titanium oxide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas54.39kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
gas,1 bar233.46J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 4500. to 6000.
A 36.25740
B -2.704541
C 1.691450
D -0.151753
E 9.805701
F 51.83580
G 281.4380
H 54.39200
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-493.94kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
liquid,1 bar60.14J/mol*KReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
Δfsolid-542.66kJ/molReviewChase, 1998α phase; Data last reviewed in December, 1973

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2023. to 4500.
A 66.94390
B 0.000037
C -0.000009
D 6.926950×10-7
E 0.000050
F -526.0650
G 118.9500
H -493.9390
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 2023.298. to 2023.
A 41.7880841.76954
B 18.2454218.28621
C -0.372713-0.399308
D 0.0652110.070514
E -0.644729-0.643939
F -558.0996-553.9072
G 76.2789279.55709
H -542.6648-538.4808
ReferenceChase, 1998Chase, 1998
Comment α phase; Data last reviewed in December, 1973 β phase; Data last reviewed in December, 1973

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to OTi+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)6.819 ± 0.006eVN/AN/AL

Electron affinity determinations

EA (eV) Method Reference Comment
1.200 ± 0.010N/APeppernick, Gunaratne, et al., 2010B
1.300 ± 0.030LPESWu and Wang, 1997B

Ionization energy determinations

IE (eV) Method Reference Comment
6.819 ± 0.006LSSappey, Eiden, et al., 1989LL
6.7 ± 0.5EIBalducci, Gigli, et al., 1985LBLHLM
6.5 ± 0.5EIBalducci, Gigli, et al., 1985, 2LBLHLM
6.56 ± 0.03PEDyke, Gravenor, et al., 1984LBLHLM
6.8 ± 0.5EIBanon, Chatillon, et al., 1982LBLHLM
6.5 ± 0.3EIMurad and Hildenbrand, 1980LLK
6.7EIHildenbrand, 1977LLK
6.8 ± 0.5EISmoes, Drowart, et al., 1976LLK
6.7 ± 0.1EIHildenbrand, 1976LLK
6.4 ± 0.1EIRauh and Ackermann, 1974LLK
7.22 ± 0.35EIWu and Wahlbeck, 1972LLK
7.3 ± 0.5EIBalducci, De Maria, et al., 1972LLK
6.8 ± 0.5EIEdwards, Franzen, et al., 1971LLK
5.5 ± 0.5EIMesnard, Uzan, et al., 1966RDSH
6.82 ± 0.02PEDyke, Gravenor, et al., 1984Vertical value; LBLHLM

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
Ti+12.8 ± 0.4OEIBanon, Chatillon, et al., 1982LBLHLM
Ti+14.51 ± 0.36OEIWu and Wahlbeck, 1972LLK
Ti+14.5 ± 0.7?EIBalducci, De Maria, et al., 1972LLK
Ti+11.5 ± 0.2OEIMesnard, Uzan, et al., 1966RDSH

