Heptane


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-44.89 ± 0.19kcal/molCcbProsen and Rossini, 1945ALS
Δfgas-45.24kcal/molN/ADavies and Gilbert, 1941Value computed using ΔfHliquid° value of -225.9±1.3 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 36.6 kj/mol from Prosen and Rossini, 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
30.509200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT
36.960273.15
39.48 ± 0.07298.15
39.670300.
50.349400.
60.251500.
68.700600.
75.801700.
81.800800.
86.900900.
91.2001000.
94.9001100.
98.1001200.
101.001300.
104.001400.
106.001500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
45.770 ± 0.045357.10Waddington G., 1947GT
47.510 ± 0.048373.15
50.370 ± 0.050400.40
53.850 ± 0.055434.35
57.000 ± 0.057466.10

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-53.63 ± 0.19kcal/molCcbProsen and Rossini, 1945ALS
Δfliquid-53.99 ± 0.30kcal/molCcbDavies and Gilbert, 1941ALS
Quantity Value Units Method Reference Comment
Δcliquid-1151. ± 2.kcal/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
liquid78.530cal/mol*KN/AHuffman, Gross, et al., 1961DH
liquid78.389cal/mol*KN/ADouglas, Furukawa, et al., 1954DH
liquid78.599cal/mol*KN/APitzer K.S., 1940DH
liquid78.90cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 71.00 J/mol*K. Based on previously published specific heat data, 30PAR/HUF.; DH
liquid78.01cal/mol*KN/AParks, Huffman, et al., 1930Extrapolation below 90 K, 71.00 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
53.690298.15Andreoli-Ball, Patterson, et al., 1988DH
53.709298.15Saito and Tanaka, 1988DH
53.712298.15Shiohama, Ogawa, et al., 1988DH
53.270293.15Kalali, Kohler, et al., 1987T = 293.15, 313.15 K.; DH
53.7096298.15Tanaka, 1987DH
53.810300.Van Miltenburg, Van den Berg, et al., 1987T = 10 to 350 K.; DH
53.707298.15Wilhelm, Inglese, et al., 1987DH
53.7239298.15Baluja, Bravo, et al., 1985DH
53.7239298.15Lainez, Rodrigo, et al., 1985DH
53.7120298.15Tanaka, Nakamichi, et al., 1985DH
53.707298.15Grolier, Inglese, et al., 1984DH
53.724298.15Roux, Grolier, et al., 1984DH
53.7199298.15Kimura, Treszczanowicz, et al., 1983DH
53.855300.Tan, Zhou, et al., 1983T = 220 to 380 K.; DH
53.73298.15Tanaka, 1982DH
53.54298.Zaripov, 1982T = 298, 323, 363 K.; DH
53.702298.15Grolier, Inglese, et al., 1981DH
53.685297.860Kalinowska, Jedlinska, et al., 1980T = 185 to 300 K. Unsmoothed experimental datum.; DH
53.695298.15Brown and Ziegler, 1979T = 183 to 302 K. Results as equation only.; DH
53.92300.Czarnota, 1979DH
53.68298.15Grolier, Hamedi, et al., 1979DH
52.581285.Schaake, Offringa, et al., 1979T = 90 to 285 K.; DH
54.13333.15Woycicka and Kalinowska, 1978DH
60.95298.15Meijer, Blok, et al., 1977T = 160 to 350 K.; DH
53.7063298.15Fortier and Benson, 1976DH
53.39298.Grigor'ev, Rastorguev, et al., 1975T = 300 to 463 K.; DH
53.583298.15Holzhauer and Ziegler, 1975T = 182 to 312 K. Cp = 866.18820 - 9.9628490T + 0.054561085T2 - 0.00013079634T3 + 1.1957392x10-7T4 J/mol*K.; DH
54.142303.15Woycicka and Kalinowska, 1975DH
53.85298.15Diaz pena and Renuncio, 1974T = 298 to 323 K.; DH
54.142298.15Kalinowska and Woycicka, 1973DH
50.10250.Van Miltenburg, 1972T = 130 to 263 K.; DH
