Ammonia

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-45.94 ± 0.35kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfgas-45.90kJ/molReviewChase, 1998Data last reviewed in June, 1977
Quantity Value Units Method Reference Comment
gas,1 bar192.77 ± 0.05J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar192.77J/mol*KReviewChase, 1998Data last reviewed in June, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1400.1400. to 6000.
A 19.9956352.02427
B 49.7711918.48801
C -15.37599-3.765128
D 1.9211680.248541
E 0.189174-12.45799
F -53.30667-85.53895
G 203.8591223.8022
H -45.89806-45.89806
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1977 Data last reviewed in June, 1977

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tfus194.95KN/ATimmermans, 1921Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ptriple0.06060barN/AFonseca and Lobo, 1989Uncertainty assigned by TRC = 0.00005 bar; TRC
Quantity Value Units Method Reference Comment
Tc405.4KN/ABrunner, 1988Uncertainty assigned by TRC = 0.1 K; TRC
Tc405.6KN/AHentze, 1977Uncertainty assigned by TRC = 5. K; TRC
Quantity Value Units Method Reference Comment
Pc113.00barN/ABrunner, 1988Uncertainty assigned by TRC = 0.05 bar; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
22.7308.N/AZander and Thomas, 1979Based on data from 293. to 392. K.; AC
23.5239.N/AOverstreet and Giauque, 1937Based on data from 199. to 241. K.; AC
23.4239.COverstreet and Giauque, 1937AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
164.0 to 239.63.18757506.713-80.78Stull, 1947Coefficents calculated by NIST from author's data.
239.6 to 371.54.868861113.928-10.409Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Reference Comment
31.2177. to 195.Overstreet and Giauque, 1937AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

(NH4+ • 3Ammonia) + Ammonia = (NH4+ • 4Ammonia)

By formula: (H4N+ • 3H3N) + H3N = (H4N+ • 4H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr51. ± 4.kJ/molAVGN/AAverage of 5 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr118. ± 8.J/mol*KAVGN/AAverage of 3 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
14.296.FAFehsenfeld and Ferguson, 1973gas phase; M

(NH4+ • 2Ammonia) + Ammonia = (NH4+ • 3Ammonia)

By formula: (H4N+ • 2H3N) + H3N = (H4N+ • 3H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr50. ± 20.kJ/molAVGN/AAverage of 6 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr105. ± 5.J/mol*KAVGN/AAverage of 4 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
27.296.FAFehsenfeld and Ferguson, 1973gas phase; M
27.296.SAMSPuckett and Teague, 1971gas phase; M

(NH4+ • Ammonia) + Ammonia = (NH4+ • 2Ammonia)

By formula: (H4N+ • H3N) + H3N = (H4N+ • 2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr70. ± 5.kJ/molAVGN/AAverage of 5 out of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSTang and Castleman, 1975gas phase; M
Δr99.2J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr104.J/mol*KDTLong and Franklin, 1973gas phase; M
Δr112.J/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr95.8J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; typographical error in ΔrH; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.296.FAFehsenfeld and Ferguson, 1973gas phase; DG>; M
42.3296.SAMSPuckett and Teague, 1971gas phase; M
23.400.HPMSWincel, 1972gas phase; M

NH4+ + Ammonia = (NH4+ • Ammonia)

By formula: H4N+ + H3N = (H4N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr107. ± 6.kJ/molAVGN/AAverage of 4 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr111. ± 10.J/mol*KAVGN/AAverage of 4 out of 6 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.400.HPMSWincel, 1972gas phase; M

Chlorine anion + Ammonia = (Chlorine anion • Ammonia)

By formula: Cl- + H3N = (Cl- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr<30.5 ± 1.7kJ/molN/ATschurl and Boesl, 2008gas phase; B
Δr34.3 ± 0.42kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr37. ± 5.0kJ/molN/AMarkovich, Chesnovsky, et al., 1993gas phase; B
Δr44. ± 17.kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Δr83.3J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr15.1 ± 0.84kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B
Δr19. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

(NH4+ • 4Ammonia) + Ammonia = (NH4+ • 5Ammonia)

By formula: (H4N+ • 4H3N) + H3N = (H4N+ • 5H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr31.kJ/molPHPMSSearles and Kebarle, 1968gas phase; M
Δr30.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Δr12.kJ/molTPEPICOKamke, Herrmann, et al., 1988gas phase; M
Δr40.kJ/molDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr100.J/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr130.J/mol*KDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr2.kJ/molHPMSHogg, Haynes, et al., 1966gas phase; M

Lithium ion (1+) + Ammonia = (Lithium ion (1+) • Ammonia)

By formula: Li+ + H3N = (Li+ • H3N)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr161.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr134.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(Sodium ion (1+) • Ammonia) + Ammonia = (Sodium ion (1+) • 2Ammonia)

By formula: (Na+ • H3N) + H3N = (Na+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr93. ± 5.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr105.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

H2N- + Hydrogen cation = Ammonia

By formula: H2N- + H+ = H3N

Quantity Value Units Method Reference Comment
Δr1688.0 ± 1.2kJ/molD-EAWickham-Jones, Ervin, et al., 1989gas phase; B
Δr1688.5 ± 3.3kJ/molG+TSMacKay, Hemsworth, et al., 1976gas phase; B
Δr1683.2kJ/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B
Quantity Value Units Method Reference Comment
Δr1656.8 ± 1.6kJ/molH-TSWickham-Jones, Ervin, et al., 1989gas phase; B
Δr1657.3 ± 2.9kJ/molIMREMacKay, Hemsworth, et al., 1976gas phase; B
Δr1654.4kJ/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B

C4H9+ + Ammonia = (C4H9+ • Ammonia)

By formula: C4H9+ + H3N = (C4H9+ • H3N)