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through November, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for (48)Ti16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
           R (30422) H
Pathak and Palmer, 1970; Palmer and Hsu, 1972
D (31920) [(1040)]         D ↔ X 1 (31940)
Pathak and Palmer, 1970; McIntyre, Thompson, et al., 1971; Palmer and Hsu, 1972; Dubois and Gole, 1977
e 1Σ+ a + 26598.1 [845.2] Z 4.2 H  0.4892 2 0.0023  [4.7E-7] 2  1.6950 e ↔ d R 24297.5 Z
missing citation; missing citation; Linton and Singhal, 1974
f 1Δ (a + 19132) (890)   [0.50221]   [6.4E-7]  [1.67292] f ↔ a 3 R 19068.93 Z
missing citation; Linton and Singhal, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
c 1Φ a + 17890.2 [909.6] Z 4.19 H  0.5230 4 0.00313  [3.9E-7] 4  1.6393 c ↔ a 5 3 6 R 17840.6 Z
Lowater, 1929; missing citation; missing citation; Linton and Nicholls, 1969; Linton and Nicholls, 1970; Dube, 1972; Linton, 1974
C 3Δr 19617.0 838.26 Z 4.76 .047 0.48989 7 8 0.00306 -3.0E-5 6.7E-7  1.69383 C ↔ X 9 10 R 19334.03 Z
missing citation; Budo, 1936; Phillips, 1954; Uhler, 1954; missing citation; Prasad, 1962; Ortenberg and Glasko, 1963; Phillips, 1969; Linton and Nicholls, 1970; Phillips and Davis, 1972; Phillips, 1973; Collins and Fay, 1974
19525.5 838.26 Z 4.76 .047 0.48989 7 8 0.00306 -3.0E-5 6.7E-7  1.69383 C ↔ X 9 10 R 19343.66 Z
missing citation; Budo, 1936; Phillips, 1954; Uhler, 1954; missing citation; Prasad, 1962; Ortenberg and Glasko, 1963; Phillips, 1969; Linton and Nicholls, 1970; Phillips and Davis, 1972; Phillips, 1973; Collins and Fay, 1974
19427.12 838.26 Z 4.76 .047 0.48989 7 8 0.00306 -3.0E-5 6.7E-7  1.69383 C ↔ X 9 10 R 19341.68 Z
missing citation; Budo, 1936; Phillips, 1954; Uhler, 1954; missing citation; Prasad, 1962; Ortenberg and Glasko, 1963; Phillips, 1969; Linton and Nicholls, 1970; Phillips and Davis, 1972; Phillips, 1973; Collins and Fay, 1974
           C → a 11 
Linton and Broida, 1977
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
B 3Πr 16331.3 875 H 5  [0.50617] 7 12   [6.86E-7]  [1.66636] B ↔ X 9 R 16066.7 13 Z
Coheur, 1943; missing citation; Pedoussaut, 1961; Merrill, Deutsch, et al., 1962; Weltner and McLeod, 1965; missing citation; missing citation; Phillips, 1973; Collins, 1975
16315.1 875 H 5  [0.50617] 7 12   [6.86E-7]  [1.66636] B ↔ X 9 R 16151.6 13 Z
Coheur, 1943; missing citation; Pedoussaut, 1961; Merrill, Deutsch, et al., 1962; Weltner and McLeod, 1965; missing citation; missing citation; Phillips, 1973; Collins, 1975
16293.5 875 H 5  [0.50617] 7 12   [6.86E-7]  [1.66636] B ↔ X 9 R 16226.4 Z
Coheur, 1943; missing citation; Pedoussaut, 1961; Merrill, Deutsch, et al., 1962; Weltner and McLeod, 1965; missing citation; missing citation; Phillips, 1973; Collins, 1975
b 1Π a+11322.03 [911.20] Z (3.72)  0.51337 14 0.00291  6.1E-7  1.65464 b ↔ d 3 R 9054.02 Z
Pettersson, 1959; Pettersson and Lindgren, 1962; Linton and Nicholls, 1969; Lockwood, 1969; Linton and Nicholls, 1970; Collins and Fay, 1974; Linton and Singhal, 1974; Brom and Broida, 1975
           b ↔ a 3 R 11272.82 Z
missing citation; Linton and Nicholls, 1969; Lockwood, 1969; Linton and Nicholls, 1970; Linton and Singhal, 1974; Brom and Broida, 1975
           (b → X) 15 (14710)
Brom and Broida, 1975
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 3Φr 14431.0 867.78 Z 3.942  0.50739 7 0.00315 -1.0E-5 6.92E-7 2E-9 1.66436 A ↔ X 9 10 R 14163.00 Z
Christy, 1929; Lowater, 1929; missing citation; Fraser, Jarmain, et al., 1954; Uhler, 1954; missing citation; Ortenberg and Glasko, 1963; Phillips, 1969; Phillips, 1973; Collins and Fay, 1974
14262.8 867.78 Z 3.942  0.50739 7 0.00315 -1.0E-5 6.92E-7 2E-9 1.66436 A ↔ X 9 10 R 14095.88 Z
Christy, 1929; Lowater, 1929; missing citation; Fraser, Jarmain, et al., 1954; Uhler, 1954; missing citation; Ortenberg and Glasko, 1963; Phillips, 1969; Phillips, 1973; Collins and Fay, 1974
14089.91 867.78 Z 3.942  0.50739 7 0.00315 -1.0E-5 6.92E-7 2E-9 1.66436 A ↔ X 9 10 R 14019.43 Z
Christy, 1929; Lowater, 1929; missing citation; Fraser, Jarmain, et al., 1954; Uhler, 1954; missing citation; Ortenberg and Glasko, 1963; Phillips, 1969; Phillips, 1973; Collins and Fay, 1974
E 3Π 12025 924.2 H 5.1        E ↔ X 16 11871 H
McIntyre, Thompson, et al., 1971; Linton and Broida, 1977
            11886 H
McIntyre, Thompson, et al., 1971; Linton and Broida, 1977
            11899 H
McIntyre, Thompson, et al., 1971; Linton and Broida, 1977
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
d 1Σ+ a + 2215.6 [1014.6] Z (4.64)  0.54922 0.00337  [6.0E-7]  1.59972  
a 1Δ a 17 [1009.3] H 3.93  0.53760 0.00298  5.9E-7  1.61692  
X 3Δr 197.5 18 1009.02 Z 4.498 -1.07E-2 0.53541 7 0.00301 -1.1E-5 6.03E-7 3E-9 1.62022  
96.4 18           
0           
Rotation-vibr.sp. 19