78.540298.15Oetting F.L., 1963DH
53.760298.15Huffman, Gross, et al., 1961T = 10 to 300 K.; DH
53.760298.15McCullough and Messerly, 1961T = 10 to 370 K. Csat(liq) = 56.582 - 0.14490T + 5.7813x10-4T2 - 4.1667x10-7T3 cal/mol*K.; DH
59.11332.Swietoslawski and Zielenkiewicz, 1958Mean value 22 to 96 C.; DH
55.719299.8Helfrey, Heiser, et al., 1955T = 70 to 220 F.; DH
53.714298.15Douglas, Furukawa, et al., 1954T = 20 to 520 K.; DH
53.714298.15Ginnings and Furukawa, 1953T = 25 to 520 K.; DH
53.740298.15Osborne and Ginnings, 1947T = 278 to 318 K.; DH
53.681296.5Pitzer K.S., 1940T = 15 to 318 K. Value is unsmoothed experimental datum.; DH
50.50298.Bykov, 1939DH
50.41300.8Phillip, 1939DH
53.30298.Vold, 1937Cp given as 0.532 cal/g*K.; DH
53.61298.1Richards and Wallace, 1932T = 293 to 323 K.; DH
53.11299.2Parks, Huffman, et al., 1930T = 90 to 300 K. Value is unsmoothed experimental datum.; DH
51.86303.Willams and Daniels, 1924T = 303 to 350 K. Equation only.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil371.5 ± 0.3KAVGN/AAverage of 215 out of 227 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus182.6 ± 0.4KAVGN/AAverage of 51 out of 52 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple182.56 ± 0.03KAVGN/AAverage of 26 out of 31 values; Individual data points
Quantity Value Units Method Reference Comment
Tc540. ± 2.KAVGN/AAverage of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Pc27.0 ± 0.3atmAVGN/AAverage of 18 out of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.428l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.425l/molN/AZawisza and Vejrosta, 1982Uncertainty assigned by TRC = 0.001 l/mol; Visual; TRC
Quantity Value Units Method Reference Comment
ρc2.35 ± 0.07mol/lAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap8.6 ± 0.8kcal/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
7.593371.6N/AMajer and Svoboda, 1985 
8.29345.N/ASegura, Wisniak, et al., 2002Based on data from 330. to 371. K.; AC
8.41343.N/AOrtega, González, et al., 2001Based on data from 328. to 393. K.; AC
8.63312.AStephenson and Malanowski, 1987Based on data from 297. to 375. K. See also Forziati, Norris, et al., 1949.; AC
8.63313.N/AMichou-Saucet, Jose, et al., 1984Based on data from 298. to 338. K.; AC
8.63313.N/ASipowska and Wieczorek, 1984Based on data from 298. to 363. K.; AC
8.51 ± 0.02313.CMajer, Svoboda, et al., 1979AC
8.22 ± 0.02333.CMajer, Svoboda, et al., 1979AC
7.91 ± 0.02353.CMajer, Svoboda, et al., 1979AC
8.70303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
8.25 ± 0.02331.CWaddington, Todd, et al., 1947AC
7.93 ± 0.02350.CWaddington, Todd, et al., 1947AC
8.46328.N/AThomson, 1946Based on data from 313. to 398. K.; AC
8.60314.MMWillingham, Taylor, et al., 1945Based on data from 299. to 372. K.; AC
7.65371.CPitzer K.S., 1940AC
8.48325.EBSmith, 1940Based on data from 310. to 397. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 363.12.830.2831540.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
185.29 to 295.604.812321635.409-27.338Carruth and Kobayashi, 1973Coefficents calculated by NIST from author's data.
299.07 to 372.434.022611268.636-56.199Williamham, Taylor, et al., 1945 