Quantity Value Units Method Reference Comment
Δr196.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr190.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr195.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M
Quantity Value Units Method Reference Comment
Δr183.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr198.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr184.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M

Sodium ion (1+) + Ammonia = (Sodium ion (1+) • Ammonia)

By formula: Na+ + H3N = (Na+ • H3N)

Quantity Value Units Method Reference Comment
Δr102. ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr102. ± 5.4kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr107. ± 0.8kJ/molHPMSHoyau, Norrman, et al., 1999RCD
Δr122.kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr91200.J/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Δr108.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
77.8298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C3H9Sn+ + Ammonia = (C3H9Sn+ • Ammonia)

By formula: C3H9Sn+ + H3N = (C3H9Sn+ • H3N)

Quantity Value Units Method Reference Comment
Δr154.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
90.4525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

(NH4+ • 3Hydrogen cyanide • Ammonia) + Hydrogen cyanide = (NH4+ • 4Hydrogen cyanide • Ammonia)

By formula: (H4N+ • 3CHN • H3N) + CHN = (H4N+ • 4CHN • H3N)

Quantity Value Units Method Reference Comment
Δr36.kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated, T = 392 in paper is error; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated, T = 392 in paper is error; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
11.292.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated, T = 392 in paper is error; M

Iodide + Ammonia = (Iodide • Ammonia)

By formula: I- + H3N = (I- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr31.0 ± 1.3kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr31. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr5.0 ± 2.5kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B

(NH4+ • Ammonia • 2Hydrogen cyanide) + Ammonia = (NH4+ • 2Ammonia • 2Hydrogen cyanide)

By formula: (H4N+ • H3N • 2CHN) + H3N = (H4N+ • 2H3N • 2CHN)

Quantity Value Units Method Reference Comment
Δr54.0kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
28.315.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Hydrogen cyanide • 2Ammonia) + Hydrogen cyanide = (NH4+ • 2Hydrogen cyanide • 2Ammonia)

By formula: (H4N+ • CHN • 2H3N) + CHN = (H4N+ • 2CHN • 2H3N)

Quantity Value Units Method Reference Comment
Δr46.9kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
21.315.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Hydrogen cyanide) + Ammonia = (NH4+ • Ammonia • Hydrogen cyanide)

By formula: (H4N+ • CHN) + H3N = (H4N+ • H3N • CHN)

Quantity Value Units Method Reference Comment
Δr78.7kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
39.429.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Bromine anion + Ammonia = (Bromine anion • Ammonia)

By formula: Br- + H3N = (Br- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr32.2 ± 0.42kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr8.37 ± 0.84kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B

(NH4+ • 5Ammonia) + Ammonia = (NH4+ • 6Ammonia)

By formula: (H4N+ • 5H3N) + H3N = (H4N+ • 6H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr30.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M

Potassium ion (1+) + Ammonia = (Potassium ion (1+) • Ammonia)

By formula: K+ + H3N = (K+ • H3N)

Quantity Value Units Method Reference Comment
Δr84.1kJ/molHPMSCastleman, 1978gas phase; M
Δr74.5kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KHPMSCastleman, 1978gas phase; M
Δr117.J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(NH4+ • 2Ammonia) + Hydrogen cyanide = (NH4+ • Hydrogen cyanide • 2Ammonia)

By formula: (H4N+ • 2H3N) + CHN = (H4N+ • CHN • 2H3N)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Ammonia • 2Water) + Ammonia = (NH4+ • 2Ammonia • 2Water)

By formula: (H4N+ • H3N • 2H2O) + H3N = (H4N+ • 2H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr65.7kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr142.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Water • 2Ammonia) + Water = (NH4+ • 2Water • 2Ammonia)

By formula: (H4N+ • H2O • 2H3N) + H2O = (H4N+ • 2H2O • 2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr49.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(C6H15O3+ • Ammonia) + Ethane, 1,1'-oxybis[2-methoxy- = (C6H15O3+ • Ethane, 1,1'-oxybis[2-methoxy- • Ammonia)

By formula: (C6H15O3+ • H3N) + C6H14O3 = (C6H15O3+ • C6H14O3 • H3N)

Bond type: Hydrogen bonds between protonated and neutral organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr213.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 2Ammonia • Water) + Ammonia = (NH4+ • 3Ammonia • Water)

By formula: (H4N+ • 2H3N • H2O) + H3N = (H4N+ • 3H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr62.8kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr144.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Water • Ammonia) + Water = (NH4+ • 3Water • Ammonia)

By formula: (H4N+ • 2H2O • H3N) + H2O = (H4N+ • 3H2O • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr51.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr119.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia • Water) + Ammonia = (NH4+ • 2Ammonia • Water)

By formula: (H4N+ • H3N • H2O) + H3N = (H4N+ • 2H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Water • Ammonia) + Water = (NH4+ • 2Water • Ammonia)

By formula: (H4N+ • H2O • H3N) + H2O = (H4N+ • 2H2O • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr53.1kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Ammonia) + Water = (NH4+ • Water • 2Ammonia)

By formula: (H4N+ • 2H3N) + H2O = (H4N+ • H2O • 2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Water) + Ammonia = (NH4+ • Ammonia • 2Water)

By formula: (H4N+ • 2H2O) + H3N = (H4N+ • H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr76.1kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr127.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 3Ammonia) + Water = (NH4+ • Water • 3Ammonia)

By formula: (H4N+ • 3H3N) + H2O = (H4N+ • H2O • 3H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr49.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 3Water) + Ammonia = (NH4+ • Ammonia • 3Water)

By formula: (H4N+ • 3H2O) + H3N = (H4N+ • H3N • 3H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr72.4kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia) + Water = (NH4+ • Water • Ammonia)

By formula: (H4N+ • H3N) + H2O = (H4N+ • H2O • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr54.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Water) + Ammonia = (NH4+ • Ammonia • Water)