Notes

1Multiple heads in flames. Absorption in a neon matrix at 4 K. Analysis uncertain.
2Perturbations in v=0 and 1 by levels of smaller B values Linton and Singhal, 1974. D1 = 9.1E-7.
3Absorption in stellar atmospheres.
4The data suggest a slight perturbation of v=0 by an unidentified level of smaller B value and lower energy. D1(E-7cm-1)= 5.8, D2(E-7 cm-1)= 6.9, D3(E-7 cm-1)= 7.5; H0 = -2.3E-11.
5Radiative lifetime τ(v=0)=17.5 ns Feinberg, Bilal, et al., 1976. See 6.
6The absolute transition probabilities of Zyrnicki, 1975 are in gross disagreement with the lifetime measurements of Feinberg, Bilal, et al., 1976.
7For spin coupling constants (spin-orbit, spin-spin, spin- rotation) see Phillips, 1973, also Kovacs, 1965, Toros, 1966, Kovacs and Korwar, 1970.
8Levels with v ≥ 4 are perturbed Phillips and Davis, 1972, Phillips, 1973. The perturbing (singlet? ) state has B ~ 0.510, ω ~ 900.
9Absorption in stellar atmospheres. Also observed in absorption in rare gas matrices Weltner and McLeod, 1965, McIntyre, Thompson, et al., 1971.
10Electronic oscillator strengths for the α system Price, Sulzmann, et al., 1971, Fairbairn, Wolnik, et al., 1974, for the γ bands Price, Sulzmann, et al., 1971.
11Only three lines [R(16), Q(17), P(18)] of the 3Δ31Δ 2-0 band have been observed in laser-excited photoluminescence.
12The Λ-type doubling in 3Π0, Δv = 1.60 cm-1, is nearly constant up to J ~ 65, then diminishes and changes sign for J > 120.
13ν00(3Π1-3Δ1) = 16248.0, ν00(3Π2-3Δ2) = 16167.8.
14Λ-type doubling Δνfe= +0.00014J(J+1).
15In neon at 4 K.
16Absorption in a neon matrix at 4 K.
17a = 3440 ± 10 cm-1 62, based on the identification of three lines of the C → a 2-0 band (see 11). A similar value (a ~3500) follows from the assignment Brom and Broida, 1975 of the b → X intercombination transition in neon. Qualitative agreement with theoretical predictions Carlson and Nesbet, 1964. Earlier estimates Phillips, 1952, Merrill, Deutsch, et al., 1962 are considerably lower.
18From the observation of two satellite bands of γ'(0-0) Phillips, 1971; see 13.
19Not observed; for the predicted structure of the fundamental band see Phillips, 1974.
20Thermochemical value (mass-spectrometry, Drowart, Coppens, et al., 1969, Hampson and Gilles, 1971, Liu and Wahlbeck, 1975, Hildenbrand, 1976; different values have been proposed by Wahlbeck and Gilles, 1967, Gilles, Hampson, et al., 1969, Balducci, De Maria, et al., 1972. See also Groves, Hoch, et al., 1955, Berkowitz, Chupka, et al., 1957, Wu and Wahlbeck, 1972, Sheldon and Gilles, 1977. A lower bound of 6.93 eV for the dissociation energy has been deduced by Dubois and Gole, 1977 from the study of chemiluminescent spectra resulting from the reactions Ti + O2 and Ti + N2O.
21Electron impact appearance potential Rauh and Ackermann, 1974.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Peppernick, Gunaratne, et al., 2010
Peppernick, S.J.; Gunaratne, K.D.D.; Castlman, A.W., Jr., Superatom Spectroscopy and the Electronic State Correlation Between Elements and Isoelectronic Molecular Counterparts, Proc. Natl. Acad Sci., 2010, 107, 3, 975, https://doi.org/10.1073/pnas.0911240107 . [all data]