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
13.8183.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
3.3437182.57Van Miltenburg, Van den Berg, et al., 1987DH
3.3587182.59Schaake, Offringa, et al., 1979DH
3.3549182.55Huffman, Gross, et al., 1961DH
3.3549182.55McCullough and Messerly, 1961DH
3.3513182.56Douglas, Furukawa, et al., 1954DH
3.3513182.56Ginnings and Furukawa, 1953DH
3.35581182.52Pitzer K.S., 1940DH
3.3602182.7Meijer, Blok, et al., 1977DH
3.3607182.56Van Miltenburg, 1972DH
3.35339182.56Oetting F.L., 1963DH
3.356182.6Domalski and Hearing, 1996AC
3.3850182.2Huffman, Parks, et al., 1930DH
3.3850182.2Parks, Huffman, et al., 1930DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
18.39182.59Schaake, Offringa, et al., 1979DH
18.38182.55Huffman, Gross, et al., 1961DH
18.38182.55McCullough and Messerly, 1961DH
18.84182.56Douglas, Furukawa, et al., 1954DH
18.36182.56Ginnings and Furukawa, 1953DH
18.39182.52Pitzer K.S., 1940DH
18.4182.7Meijer, Blok, et al., 1977DH
18.41182.56Van Miltenburg, 1972DH
18.36182.56Oetting F.L., 1963DH
18.58182.2Huffman, Parks, et al., 1930DH
18.58182.2Parks, Huffman, et al., 1930DH

Temperature of phase transition

Ttrs (K) Initial Phase Final Phase Reference Comment
182.586crystaline, IliquidHolzhauer and Ziegler, 1975DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Manganese, tricarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C14H21MnO2 (solution) + Carbon monoxide (solution)

By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr47. ± 2.kcal/molAVGN/AAverage of 18 values; Individual data points

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molAVGN/AAverage of 13 values; Individual data points

C12H16CrO5 (solution) = Heptane (solution) + C5CrO5 (solution)

By formula: C12H16CrO5 (solution) = C7H16 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr9.61kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 27.20 kcal/mol Morse, Parker, et al., 1989; MS
Δr9.8kcal/molN/AYang, Vaida, et al., 1988solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 26.98 kcal/mol Yang, Peters, et al., 1986; MS

Hydrogen + 1-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-29.8 ± 0.5kcal/molAVGN/AAverage of 6 values; Individual data points

C12H16MoO5 (solution) = C5MoO5 (solution) + Heptane (solution)

By formula: C12H16MoO5 (solution) = C5MoO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr8.70kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Mo-CO bond in Mo(CO)6, 40.51 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Mo(CO)6(solution) + n-C7H16(solution) = Mo(CO)5(n-C7H16)(solution) + CO(solution), 31.81 kcal/mol Morse, Parker, et al., 1989; MS

C12H16O5W (solution) = C5O5W (solution) + Heptane (solution)

By formula: C12H16O5W (solution) = C5O5W (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of W-CO bond in W(CO)6, 46.01 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction W(CO)6(solution) + n-C7H16(solution) = W(CO)5(n-C7H16)(solution) + CO(solution), 32.60 kcal/mol Morse, Parker, et al., 1989; MS

Molybdenum hexacarbonyl (solution) + Heptane (solution) = C12H16MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.3 ± 2.9kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS
Δr31.8 ± 1.3kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

Hydrogen + (Z)-3-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-28.32 ± 0.07kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS
Δr-28.01 ± 0.68kcal/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane; ALS

Heptane = Pentane, 3-ethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-0.14 ± 0.23kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-0.52 ± 0.27kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,2-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-3.42 ± 0.28kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-4.45 ± 0.32kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,3-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.18 ± 0.26kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-2.80 ± 0.30kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,4-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.54 ± 0.16kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-3.40 ± 0.22kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 3,3-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.44 ± 0.15kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-3.24 ± 0.21kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Butane, 2,2,3-trimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-3.00 ± 0.22kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-4.17 ± 0.27kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Tungsten hexacarbonyl (solution) + Heptane (solution) = C12H16O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.60 ± 0.41kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Benzenechromiumtricarbonyl (solution) + Heptane (solution) = C15H22CrO2 (solution) + Carbon monoxide (solution)

By formula: C9H6CrO3 (solution) + C7H16 (solution) = C15H22CrO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.79 ± 0.31kcal/molPACBurkey, 1990solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Vanadium, tetracarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C15H21O3V (solution) + Carbon monoxide (solution)