By formula: (H4N+ • H2O) + H3N = (H4N+ • H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr77.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ethane, 1,2-dimethoxy-) + Ammonia = (NH4+ • Ammonia • Ethane, 1,2-dimethoxy-)

By formula: (H4N+ • C4H10O2) + H3N = (H4N+ • H3N • C4H10O2)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

Hydrogen anion + Ammonia = (Hydrogen anion • Ammonia)

By formula: H- + H3N = (H- • H3N)

Quantity Value Units Method Reference Comment
Δr29.7kJ/molEstSnodgrass, Coe, et al., 1995gas phase; Stated electron affinity is the Vertical Detachment Energy; B
Δr35.kJ/molPESCoe, Snodgrass, et al., 1985gas phase; ΔrH<; M

(Copper ion (1+) • 2Ammonia) + Ammonia = (Copper ion (1+) • 3Ammonia)

By formula: (Cu+ • 2H3N) + H3N = (Cu+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr46.9 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr58.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr99.6J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Copper ion (1+) • 3Ammonia) + Ammonia = (Copper ion (1+) • 4Ammonia)

By formula: (Cu+ • 3H3N) + H3N = (Cu+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr41.8 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr53.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Lead ion (1+) • 2Ammonia) + Ammonia = (Lead ion (1+) • 3Ammonia)

By formula: (Pb+ • 2H3N) + H3N = (Pb+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • 3Ammonia) + Ammonia = (Lead ion (1+) • 4Ammonia)

By formula: (Pb+ • 3H3N) + H3N = (Pb+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr44.8kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • Ammonia) + Ammonia = (Lead ion (1+) • 2Ammonia)

By formula: (Pb+ • H3N) + H3N = (Pb+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr80.3kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

C2H8N+ + Ammonia = (C2H8N+ • Ammonia)

By formula: C2H8N+ + H3N = (C2H8N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr86.2kJ/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

C6H15O3+ + Ammonia = (C6H15O3+ • Ammonia)

By formula: C6H15O3+ + H3N = (C6H15O3+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr127.kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

CH6N+ + Ammonia = (CH6N+ • Ammonia)

By formula: CH6N+ + H3N = (CH6N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr89.5kJ/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

Lead ion (1+) + Ammonia = (Lead ion (1+) • Ammonia)

By formula: Pb+ + H3N = (Pb+ • H3N)

Quantity Value Units Method Reference Comment
Δr118.kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr98.7J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Hydrogen anion • Ammonia) + Ammonia = (Hydrogen anion • 2Ammonia)

By formula: (H- • H3N) + H3N = (H- • 2H3N)

Quantity Value Units Method Reference Comment
Δr33.9kJ/molEstSnodgrass, Coe, et al., 1995gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

(H2N- • Ammonia) + Ammonia = (H2N- • 2Ammonia)

By formula: (H2N- • H3N) + H3N = (H2N- • 2H3N)

Quantity Value Units Method Reference Comment
Δr46.44kJ/molEstSnodgrass, Coe, et al., 1989gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

(NH4+ • 2Hydrogen cyanide • Ammonia) + Hydrogen cyanide = (NH4+ • 3Hydrogen cyanide • Ammonia)

By formula: (H4N+ • 2CHN • H3N) + CHN = (H4N+ • 3CHN • H3N)

Quantity Value Units Method Reference Comment
Δr53.6kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSDeakyne, Knuth, et al., 1994gas phase; M

(NH4+ • Hydrogen cyanide • Ammonia) + Hydrogen cyanide = (NH4+ • 2Hydrogen cyanide • Ammonia)

By formula: (H4N+ • CHN • H3N) + CHN = (H4N+ • 2CHN • H3N)

Quantity Value Units Method Reference Comment
Δr51.0kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSDeakyne, Knuth, et al., 1994gas phase; M

(NH4+ • 2Ammonia • Acetonitrile) + Ammonia = (NH4+ • 3Ammonia • Acetonitrile)

By formula: (H4N+ • 2H3N • C2H3N) + H3N = (H4N+ • 3H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr56.9kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
27.2100.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
61.4200.MN/A 
56.4100.MN/A 
56.4200.TN/A 
58.4100.TN/A 
58.4100.QN/A missing citation refer to several references in their list of Henry's law constants but they don't assign them to specific species.
78. MN/A 
62.4085.?N/AN/A 
53. QN/A missing citation gives missing citation as the source for the data. However, no data was found in that reference.
59.4400.XN/A 
76.3400.MN/A 
61.4200.LN/A 
10.1500.LN/A 
57.4100.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).
59.4100.XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).
62. XN/AValue given here as quoted by missing citation.