Wu and Wang, 1997
Wu, H.; Wang, L.-S., Electronic Structures of Titanium Oxide Clusters: TiOy (y=1-3) and (TiO2)n (n=1-4), J. Phys. Chem., 1997, 107, 20, 8221, https://doi.org/10.1063/1.475026 . [all data]

Sappey, Eiden, et al., 1989
Sappey, A.D.; Eiden, G.; Harrington, J.E.; Weisshaar, J.C., Vibronic structure of TiO+ from multiphoton ionization photoelectron spectroscopy, J. Chem. Phys., 1989, 90, 1415. [all data]

Balducci, Gigli, et al., 1985
Balducci, G.; Gigli, G.; Guido, M., Identification and stability determinations for the gaseous titanium oxide molecules Ti2O3 and Ti2O4, J. Chem. Phys., 1985, 83, 1913. [all data]

Balducci, Gigli, et al., 1985, 2
Balducci, G.; Gigli, G.; Guido, M., Mass spectrometric study of the thermochemistry of gaseous EuTiO3 and TiO2, J. Chem. Phys., 1985, 83, 1909. [all data]

Dyke, Gravenor, et al., 1984
Dyke, J.M.; Gravenor, B.W.J.; Josland, G.D.; Lewis, R.A.; Morris, A., A gas phase investigation of titanium monoxide and atomic titanium using high temperature photoelectron spectroscopy, Mol. Phys., 1984, 53, 465. [all data]

Banon, Chatillon, et al., 1982
Banon, S.; Chatillon, C.; Allibert, M., High temperature mass spectrometric study of ionization and fragmentation of TiO and TiO2 gas under electron impact, High Temp. Sci., 1982, 15, 17. [all data]

Murad and Hildenbrand, 1980
Murad, E.; Hildenbrand, D.L., Dissociation energies of GdO, HoO, ErO, TmO, and LuO. Correlation of results for the lanthanide monoxide series, J. Chem. Phys., 1980, 73, 4005. [all data]

Hildenbrand, 1977
Hildenbrand, D.L., Dissociation energy of samarium monoxide and its relation to that of europium monoxide, Chem. Phys. Lett., 1977, 48, 340. [all data]

Smoes, Drowart, et al., 1976
Smoes, S.; Drowart, J.; Myers, C.E., Determination of the atomization energies of the molecules TaO(g) TaO2(g) by the mass-spectrometric Knudsen-cell method, J. Chem. Thermodyn., 1976, 8, 225. [all data]