By formula: C9H5O4V (solution) + C7H16 (solution) = C15H21O3V (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr25.6 ± 3.1kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS

C12H16CrO5 (solution) + 1,3-Diazine (solution) = Heptane (solution) + C10H5CrNO5 (solution)

By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)

Quantity Value Units Method Reference Comment
Δr-20.1 ± 0.41kcal/molPACYang, Vaida, et al., 1988solvent: Heptane; MS

Hydrogen + 2-Heptene, (E)- = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.3 ± 0.1kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

Hydrogen + 3-Heptene, (E)- = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.41 ± 0.07kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

C14H21MnO2 (solution) + Tetrahydrofuran (solution) = C11H13MnO3 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-16.1 ± 1.4kcal/molPACKlassen, Selke, et al., 1990solvent: Heptane; MS

Hydrogen + (Z)-2-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.63 ± 0.1kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

C12H16CrO5 (solution) + Tetrahydrofuran (solution) = C9H8CrO6 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.4 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Acetone (solution) = Heptane (solution) + C8H6CrO6 (solution)

By formula: C12H16CrO5 (solution) + C3H6O (solution) = C7H16 (solution) + C8H6CrO6 (solution)

Quantity Value Units Method Reference Comment
Δr-13.5 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Tributylamine (solution) = C17H27CrNO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C12H27N (solution) = C17H27CrNO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + 1-Hexene (solution) = C11H12CrO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C6H12 (solution) = C11H12CrO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C14H21MnO2 (solution) + Acetone (solution) = C10H11MnO3 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + C3H6O (solution) = C10H11MnO3 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-17.4 ± 1.0kcal/molPACKlassen, Selke, et al., 1990solvent: Heptane; MS

C14H21MnO2 (solution) + Methylene chloride (solution) = C8H7Cl2MnO2 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + CH2Cl2 (solution) = C8H7Cl2MnO2 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 1.0kcal/molPACYang and Yang, 1992solvent: Heptane; MS

C14H21MnO2 (solution) + Methane, dibromo- (solution) = C8H7Br2MnO2 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + CH2Br2 (solution) = C8H7Br2MnO2 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang and Yang, 1992solvent: Heptane; MS

C12H16CrO5 (solution) + Ethanol (solution) = C7H5CrO6 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C2H6O (solution) = C7H5CrO6 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-13.8 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Acetonitrile (solution) = C8H6CrNO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C2H3N (solution) = C8H6CrNO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-18.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

2-Heptyne + 2Hydrogen = Heptane

By formula: C7H12 + 2H2 = C7H16

Quantity Value Units Method Reference Comment
Δr-65.11 ± 0.31kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 3-Heptyne = Heptane

By formula: 2H2 + C7H12 = C7H16

Quantity Value Units Method Reference Comment
Δr-64.63 ± 0.36kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 1-Heptyne = Heptane