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to H3N+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.070 ± 0.020eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)853.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity819.0kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.02PIQi, Sheng, et al., 1995T = 0K; LL
10.07 ± 0.01PIPECORuede, Troxler, et al., 1993LL
10.186TEReiser, Habenicht, et al., 1993LL
10.069 ± 0.002PILocht, Hottmann, et al., 1992LL
10.072 ± 0.010PILocht, Leyh, et al., 1991LL
10.2985 ± 0.0001TEHabenicht, 1989LL
10.45EIBaldwin, Loudon, et al., 1977LLK
10.2PEDebies and Rabalais, 1975LLK
10.18 ± 0.09PEAue, Webb, et al., 1975LLK
10.2EIMorrison and Traeger, 1973LLK
10.15PEPotts and Price, 1972LLK
10.18 ± 0.01PEWeiss and Lawrence, 1970RDSH
14.94 ± 0.03PEWeiss and Lawrence, 1970RDSH
10.14PEBranton, Frost, et al., 1969RDSH
14.92PEBranton, Frost, et al., 1969RDSH
10.16 ± 0.02PIPotapov, 1968RDSH
10.17PIChupka and Russell, 1968RDSH
10.162 ± 0.008PIDibeler, Walker, et al., 1966RDSH
10.166SWatanabe and Sood, 1965RDSH
10.16PEAl-Joboury and Turner, 1964RDSH
15.02PEAl-Joboury and Turner, 1964RDSH
10.15 ± 0.01PIWatanabe and Mottl, 1957RDSH
10.82PEBaumgartel, Jochims, et al., 1989Vertical value; LL
10.8PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
10.85PEKimura, Katsumata, et al., 1981Vertical value; LLK
11.3PECampbell, Liesegang, et al., 1979Vertical value; LLK
10.85PEDaamen and Oskam, 1978Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
H+18.57H2NPIQi, Sheng, et al., 1995LL
HN+28. ± 1.5H2/2HEIMuller and Schulz, 1990LL
HN+16.9 ± 0.1H2EILocht, Servais, et al., 1988LL
HN+17.2H2EIMorrison and Traeger, 1973LLK
NH+17.1 ± 0.1H2EIReed and Snedden, 1959RDSH
H2N+15.75HPIQi, Sheng, et al., 1995LL
H2N+15.60 ± 0.02HPIPECORuede, Troxler, et al., 1993LL
H2N+15.75HPILocht, Hottmann, et al., 1992LL
H2N+15.76 ± 0.05HPILocht, Servais, et al., 1988LL
H2N+15.76 ± 0.05HEILocht, Servais, et al., 1988LL
H2N+15.5HPIPECOPowis, 1981LLK
H2N+15.87 ± 0.13HDERPowis, 1981LLK
H2N+15.768 ± 0.004HPIMcCulloh, 1976LLK
H2N+15.0HEIMorrison and Traeger, 1973LLK
NH2+15.73 ± 0.02HPIDibeler, Walker, et al., 1966RDSH
NH2+16.0 ± 0.1HEIFoner and Hudson, 1958RDSH
N+≤22.5H2+HEIMorrison and Traeger, 1973LLK
N+22.6 ± 0.1H2+HEIReed and Snedden, 1959RDSH

De-protonation reactions

H2N- + Hydrogen cation = Ammonia

By formula: H2N- + H+ = H3N

Quantity Value Units Method Reference Comment
Δr1688.0 ± 1.2kJ/molD-EAWickham-Jones, Ervin, et al., 1989gas phase; B
Δr1688.5 ± 3.3kJ/molG+TSMacKay, Hemsworth, et al., 1976gas phase; B
Δr1683.2kJ/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B
Quantity Value Units Method Reference Comment
Δr1656.8 ± 1.6kJ/molH-TSWickham-Jones, Ervin, et al., 1989gas phase; B
Δr1657.3 ± 2.9kJ/molIMREMacKay, Hemsworth, et al., 1976gas phase; B
Δr1654.4kJ/molN/ACheck, Faust, et al., 2001gas phase; HCrO3(t); ; ΔS(EA)=6.6; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

(Silver ion (1+) • Ammonia) + Ammonia = (Silver ion (1+) • 2Ammonia)

By formula: (Ag+ • H3N) + H3N = (Ag+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr154.kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr137.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 2Ammonia) + Ammonia = (Silver ion (1+) • 3Ammonia)

By formula: (Ag+ • 2H3N) + H3N = (Ag+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr61.1kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 3Ammonia) + Ammonia = (Silver ion (1+) • 4Ammonia)

By formula: (Ag+ • 3H3N) + H3N = (Ag+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Silver ion (1+) • 4Ammonia) + Ammonia = (Silver ion (1+) • 5Ammonia)

By formula: (Ag+ • 4H3N) + H3N = (Ag+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr53.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr143.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

Bismuth ion (1+) + Ammonia = (Bismuth ion (1+) • Ammonia)

By formula: Bi+ + H3N = (Bi+ • H3N)

Quantity Value Units Method Reference Comment
Δr149.kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr149.J/mol*KHPMSCastleman, 1978gas phase; M

(Bismuth ion (1+) • Ammonia) + Ammonia = (Bismuth ion (1+) • 2Ammonia)

By formula: (Bi+ • H3N) + H3N = (Bi+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr97.1kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KHPMSCastleman, 1978gas phase; M

(Bismuth ion (1+) • 2Ammonia) + Ammonia = (Bismuth ion (1+) • 3Ammonia)

By formula: (Bi+ • 2H3N) + H3N = (Bi+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr56.1kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KHPMSCastleman, 1978gas phase; M

Bromine anion + Ammonia = (Bromine anion • Ammonia)

By formula: Br- + H3N = (Br- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr32.2 ± 0.42kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr8.37 ± 0.84kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B

CH6N+ + Ammonia = (CH6N+ • Ammonia)

By formula: CH6N+ + H3N = (CH6N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr89.5kJ/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

C2H8N+ + Ammonia = (C2H8N+ • Ammonia)

By formula: C2H8N+ + H3N = (C2H8N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr86.2kJ/molPHPMSYamdagni and Kebarle, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KPHPMSYamdagni and Kebarle, 1974gas phase; M

C3H9Si+ + Ammonia = (C3H9Si+ • Ammonia)

By formula: C3H9Si+ + H3N = (C3H9Si+ • H3N)

Quantity Value Units Method Reference Comment
Δr195.kJ/molPHPMSLi and Stone, 1990gas phase; switching reaction((CH3)3Si+)CH3COOC2H5; Wojtyniak and Stone, 1986; M

C3H9Sn+ + Ammonia = (C3H9Sn+ • Ammonia)

By formula: C3H9Sn+ + H3N = (C3H9Sn+ • H3N)

Quantity Value Units Method Reference Comment
Δr154.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
90.4525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH/NH3, Entropy change calculated or estimated; M

C4H9+ + Ammonia = (C4H9+ • Ammonia)

By formula: C4H9+ + H3N = (C4H9+ • H3N)