Hildenbrand, 1976
Hildenbrand, D.L., Mass spectrometric studies of the thermochemistry of gaseous TiO and TiO2, Chem. Phys. Lett., 1976, 44, 281. [all data]

Rauh and Ackermann, 1974
Rauh, E.G.; Ackermann, R.J., First ionization potentials of some refractory oxide vapors, J. Chem. Phys., 1974, 60, 1396. [all data]

Wu and Wahlbeck, 1972
Wu, H.Y.; Wahlbeck, P.G., Vapor pressures of TiO(g) in equilibrium with Ti2O3(s) Ti3O5(s, β); dissociation energy of TiO(g), J. Chem. Phys., 1972, 56, 4534. [all data]

Balducci, De Maria, et al., 1972
Balducci, G.; De Maria, G.; Guido, M.; Piacente, V., Dissociation energy of TiO and TiO2 gaseous molecules, J. Chem. Phys., 1972, 56, 3422. [all data]

Edwards, Franzen, et al., 1971
Edwards, J.G.; Franzen, H.F.; Gilles, P.W., High-temperature mass spectrometry, vaporization, and thermodynamics of titanium monosulfide, J. Chem. Phys., 1971, 54, 545. [all data]

Mesnard, Uzan, et al., 1966
Mesnard, G.; Uzan, R.; Cabaud, B., Etude au spectrometre de masse des produits d'evaporation du bioxyde de titane et du titanate de baryum, Rev. Phys. Appl., 1966, 1, 123. [all data]

Pathak and Palmer, 1970
Pathak, C.M.; Palmer, H.B., New electronic transitions in TiO, J. Mol. Spectrosc., 1970, 33, 137-146. [all data]

Palmer and Hsu, 1972
Palmer, H.B.; Hsu, C.J., Re-examination of electronic chemiluminescence from TiO, J. Mol. Spectrosc., 1972, 43, 320. [all data]

McIntyre, Thompson, et al., 1971
McIntyre, N.S.; Thompson, K.R.; Weltner, W., Jr., Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4.deg.K, J. Phys. Chem., 1971, 75, 21, 3243, https://doi.org/10.1021/j100690a008 . [all data]

Dubois and Gole, 1977
Dubois, L.H.; Gole, J.L., Bimolecular, single collision reaction of ground and metastable excited states of titanium with O2, NO2, and N2O: confirmation of D0o(TiO), J. Chem. Phys., 1977, 66, 779. [all data]

Linton and Singhal, 1974
Linton, C.; Singhal, S.R., Rotational constants of the singlet electronic states of the TiO molecule, J. Mol. Spectrosc., 1974, 51, 194. [all data]

Lowater, 1929
Lowater, F., The band systems of titanium oxide, Proc. Phys. Soc. London, 1929, 41, 557. [all data]

Linton and Nicholls, 1969
Linton, C.; Nicholls, R.W., Band spectra of the singlet systems of the TiO molecule, J. Phys. B:, 1969, 2, 490. [all data]

Linton and Nicholls, 1970
Linton, C.; Nicholls, R.W., Measurement of intensities of the α and β band systems of TiO, J. Quant. Spectrosc. Radiat. Transfer, 1970, 10, 311. [all data]

Dube, 1972
Dube, P.S., Einstein coefficients & oscillator strengths for the TiO β system, Indian J. Pure Appl. Phys., 1972, 10, 70. [all data]

Linton, 1974
Linton, C., Analysis of the Δv=O sequence of the β(c1Φ - a1Δ) system of the TiO molecule, J. Mol. Spectrosc., 1974, 50, 235. [all data]

Budo, 1936
Budo, A., Die rotationskonstanten B, D und Y der 3Π-terme von TiO, C2, CO, PH, AlH, NH, Z. Phys., 1936, 98, 437. [all data]

Phillips, 1954
Phillips, J.G., The laboratory determination of relative transition probabilities of diatomic molecules. I. The a-system of TiO, Astrophys. J., 1954, 119, 274. [all data]