By formula: 2H2 + C7H12 = C7H16

Quantity Value Units Method Reference Comment
Δr-69.65 ± 0.39kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00123700.LN/A 
0.00123700.XN/A 
0.00037 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.00044 LN/A 
0.00049 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.93 ± 0.10eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.15ESTLuo and Pacey, 1992LL
9.93 ± 0.10EVALLias, 1982LBLHLM
9.83 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
9.91EQLias, Ausloos, et al., 1976LLK
9.90 ± 0.05PIBrehm, 1966RDSH
10.16PETurner and Al-Joboury, 1964RDSH
10.08PIWatanabe, Nakayama, et al., 1962RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+27.9 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H5+12.89?EIPotzinger and Bunau, 1969RDSH
C3H5+12.7 ± 0.1?PIBrehm, 1966RDSH
C3H6+10.7 ± 0.1C4H10PIBrehm, 1966RDSH
C3H6+10.97 ± 0.08C4H10PISteiner, Giese, et al., 1961RDSH
C3H7+11.58?EIPotzinger and Bunau, 1969RDSH
C3H7+11.05 ± 0.05?PIBrehm, 1966RDSH
C4H7+11.5 ± 0.1?PIBrehm, 1966RDSH
C4H8+10.56 ± 0.05C3H8PIBrehm, 1966RDSH
C4H8+10.97 ± 0.03C3H8PISteiner, Giese, et al., 1961RDSH
C4H9+10.72C3H7EIPotzinger and Bunau, 1969RDSH
C4H9+10.56 ± 0.05C3H7PIBrehm, 1966RDSH
C4H9+11.19 ± 0.07C3H7PISteiner, Giese, et al., 1961RDSH
C5H10+10.33C2H6EILewis and Hamill, 1970RDSH
C5H10+10.40 ± 0.05C2H6PIBrehm, 1966RDSH
C5H10+11.035 ± 0.025C2H6PISteiner, Giese, et al., 1961RDSH
C5H11+10.66C2H5EIPotzinger and Bunau, 1969RDSH
C5H11+10.43 ± 0.05C2H5PIBrehm, 1966RDSH
C5H11+10.96 ± 0.085C2H5PISteiner, Giese, et al., 1961RDSH
C6H12+11.145 ± 0.035CH4PISteiner, Giese, et al., 1961RDSH
C6H13+10.7 ± 0.1CH3PIBrehm, 1966RDSH
C6H13+10.93 ± 0.11CH3PISteiner, Giese, et al., 1961RDSH

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Site Links, NIST Free Links, NIST Subscription Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61276

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C., Heats of combustion and formation of the nine isomeric heptanes in the liquid state, J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Waddington G., 1947
Waddington G., An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane, J. Am. Chem. Soc., 1947, 69, 22-30. [all data]

Huffman, Gross, et al., 1961
Huffman, H.M.; Gross, M.E.; Scott, D.W.; McCullough, I.P., Low temperature thermodynamic properties of six isomeric heptanes, J. Phys. Chem., 1961, 65, 495-503. [all data]

Douglas, Furukawa, et al., 1954
Douglas, T.B.; Furukawa, G.T.; McCoskey, R.E.; Ball, A.F., Calorimetric properties of normal heptane from 0 to 520 K, J. Res., 1954, NBS 53, 139-153. [all data]

Pitzer K.S., 1940
Pitzer K.S., The thermodynamics of n-heptane and 2,2,4-trimethylpentane, including heat capacities, heats of fusion and vaporization and entropies, J. Am. Chem. Soc., 1940, 62, 1224-1227. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Thomas, S.B., Thermal data on organic compounds. VIII. The heat capacities, entropies and free energies of the isomeric heptanes, J. Am. Chem. Soc., 1930, 52, 3241-3251. [all data]

Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B., Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Saito and Tanaka, 1988
Saito, A.; Tanaka, R., Excess volumes and heat capacities of binary mixtures formed from cyclohexane, hexane and heptane at 298.15 K, J. Chem. Thermodynam., 1988, 20, 859-865. [all data]

Shiohama, Ogawa, et al., 1988
Shiohama, Y.; Ogawa, H.; Murakami, S.; Fujihara, I., Excess molar isobaric heat capacities and isentropic compressibilities of (cis- or trans-decalin + benzene or toluene or iso-octane or n-heptane) at 298.15 K, J. Chem. Thermodynam., 1988, 20, 1183-1189. [all data]

Kalali, Kohler, et al., 1987
Kalali, H.; Kohler, F.; Svejda, P., Excess properties of the mixture bis(2-dichlorethyl)ether (chlorex) + 2,2,4-trimethylpentane (isooctane), Monatsh. Chem., 1987, 118, 1-18. [all data]

Tanaka, 1987
Tanaka, R., Excess heat capacities for mixture of benzene with n-heptane at 293.15, 298.15 and 303.15 K, J. Chem. Eng. Data, 1987, 32, 176-177. [all data]

Van Miltenburg, Van den Berg, et al., 1987
Van Miltenburg, J.C.; Van den Berg, G.J.K.; Van Bommel, M.J., Construction of an adiabatic calorimeter. Measurements of the molar heat capacity of synthetic sapphire and of n-heptane, J. Chem. Thermodynam., 1987, 19, 1129-1137. [all data]