Quantity Value Units Method Reference Comment
Δr196.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr190.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr195.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M
Quantity Value Units Method Reference Comment
Δr183.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; forms t-C4H9NH3+; M
Δr198.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; forms t-C4H9NH3+; M
Δr184.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1990gas phase; forms t-C4H9NH3+; M

C5H10NO2+ + Ammonia = (C5H10NO2+ • Ammonia)

By formula: C5H10NO2+ + H3N = (C5H10NO2+ • H3N)

Quantity Value Units Method Reference Comment
Δr86.2kJ/molPHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KPHPMSMeot-Ner and Field, 1974gas phase; M

C5H12NO2+ + Ammonia = (C5H12NO2+ • Ammonia)

By formula: C5H12NO2+ + H3N = (C5H12NO2+ • H3N)

Quantity Value Units Method Reference Comment
Δr87.4kJ/molPHPMSMeot-Ner and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner and Field, 1974gas phase; M

C6H15O3+ + Ammonia = (C6H15O3+ • Ammonia)

By formula: C6H15O3+ + H3N = (C6H15O3+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr127.kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

Chlorine anion + Ammonia = (Chlorine anion • Ammonia)

By formula: Cl- + H3N = (Cl- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr<30.5 ± 1.7kJ/molN/ATschurl and Boesl, 2008gas phase; B
Δr34.3 ± 0.42kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr37. ± 5.0kJ/molN/AMarkovich, Chesnovsky, et al., 1993gas phase; B
Δr44. ± 17.kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Δr83.3J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3F, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr15.1 ± 0.84kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B
Δr19. ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

Cobalt ion (1+) + Ammonia = (Cobalt ion (1+) • Ammonia)

By formula: Co+ + H3N = (Co+ • H3N)

Quantity Value Units Method Reference Comment
Δr218. ± 15.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr246.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Cobalt ion (1+) • Ammonia) + Ammonia = (Cobalt ion (1+) • 2Ammonia)

By formula: (Co+ • H3N) + H3N = (Co+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr248. ± 13.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr256.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Cobalt ion (1+) • 2Ammonia) + Ammonia = (Cobalt ion (1+) • 3Ammonia)

By formula: (Co+ • 2H3N) + H3N = (Co+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr64.0 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD

(Cobalt ion (1+) • 3Ammonia) + Ammonia = (Cobalt ion (1+) • 4Ammonia)

By formula: (Co+ • 3H3N) + H3N = (Co+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr49.0 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD

Chromium ion (1+) + Ammonia = (Chromium ion (1+) • Ammonia)

By formula: Cr+ + H3N = (Cr+ • H3N)

Quantity Value Units Method Reference Comment
Δr182. ± 10.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr156.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Chromium ion (1+) • Ammonia) + Ammonia = (Chromium ion (1+) • 2Ammonia)

By formula: (Cr+ • H3N) + H3N = (Cr+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr179. ± 9.2kJ/molCIDTWalter and Armentrout, 1998RCD
Δr171.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Chromium ion (1+) • 2Ammonia) + Ammonia = (Chromium ion (1+) • 3Ammonia)

By formula: (Cr+ • 2H3N) + H3N = (Cr+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr54.0 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD

(Chromium ion (1+) • 3Ammonia) + Ammonia = (Chromium ion (1+) • 4Ammonia)

By formula: (Cr+ • 3H3N) + H3N = (Cr+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr30. ± 9.2kJ/molCIDTWalter and Armentrout, 1998RCD

Copper ion (1+) + Ammonia = (Copper ion (1+) • Ammonia)

By formula: Cu+ + H3N = (Cu+ • H3N)

Quantity Value Units Method Reference Comment
Δr237. ± 14.kJ/molCIDTWalter and Armentrout, 1998RCD

(Copper ion (1+) • Ammonia) + Ammonia = (Copper ion (1+) • 2Ammonia)

By formula: (Cu+ • H3N) + H3N = (Cu+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr246. ± 10.kJ/molCIDTWalter and Armentrout, 1998RCD

(Copper ion (1+) • 2Ammonia) + Ammonia = (Copper ion (1+) • 3Ammonia)

By formula: (Cu+ • 2H3N) + H3N = (Cu+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr46.9 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr58.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr99.6J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Copper ion (1+) • 3Ammonia) + Ammonia = (Copper ion (1+) • 4Ammonia)

By formula: (Cu+ • 3H3N) + H3N = (Cu+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr41.8 ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr53.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

(Copper ion (1+) • 4Ammonia) + Ammonia = (Copper ion (1+) • 5Ammonia)

By formula: (Cu+ • 4H3N) + H3N = (Cu+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr53.6kJ/molHPMSHolland and Castleman, 1982gas phase; M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KHPMSHolland and Castleman, 1982gas phase; M

Fluorine anion + Ammonia = (Fluorine anion • Ammonia)

By formula: F- + H3N = (F- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr96.kJ/molFASpears and Ferguson, 1973gas phase; ΔrH>; M

Iron ion (1+) + Ammonia = (Iron ion (1+) • Ammonia)

By formula: Fe+ + H3N = (Fe+ • H3N)

Quantity Value Units Method Reference Comment
Δr183. ± 12.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr161.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Iron ion (1+) • Ammonia) + Ammonia = (Iron ion (1+) • 2Ammonia)

By formula: (Fe+ • H3N) + H3N = (Fe+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr225. ± 12.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr204.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Iron ion (1+) • 2Ammonia) + Ammonia = (Iron ion (1+) • 3Ammonia)

By formula: (Fe+ • 2H3N) + H3N = (Fe+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr68. ± 13.kJ/molCIDTWalter and Armentrout, 1998RCD

(Iron ion (1+) • 3Ammonia) + Ammonia = (Iron ion (1+) • 4Ammonia)