Uhler, 1954
Uhler, Dissertation, Stockholm, 1954, 1. [all data]

Prasad, 1962
Prasad, S.S., Franck-Condon factors and r-centroids for the α-system of TiO, Proc. Phys. Soc. London, 1962, 79, 1078. [all data]

Ortenberg and Glasko, 1963
Ortenberg, F.S.; Glasko, V.B., Vibrational transition probabilities for band systems of some diatomic oxides, Sov. Astron. Engl. Transl., 1963, 6, 714, In original 601. [all data]

Phillips, 1969
Phillips, J.G., The γ'-system of the TiO molecule, Astrophys. J., 1969, 157, 449. [all data]

Phillips and Davis, 1972
Phillips, J.G.; Davis, S.P., Perturbations in the α-system of the TiO molecule, Astrophys. J., 1972, 175, 583. [all data]

Phillips, 1973
Phillips, J.G., Molecular constants of the TiO molecule, Astrophys. J. Suppl. Ser., 1973, 26, 313. [all data]

Collins and Fay, 1974
Collins, J.G.; Fay, T.D., Jr., Radiative opacities for the α, γ, and φ systems of titanium monoxide, J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 1259. [all data]

Linton and Broida, 1977
Linton, C.; Broida, H.P., Flame spectroscopy of TiO. Chemiluminescence, J. Mol. Spectrosc., 1977, 64, 382. [all data]

Coheur, 1943
Coheur, F.P., Contribution a l'etude du spectre de bandes de la molecule TiO, Bull. Soc. R. Sci. Liege, 1943, 12, 98. [all data]

Pedoussaut, 1961
Pedoussaut, A., Classification des bandes de Coheur-Duner, Compt. Rend., 1961, 252, 2819. [all data]

Merrill, Deutsch, et al., 1962
Merrill, P.W.; Deutsch, A.J.; Keenan, P.C., Absorption spectra of M-type Mira variables, Astrophys. J., 1962, 136, 21. [all data]

Weltner and McLeod, 1965
Weltner, W., Jr.; McLeod, D., Jr., Spectroscopy of titanium, zirconium, and hafnium oxides in neon and argon matrices at 4 and 20°K, J. Phys. Chem., 1965, 69, 3488. [all data]

Collins, 1975
Collins, J.G., A band-head analysis of the γ' system of TiO, J. Phys. B:, 1975, 8, 304. [all data]

Pettersson, 1959
Pettersson, A.V., The TiO-band 11032 A, Ark. Fys., 1959, 16, 185. [all data]

Pettersson and Lindgren, 1962
Pettersson, A.V.; Lindgren, B., The b1Π-d1Σ transition of TiO, Ark. Fys., 1962, 22, 491. [all data]

Lockwood, 1969
Lockwood, G.W., Identification, structure, and variations of new TiO bands in the one-micron spectra of mira variables, Astrophys. J., 1969, 157, 275. [all data]

Brom and Broida, 1975
Brom, J.M., Jr.; Broida, H.P., Laser photoluminescence of TiO in Ne at 4°K, J. Chem. Phys., 1975, 63, 3718. [all data]

Christy, 1929
Christy, A., New band system of titanium oxide, Astrophys. J., 1929, 70, 1. [all data]

Fraser, Jarmain, et al., 1954
Fraser, P.A.; Jarmain, W.R.; Nicholls, R.W., Vibrational transition probabilities of diatomic molecules; collected results II, N2+, CN, C2, O2, TiO, Astrophys. J., 1954, 119, 286. [all data]

Feinberg, Bilal, et al., 1976
Feinberg, J.; Bilal, M.G.; Davis, S.P.; Phillips, J.G., Lifetime of the c1Φ state of TiO, Astrophys. Lett., 1976, 12, 147. [all data]

Zyrnicki, 1975
Zyrnicki, W., Transition probabilities for the (0,O) and (1,1) bands of the c1Φ-a1Δ system of the TiO molecule, J. Quant. Spectrosc. Radiat. Transfer, 1975, 15, 575. [all data]