Wilhelm, Inglese, et al., 1987
Wilhelm, E.; Inglese, A.; Roux, A.H.; Grolier, J.-P.E., Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane, Fluid Phase Equilibria, 1987, 34, 49-67. [all data]

Baluja, Bravo, et al., 1985
Baluja, M.C.; Bravo, R.; Pintos, M.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E., Unusual dependence on concentration of the excess heat capacities of ester solutions in alkanes, Calorim. Anal. Therm., 1985, 16, 138-144. [all data]

Lainez, Rodrigo, et al., 1985
Lainez, A.; Rodrigo, M.; Roux, A.H.; Grolier, J.-P.E.; Wilhelm, E., Relations between structure and thermodynamic properties. Heat capacities of polar substances (nitrobenzene and benzonitrile) in alkane solutions, Calorim. Anal. Therm., 1985, 16, 153-158. [all data]

Tanaka, Nakamichi, et al., 1985
Tanaka, R.; Nakamichi, T.; Murakami, S., Molar excess heat capacities and volumes for mixtures of benzomitrile with cyclohexane between 10 and 45°C, J. Solution Chem., 1985, 14(11), 795-803. [all data]

Grolier, Inglese, et al., 1984
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess molar heat capacities of (1,4-dioxane + an n-alkane): an unusual composition dependence, J. Chem. Thermodynam., 1984, 16, 67-71. [all data]

Roux, Grolier, et al., 1984
Roux, A.H.; Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess molar enthalpies, excess molar heat capacities and excess molar volumes of (fluorobenzene + an n-alkane), Ber. Bunsenges. Phys. Chem., 1984, 88, 986-992. [all data]

Kimura, Treszczanowicz, et al., 1983
Kimura, F.; Treszczanowicz, A.J.; Halpin, C.J.; Benson, G.C., Excess volumes and ultrasonic speeds for (di-n-propylether + n-heptane), J. Chem. Thermodynam., 1983, 15, 503-510. [all data]

Tan, Zhou, et al., 1983
Tan, Z.; Zhou, L.; Chen, S.; Yin, A.; Sun, Y.; Ye, J.; Wang, X., An adiabatic calorimeter for heat-capacity measurements from 80 to 400 K - heat capacities of a-alumina and n-heptane, Sci. Sin., Ser. B (Engl. Ed.), 1983, 26, 1014-1026. [all data]

Tanaka, 1982
Tanaka, R., Determination of excess heat capacities of (benzene + tetrachloromethane and + cyclohexane) between 293.15 and 303.15 K by use of a Picker flow calorimeter, J. Chem. Thermodynam., 1982, 14, 259-268. [all data]

Zaripov, 1982
Zaripov, Z.I., Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]

Grolier, Inglese, et al., 1981
Grolier, J.P.E.; Inglese, A.; Roux, A.H.; Wilhelm, E., Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities, Ber. Bunsenges. Phys. Chem., 1981, 85, 768-772. [all data]

Kalinowska, Jedlinska, et al., 1980
Kalinowska, B.; Jedlinska, J.; Woycicki, W.; Stecki, J., Heat capacities of liquids at temperatures between 90 and 300 K and at atmospheric pressure. I. Method and apparatus, and the heat capacities of n-heptane, n-hexane, and n-propanol, J. Chem. Thermodynam., 1980, 12, 891-896. [all data]

Brown and Ziegler, 1979
Brown, G.N., Jr.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of ethanol + n-heptane and 2-propanol + n-heptane solutions, J. Chem. Eng. Data, 1979, 24, 319-330. [all data]

Czarnota, 1979
Czarnota, I., Calorimetric system for measurement of specific heat capacity of liquids, Cp, at high pressures, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1979, 10, 763-772. [all data]

Grolier, Hamedi, et al., 1979
Grolier, J-P.E.; Hamedi, M.H.; Wilhelm, E.; Kehiaian, H.V., Excess heat capacities of binary mixtures of carbon tetrachloride with n-alkanes at 298.15 K, Thermochim. Acta, 1979, 31, 79-84. [all data]