By formula: (Fe+ • 3H3N) + H3N = (Fe+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr41.8 ± 7.1kJ/molCIDTWalter and Armentrout, 1998RCD

Hydrogen anion + Ammonia = (Hydrogen anion • Ammonia)

By formula: H- + H3N = (H- • H3N)

Quantity Value Units Method Reference Comment
Δr29.7kJ/molEstSnodgrass, Coe, et al., 1995gas phase; Stated electron affinity is the Vertical Detachment Energy; B
Δr35.kJ/molPESCoe, Snodgrass, et al., 1985gas phase; ΔrH<; M

(Hydrogen anion • Ammonia) + Ammonia = (Hydrogen anion • 2Ammonia)

By formula: (H- • H3N) + H3N = (H- • 2H3N)

Quantity Value Units Method Reference Comment
Δr33.9kJ/molEstSnodgrass, Coe, et al., 1995gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

HO- + Ammonia = H4NO-

By formula: HO- + H3N = H4NO-

Quantity Value Units Method Reference Comment
Δr50.21kJ/molN/ASchwartz, Davico, et al., 2000gas phase; Vertical Detachment Energy: 2.54±0.015 eV. Affinity is from difference in EAs; B

H2N- + Ammonia = (H2N- • Ammonia)

By formula: H2N- + H3N = (H2N- • H3N)

Quantity Value Units Method Reference Comment
Δr50.21kJ/molPDisSnodgrass, Coe, et al., 1989gas phase; B

(H2N- • Ammonia) + Ammonia = (H2N- • 2Ammonia)

By formula: (H2N- • H3N) + H3N = (H2N- • 2H3N)

Quantity Value Units Method Reference Comment
Δr46.44kJ/molEstSnodgrass, Coe, et al., 1989gas phase; Affinity: shift in apparent EA from lesser-solvated ion. Ignores any neutral-neutral bond.; B

H3N+ + Ammonia = (H3N+ • Ammonia)

By formula: H3N+ + H3N = (H3N+ • H3N)

Quantity Value Units Method Reference Comment
Δr97. ± 19.kJ/molEIStephan, Futrell, et al., 1982gas phase; M
Δr75.7kJ/molPINg, Trevor, et al., 1977gas phase; M

(H3N+ • Ammonia) + Ammonia = (H3N+ • 2Ammonia)

By formula: (H3N+ • H3N) + H3N = (H3N+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr40. ± 20.kJ/molEIBreen, Tzeng, et al., 1989gas phase; M
Δr38. ± 19.kJ/molEIStephan, Futrell, et al., 1982gas phase; M

(NH4+ • Hydrogen cyanide) + Ammonia = (NH4+ • Ammonia • Hydrogen cyanide)

By formula: (H4N+ • CHN) + H3N = (H4N+ • H3N • CHN)

Quantity Value Units Method Reference Comment
Δr78.7kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
39.429.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Ethane, 1,2-dimethoxy-) + Ammonia = (NH4+ • Ammonia • Ethane, 1,2-dimethoxy-)

By formula: (H4N+ • C4H10O2) + H3N = (H4N+ • H3N • C4H10O2)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr58.6kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • Water) + Ammonia = (NH4+ • Ammonia • Water)

By formula: (H4N+ • H2O) + H3N = (H4N+ • H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr77.0kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Water) + Ammonia = (NH4+ • Ammonia • 2Water)

By formula: (H4N+ • 2H2O) + H3N = (H4N+ • H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr76.1kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr127.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 3Water) + Ammonia = (NH4+ • Ammonia • 3Water)

By formula: (H4N+ • 3H2O) + H3N = (H4N+ • H3N • 3H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr72.4kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

NH4+ + Ammonia = (NH4+ • Ammonia)

By formula: H4N+ + H3N = (H4N+ • H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr107. ± 6.kJ/molAVGN/AAverage of 4 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr111. ± 10.J/mol*KAVGN/AAverage of 4 out of 6 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
26.400.HPMSWincel, 1972gas phase; M

(NH4+ • Ammonia • 2Hydrogen cyanide) + Ammonia = (NH4+ • 2Ammonia • 2Hydrogen cyanide)

By formula: (H4N+ • H3N • 2CHN) + H3N = (H4N+ • 2H3N • 2CHN)

Quantity Value Units Method Reference Comment
Δr54.0kJ/molPHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
28.315.PHPMSDeakyne, Knuth, et al., 1994gas phase; Entropy change calculated or estimated; M

(NH4+ • Ammonia • Acetonitrile) + Ammonia = (NH4+ • 2Ammonia • Acetonitrile)

By formula: (H4N+ • H3N • C2H3N) + H3N = (H4N+ • 2H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr64.9kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 2Ammonia • Acetonitrile) + Ammonia = (NH4+ • 3Ammonia • Acetonitrile)

By formula: (H4N+ • 2H3N • C2H3N) + H3N = (H4N+ • 3H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr56.9kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 3Ammonia • Acetonitrile) + Ammonia = (NH4+ • 4Ammonia • Acetonitrile)

By formula: (H4N+ • 3H3N • C2H3N) + H3N = (H4N+ • 4H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr31.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 4Ammonia • Acetonitrile) + Ammonia = (NH4+ • 5Ammonia • Acetonitrile)

By formula: (H4N+ • 4H3N • C2H3N) + H3N = (H4N+ • 5H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr29.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 5Ammonia • Acetonitrile) + Ammonia = (NH4+ • 6Ammonia • Acetonitrile)

By formula: (H4N+ • 5H3N • C2H3N) + H3N = (H4N+ • 6H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr25.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 6Ammonia • Acetonitrile) + Ammonia = (NH4+ • 7Ammonia • Acetonitrile)

By formula: (H4N+ • 6H3N • C2H3N) + H3N = (H4N+ • 7H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr23.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 7Ammonia • Acetonitrile) + Ammonia = (NH4+ • 8Ammonia • Acetonitrile)