Kovacs, 1965
Kovacs, I., On the triplet terms of the TiO molecule, J. Mol. Spectrosc., 1965, 18, 229. [all data]

Toros, 1966
Toros, R., On the anomalous multiplet splitting of the triplet terms of the TiO molecule, Acta Phys. Hung., 1966, 20, 91. [all data]

Kovacs and Korwar, 1970
Kovacs, I.; Korwar, V.M., Re-investigation of the coupling constants of the revised molecular state of TiO, Acta Phys. Acad. Sci. Hung., 1970, 29, 399. [all data]

Price, Sulzmann, et al., 1971
Price, M.L.; Sulzmann, K.G.P.; Penner, S.S., Measurments of f-numbers for α- and γ-bands of TiO, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 427. [all data]

Fairbairn, Wolnik, et al., 1974
Fairbairn, A.R.; Wolnik, S.J.; Berthel, R.O., Oscillator strengths in the TiO alpha-band system, Astrophys. J., 1974, 193, 273. [all data]

Carlson and Nesbet, 1964
Carlson, K.D.; Nesbet, R.K., Wavefunctions and binding energies of the titanium monoxide molecule, J. Chem. Phys., 1964, 41, 1051. [all data]

Phillips, 1952
Phillips, J.G., Note on the identification of the ground state of the TiO molecule, Astrophys. J., 1952, 115, 567. [all data]

Phillips, 1971
Phillips, J.G., Satellite bands of the γ'-system of titanium oxide, Astrophys. J., 1971, 169, 185. [all data]

Phillips, 1974
Phillips, J.G., The fundamental rotation-vibration band of TiO, Astrophys. J. Suppl. Ser., 1974, 27, 319. [all data]

Drowart, Coppens, et al., 1969
Drowart, J.; Coppens, P.; Smoes, S., Dissociation energy of the molecule TiO(g) and the thermodynamics of the system titanium-oxygen, J. Chem. Phys., 1969, 50, 1046. [all data]

Hampson and Gilles, 1971
Hampson, P.J.; Gilles, P.W., High-temperature vaporization and thermodynamics of the titanium oxides. VII. Mass spectrometry and dissociation energies of TiO(g) and TiO2(g), J. Chem. Phys., 1971, 55, 3712. [all data]

Liu and Wahlbeck, 1975
Liu, M.B.; Wahlbeck, P.G., A Knudsen-mass-spectrometric study of the dissociation energy of TiO(g), J. Chem. Phys., 1975, 63, 1694. [all data]

Wahlbeck and Gilles, 1967
Wahlbeck, P.G.; Gilles, P.W., Dissociation energy of TiO(g) and the high-temperature vaporization and thermodynamics of the titanium oxides. II. Tritianium pentoxide, J. Chem. Phys., 1967, 46, 2465. [all data]

Gilles, Hampson, et al., 1969
Gilles, P.W.; Hampson, P.J.; Wahlbeck, P.G., Dissociation energy of TiO(g) and the high-temperature vaporization and thermodynamics of the titanium oxides. V, J. Chem. Phys., 1969, 50, 1048. [all data]

Groves, Hoch, et al., 1955
Groves, W.O.; Hoch, M.; Johnston, H.L., Vapor-solid equilibria in the titanium-oxygen system, J. Phys. Chem., 1955, 59, 127. [all data]

Berkowitz, Chupka, et al., 1957
Berkowitz, J.; Chupka, W.A.; Inghram, M.G., Thermodynamics of the Ti-Ti2O3 system and the dissociation energy of TiO and TiO2, J. Phys. Chem., 1957, 61, 1569. [all data]

Sheldon and Gilles, 1977
Sheldon, R.I.; Gilles, P.W., The high temperature vaporization and thermodynamics of the titanium oxides. XI. Stoichiometric titanium monoxide, J. Chem. Phys., 1977, 66, 3705. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, References