Schaake, Offringa, et al., 1979
Schaake, R.C.F.; Offringa, J.C.A.; van der Berg, G.J.K.; van Miltenburg, J.C., Phase transitions in solids, studied by adiabatic calorimetry. I. Design and test of an automatic adiabatic calorimeter, J. Royal Netherlands Chem. Soc., 1979, 98, 408-412. [all data]

Woycicka and Kalinowska, 1978
Woycicka, M.; Kalinowska, B., Excess entahlpy and heat capacities of diluted propionic acid solutions in n-heptane, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1978, 26, 371-375. [all data]

Meijer, Blok, et al., 1977
Meijer, E.L.; Blok, J.G.; Kroon, J.; Oonk, H.A.J., The carvoxime system. IV. Heat capacities and enthalpies of melting of DL-carvoxime, L-carvoxime and standard n-heptane, Thermochim. Acta, 1977, 20, 325-334. [all data]

Fortier and Benson, 1976
Fortier, J.-L.; Benson, G.C., Excess heat capacities of binary liquid mixtures determined with a Picker flow calorimeter, J. Chem. Thermodynam., 1976, 8, 411-423. [all data]

Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S., Experimental determination of the isobaric specific heat of n-alkanes, Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]

Holzhauer and Ziegler, 1975
Holzhauer, J.K.; Ziegler, W.T., Temperature dependence of excess thermodynamic properties of n-heptane-toluene, methylcyclohexane-toluene, and n-heptane-methylcyclohexane systems, J. Phys. Chem., 1975, 79(6), 590-604. [all data]

Woycicka and Kalinowska, 1975
Woycicka, M.K.; Kalinowska, B., Enthalpies of mixing and excess heat capacities of dilute solutions of n-decanol with n-heptane and n-tridecane, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1975, 23, 759-764. [all data]

Diaz pena and Renuncio, 1974
Diaz pena, M.D.; Renuncio, J.A.R., Construccion de un calorimetro adiabatico. Capacidad calorifica de mezclas n-hexano + n-hexadecano, An. Quim., 1974, 70, 113-120. [all data]

Kalinowska and Woycicka, 1973
Kalinowska, B.; Woycicka, M., Excess heat capacities of dilute solutions of n-hexanol in n-alkanes, Bull. Aca. Pol. Sci. (Ser. Sci. Chim.), 1973, 21(11), 845-848. [all data]

Van Miltenburg, 1972
Van Miltenburg, J.C., Construction of an adiabatic calorimeter. Thermodynamic properties of standard n-heptane from 155 to 270K and of 2,2-dichloropropane from 135 to 270K, J. Chem. Thermodynam., 1972, 4, 773-782. [all data]

Oetting F.L., 1963
Oetting F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K, J. Phys. Chem., 1963, 67, 2757-2761. [all data]

McCullough and Messerly, 1961
McCullough, J.P.; Messerly, J.F., The chemical thermodynamic properties of hydrocarbons and related substances, Bureau of Mines Bulletin, 1961, 596, pp. [all data]

Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat of some ternary azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]

Helfrey, Heiser, et al., 1955
Helfrey, P.F.; Heiser, D.A.; Sage, B.H., Isobaric heat capacities at bubble point, Two trimethylbenzenes and n-heptane, Ind. Eng. Chem., 1955, 44, 2385-2388. [all data]

Ginnings and Furukawa, 1953
Ginnings, D.C.; Furukawa, G.T., Heat capacity standards for the range 14 to 1200°K, J. Am. Chem. Soc., 1953, 75, 522-527. [all data]

Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. Res. NBS, 1947, 39, 453-477. [all data]

Bykov, 1939
Bykov, V.T., Heat of mixing of liquids, Zhur. Fiz. Khim., 1939, 13, 1013-1019. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Vold, 1937
Vold, R.D., A calorimetric test of the solubility equation for regular solutions, J. Am. Chem. Soc., 1937, 59, 1515-1521. [all data]