By formula: (H4N+ • 7H3N • C2H3N) + H3N = (H4N+ • 8H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr25.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • 8Ammonia • Acetonitrile) + Ammonia = (NH4+ • 9Ammonia • Acetonitrile)

By formula: (H4N+ • 8H3N • C2H3N) + H3N = (H4N+ • 9H3N • C2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr23.kJ/molMKERTzeng, Wei, et al., 1991gas phase; from graph; M

(NH4+ • Ammonia • Water) + Ammonia = (NH4+ • 2Ammonia • Water)

By formula: (H4N+ • H3N • H2O) + H3N = (H4N+ • 2H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia • 2Water) + Ammonia = (NH4+ • 2Ammonia • 2Water)

By formula: (H4N+ • H3N • 2H2O) + H3N = (H4N+ • 2H3N • 2H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr65.7kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr142.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • 2Ammonia • Water) + Ammonia = (NH4+ • 3Ammonia • Water)

By formula: (H4N+ • 2H3N • H2O) + H3N = (H4N+ • 3H3N • H2O)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr62.8kJ/molPHPMSPayzant, Cunningham, et al., 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr144.J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; M

(NH4+ • Ammonia) + Ammonia = (NH4+ • 2Ammonia)

By formula: (H4N+ • H3N) + H3N = (H4N+ • 2H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr70. ± 5.kJ/molAVGN/AAverage of 5 out of 8 values; Individual data points
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSTang and Castleman, 1975gas phase; M
Δr99.2J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr104.J/mol*KDTLong and Franklin, 1973gas phase; M
Δr112.J/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr95.8J/mol*KPHPMSPayzant, Cunningham, et al., 1973gas phase; typographical error in ΔrH; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.296.FAFehsenfeld and Ferguson, 1973gas phase; DG>; M
42.3296.SAMSPuckett and Teague, 1971gas phase; M
23.400.HPMSWincel, 1972gas phase; M

(NH4+ • 2Ammonia) + Ammonia = (NH4+ • 3Ammonia)

By formula: (H4N+ • 2H3N) + H3N = (H4N+ • 3H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr50. ± 20.kJ/molAVGN/AAverage of 6 out of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δr105. ± 5.J/mol*KAVGN/AAverage of 4 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
27.296.FAFehsenfeld and Ferguson, 1973gas phase; M
27.296.SAMSPuckett and Teague, 1971gas phase; M

(NH4+ • 3Ammonia) + Ammonia = (NH4+ • 4Ammonia)

By formula: (H4N+ • 3H3N) + H3N = (H4N+ • 4H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr51. ± 4.kJ/molAVGN/AAverage of 5 out of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δr118. ± 8.J/mol*KAVGN/AAverage of 3 out of 7 values; Individual data points

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
14.296.FAFehsenfeld and Ferguson, 1973gas phase; M

(NH4+ • 4Ammonia) + Ammonia = (NH4+ • 5Ammonia)

By formula: (H4N+ • 4H3N) + H3N = (H4N+ • 5H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr31.kJ/molPHPMSSearles and Kebarle, 1968gas phase; M
Δr30.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Δr12.kJ/molTPEPICOKamke, Herrmann, et al., 1988gas phase; M
Δr40.kJ/molDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M
Δr100.J/mol*KPHPMSSearles and Kebarle, 1968gas phase; M
Δr130.J/mol*KDTLong and Franklin, 1973gas phase; M
Quantity Value Units Method Reference Comment
Δr2.kJ/molHPMSHogg, Haynes, et al., 1966gas phase; M

(NH4+ • 5Ammonia) + Ammonia = (NH4+ • 6Ammonia)

By formula: (H4N+ • 5H3N) + H3N = (H4N+ • 6H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr27.kJ/molPHPMSArshadi and Futrell, 1974gas phase; M
Δr30.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSArshadi and Futrell, 1974gas phase; M

(NH4+ • 6Ammonia) + Ammonia = (NH4+ • 7Ammonia)

By formula: (H4N+ • 6H3N) + H3N = (H4N+ • 7H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 7Ammonia) + Ammonia = (NH4+ • 8Ammonia)

By formula: (H4N+ • 7H3N) + H3N = (H4N+ • 8H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 8Ammonia) + Ammonia = (NH4+ • 9Ammonia)

By formula: (H4N+ • 8H3N) + H3N = (H4N+ • 9H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 9Ammonia) + Ammonia = (NH4+ • 10Ammonia)

By formula: (H4N+ • 9H3N) + H3N = (H4N+ • 10H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 10Ammonia) + Ammonia = (NH4+ • 11Ammonia)

By formula: (H4N+ • 10H3N) + H3N = (H4N+ • 11H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 11Ammonia) + Ammonia = (NH4+ • 12Ammonia)

By formula: (H4N+ • 11H3N) + H3N = (H4N+ • 12H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 12Ammonia) + Ammonia = (NH4+ • 13Ammonia)

By formula: (H4N+ • 12H3N) + H3N = (H4N+ • 13H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 13Ammonia) + Ammonia = (NH4+ • 14Ammonia)

By formula: (H4N+ • 13H3N) + H3N = (H4N+ • 14H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 14Ammonia) + Ammonia = (NH4+ • 15Ammonia)

By formula: (H4N+ • 14H3N) + H3N = (H4N+ • 15H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

(NH4+ • 15Ammonia) + Ammonia = (NH4+ • 16Ammonia)

By formula: (H4N+ • 15H3N) + H3N = (H4N+ • 16H3N)

Bond type: Hydrogen bond (positive ion to hydride)

Quantity Value Units Method Reference Comment
Δr20.kJ/molMKERWei, Tzeng, et al., 1990gas phase; from graph; M

Iodide + Ammonia = (Iodide • Ammonia)

By formula: I- + H3N = (I- • H3N)

