., Photofragment Spectroscopy and Potential Curves of Kr2+, J. Chem. Phys., 1978, 68, 5, 2406, https://doi.org/10.1063/1.436011 . [all data]

Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Kr2 and Ar2 van der Vaals Molecules, J. Chem. Phys., 1977, 66, 2, 446, https://doi.org/10.1063/1.433989 . [all data]

Mittman and Weise, 1974
Mittman, H.U.; Weise, H.P., Scattering of Ions V. Elastic Scattering of the Symmetric Rare Gas Ion - Rare Gas Atom Systems, Z. Naturforsch., 1974, A29, 400. [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Hiraoka and Mori, 1990
Hiraoka, K.; Mori, T., Stability of Rare - Gas Cluster Ions, J. Chem. Phys., 1990, 92, 7, 4408, https://doi.org/10.1063/1.457751 . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Kim, Kuo, et al., 1990
Kim, H.S.; Kuo, C.H.; Bowers, M.T., Photodissociation Dynamics of Water Containing Clusters. I. Kr.H2O+, J. Chem. Phys., 1990, 93, 8, 5594, https://doi.org/10.1063/1.459630 . [all data]

Kim, Jarrold, et al., 1986
Kim, H.S.; Jarrold, M.F.; Bowers, M.T., Photodissociation of Weakly Bound Ion-Molecule Clusters: Kr.SO2+, J. Chem. Phys., 1986, 90, 16, 3584, https://doi.org/10.1021/j100407a024 . [all data]

Zhao, Yourshaw, et al., 1994
Zhao, Y.X.; Yourshaw, I.; Reiser, G.; Arnold, C.C.; Neumark, D.M., Study of the ArBr(-), ArI(-), and KrI(-) anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy, J. Chem. Phys., 1994, 101, 8, 6538, https://doi.org/10.1063/1.468500 . [all data]

Jarrold, Misev, et al., 1984
Jarrold, M.F.; Misev, L.; Bowers, M.T., Charge Transfer Half - Collisions: Photodissociation of the Kr.O2+ cluster Ion with Resolution of the Product Vibrational States, J. Chem. Phys., 1984, 81, 10, 4369, https://doi.org/10.1063/1.447448 . [all data]

Jarrold, Illies, et al., 1985
Jarrold, M.F.; Illies, A.J.; Wagner-Redeker, W.; Bowers, M.T., Photodissociation of Weakly Bound Ion - Molecule Clusters: The Kr.CO2+ Cluster, J. Phys. Chem., 1985, 89, 15, 3269, https://doi.org/10.1021/j100261a020 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Lide, 1992
Lide, D.R. (Editor), Ionization potentials of atoms and atomic ions in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Wetzel, Baiocchi, et al., 1987
Wetzel, R.C.; Baiocchi, F.A.; Hayes, T.R.; Freund, R.S., Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A, 1987, 35, 559. [all data]

Kelly, 1987
Kelly, R.L., Atomic and ionic spectrum lines of hydrogen through kryton, J. Phys. Chem. Ref. Data, 1987, 16. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Yoshino and Tanaka, 1979
Yoshino, K.; Tanaka, Y., Absorption spectrum of krypton in the vacuum UV region, J. Opt. Soc. Am., 1979, 69, 159. [all data]

Chaghtai and Hassan, 1973
Chaghtai, M.S.Z.; Hassan, V., The ionization potential and the 4s4p6nl levels of 86Kr I, J. Phys. B:, 1973, 6, 433. [all data]

Spohr, Guyon, et al., 1971
Spohr, R.; Guyon, P.M.; Chupka, W.A.; Berkowitz, J., Threshold photoelectron detector for use in the vacuum ultraviolet, Rev. Sci. Instrum., 1971, 42, 1872. [all data]

Moore, 1970
Moore, C.E., Ionization potentials and ionization limits derived from the analyses of optical spectra, Natl. Stand. Ref. Data Ser., (U.S. Natl. Bur. Stand.), 1970, 34, 1. [all data]

Hotop and Niehaus, 1969
Hotop, H.; Niehaus, A., Reactions of excited atoms molecules with atoms and molecules. II. Energy analysis of penning electrons, Z. Phys., 1969, 228, 68. [all data]

Gallegos and Klaver, 1967
Gallegos, E.J.; Klaver, R.F., Automatic voltage scanner for a peak switching mass spectrometer, J.Sci. Instr., 1967, 44, 427. [all data]

Dibeler, Reese, et al., 1966
Dibeler, V.H.; Reese, R.M.; Krauss, M., Mass spectrometric study of the photoionization of small molecules, Advan. Mass Spectrom., 1966, 3, 471. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Al-Joboury and Turner, 1963
Al-Joboury, M.I.; Turner, D.W., Molecular photo-electron spectroscopy. Part I. The hydrogen and nitrogen molecules, J. Chem. Soc., 1963, 5141. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References