Richards and Wallace, 1932
Richards, W.T.; Wallace, J.H., Jr., The specific heats of five organic liquids from their adiabatic temperature-pressure coefficients, J. Am. Chem. Soc., 1932, 54, 2705-2713. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Zawisza and Vejrosta, 1982
Zawisza, A.; Vejrosta, J., High-pressure liquid-vapor equilibria, critical stat, and p(V, T, x) up to 573.15 K and 5.066 MPa for (heptane + propan-1-ol), J. Chem. Thermodyn., 1982, 14, 239-49. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Segura, Wisniak, et al., 2002
Segura, Hugo; Wisniak, Jaime; Galindo, Graciela; Reich, Ricardo, Phase Equilibria in the Systems 1-Hexene + Heptane and 1-Hexene + Ethyl 1,1-Dimethylethyl Ether + Heptane at 94.00 kPa, Physics and Chemistry of Liquids, 2002, 40, 1, 67-81, https://doi.org/10.1080/00319100208086650 . [all data]

Ortega, González, et al., 2001
Ortega, Juan; González, Carmelo; Galván, Salvador, Vapor-Liquid Equilibria for Binary Systems Composed of a Propyl Ester (Ethanoate, Propanoate, Butanoate) + an n -Alkane (C 7 , C 9 ), J. Chem. Eng. Data, 2001, 46, 4, 904-912, https://doi.org/10.1021/je000358a . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D., Vapor pressures and boiling points of sixty API-NBS hydrocarbons, J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050 . [all data]

Michou-Saucet, Jose, et al., 1984
Michou-Saucet, Marie-Annie; Jose, Jacques; Michou-Saucet, Christian; Merlin, J.C., Pressions de vapeur et enthalpies libres d'exces de systemes binaires: Hexamethylphosphorotriamide (HMPT) + n-hexane; n-heptane; n-octane: A 298,15 K; 303,15 K; 313,15 K; 323,15 K; 333,15 K, Thermochimica Acta, 1984, 75, 1-2, 85-106, https://doi.org/10.1016/0040-6031(84)85009-1 . [all data]

Sipowska and Wieczorek, 1984
Sipowska, Jadwiga T.; Wieczorek, Stefan A., Vapour pressures and excess Gibbs free energies of (cyclohexanol + n-heptane) between 303.147 and 373.278 K, The Journal of Chemical Thermodynamics, 1984, 16, 7, 693-699, https://doi.org/10.1016/0021-9614(84)90051-X . [all data]

Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí, Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method, Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Waddington, Todd, et al., 1947
Waddington, Guy; Todd, Samuel S.; Huffman, Hugh M., An Improved Flow Calorimeter. Experimental Vapor Heat Capacities and Heats of Vaporization of n-Heptane and 2,2,3-Trimethylbutane 1, J. Am. Chem. Soc., 1947, 69, 1, 22-30, https://doi.org/10.1021/ja01193a007 . [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Smith, 1940
Smith, E.R., Boiling points of n-heptane and 2,2,4-trimethylpentane over the range 100- to 1,500-millimeter pressure, J. RES. NATL. BUR. STAN., 1940, 24, 3, 229-17, https://doi.org/10.6028/jres.024.010 . [all data]

Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki, Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury, J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S., Polyhedron, 1988, 7, 1619. [all data]

Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V., Chem. Phys. Lett., 1986, 125, 566. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]

Rogers and Dejroongruang, 1988
Rogers, D.W.; Dejroongruang, K., Enthalpies of hydrogenation of the n-heptenes and the methylhexenes, J. Chem. Thermodyn., 1988, 20, 675-680. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the nine heptanes, J. Res. NBS, 1941, 27, 519-528. [all data]

Burkey, 1990
Burkey, T.J., J. Am. Chem. Soc., 1990, 112, 8329. [all data]

Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K., J. Am. Chem. Soc., 1990, 112, 1267. [all data]

Yang and Yang, 1992
Yang, P.-F.; Yang, K.G., J. Am. Chem. Soc., 1992, 114, 6937. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Lias, 1982
Lias, S.G., Thermochemical information from ion-molecule rate constants, Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Turner and Al-Joboury, 1964
Turner, D.W.; Al-Joboury, M.I., Molecular photoelectron spectroscopy, Bull. Soc. Chim. Belges, 1964, 73, 428. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v., Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Site Links, NIST Free Links, NIST Subscription Links, References