Bond type: Hydrogen bond (negative ion to hydride)

Quantity Value Units Method Reference Comment
Δr31.0 ± 1.3kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B,M
Δr31. ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KHPMSEvans, Keesee, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr5.0 ± 2.5kJ/molTDAsEvans, Keesee, et al., 1987gas phase; B

Potassium ion (1+) + Ammonia = (Potassium ion (1+) • Ammonia)

By formula: K+ + H3N = (K+ • H3N)

Quantity Value Units Method Reference Comment
Δr84.1kJ/molHPMSCastleman, 1978gas phase; M
Δr74.5kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KHPMSCastleman, 1978gas phase; M
Δr117.J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Potassium ion (1+) • Ammonia) + Ammonia = (Potassium ion (1+) • 2Ammonia)

By formula: (K+ • H3N) + H3N = (K+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr68.2kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr95.4J/mol*KHPMSCastleman, 1978gas phase; M

(Potassium ion (1+) • 2Ammonia) + Ammonia = (Potassium ion (1+) • 3Ammonia)

By formula: (K+ • 2H3N) + H3N = (K+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr56.5kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr116.J/mol*KHPMSCastleman, 1978gas phase; M

(Potassium ion (1+) • 3Ammonia) + Ammonia = (Potassium ion (1+) • 4Ammonia)

By formula: (K+ • 3H3N) + H3N = (K+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr48.5kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KHPMSCastleman, 1978gas phase; M

Lithium ion (1+) + Ammonia = (Lithium ion (1+) • Ammonia)

By formula: Li+ + H3N = (Li+ • H3N)

Quantity Value Units Method Reference Comment
Δr164.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr161.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr96.J/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr134.kJ/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(Lithium ion (1+) • Ammonia) + Ammonia = (Lithium ion (1+) • 2Ammonia)

By formula: (Li+ • H3N) + H3N = (Li+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr138.kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 2Ammonia) + Ammonia = (Lithium ion (1+) • 3Ammonia)

By formula: (Li+ • 2H3N) + H3N = (Li+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr87.9kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 3Ammonia) + Ammonia = (Lithium ion (1+) • 4Ammonia)

By formula: (Li+ • 3H3N) + H3N = (Li+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr69.0kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr136.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 4Ammonia) + Ammonia = (Lithium ion (1+) • 5Ammonia)

By formula: (Li+ • 4H3N) + H3N = (Li+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr46.4kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 5Ammonia) + Ammonia = (Lithium ion (1+) • 6Ammonia)

By formula: (Li+ • 5H3N) + H3N = (Li+ • 6H3N)

Quantity Value Units Method Reference Comment
Δr39.kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Magnesium ion (1+) + Ammonia = (Magnesium ion (1+) • Ammonia)

By formula: Mg+ + H3N = (Mg+ • H3N)

Quantity Value Units Method Reference Comment
Δr154. ± 12.kJ/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • Ammonia) + Ammonia = (Magnesium ion (1+) • 2Ammonia)

By formula: (Mg+ • H3N) + H3N = (Mg+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr122. ± 6.7kJ/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 2Ammonia) + Ammonia = (Magnesium ion (1+) • 3Ammonia)

By formula: (Mg+ • 2H3N) + H3N = (Mg+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr95.4 ± 8.8kJ/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 3Ammonia) + Ammonia = (Magnesium ion (1+) • 4Ammonia)

By formula: (Mg+ • 3H3N) + H3N = (Mg+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr44. ± 10.kJ/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • 4Ammonia) + Ammonia = (Magnesium ion (1+) • 5Ammonia)

By formula: (Mg+ • 4H3N) + H3N = (Mg+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr56. ± 12.kJ/molCIDTAndersen, Muntean, et al., 20005th ligand is NH3; RCD

Manganese ion (1+) + Ammonia = (Manganese ion (1+) • Ammonia)

By formula: Mn+ + H3N = (Mn+ • H3N)

Quantity Value Units Method Reference Comment
Δr147. ± 7.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr154.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • Ammonia) + Ammonia = (Manganese ion (1+) • 2Ammonia)

By formula: (Mn+ • H3N) + H3N = (Mn+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr152. ± 12.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr143.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • 2Ammonia) + Ammonia = (Manganese ion (1+) • 3Ammonia)

By formula: (Mn+ • 2H3N) + H3N = (Mn+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr64.0 ± 9.2kJ/molCIDTWalter and Armentrout, 1998RCD
Δr49.4kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Manganese ion (1+) • 3Ammonia) + Ammonia = (Manganese ion (1+) • 4Ammonia)

By formula: (Mn+ • 3H3N) + H3N = (Mn+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr36. ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD

Nitric oxide anion + Ammonia = H3N2O-

By formula: NO- + H3N = H3N2O-

Quantity Value Units Method Reference Comment
Δr43.51kJ/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Sodium ion (1+) + Ammonia = (Sodium ion (1+) • Ammonia)

By formula: Na+ + H3N = (Na+ • H3N)

Quantity Value Units Method Reference Comment
Δr102. ± 5.4kJ/molCIDCAmicangelo and Armentrout, 2001Anchor NH3=24.41; RCD
Δr102. ± 5.4kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr107. ± 0.8kJ/molHPMSHoyau, Norrman, et al., 1999RCD
Δr122.kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr91200.J/mol*KHPMSHoyau, Norrman, et al., 1999RCD
Δr108.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
77.8298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Ammonia) + Ammonia = (Sodium ion (1+) • 2Ammonia)

By formula: (Na+ • H3N) + H3N = (Na+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr93. ± 5.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr105.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 2Ammonia) + Ammonia = (Sodium ion (1+) • 3Ammonia)

By formula: (Na+ • 2H3N) + H3N = (Na+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 3Ammonia) + Ammonia = (Sodium ion (1+) • 4Ammonia)

By formula: (Na+ • 3H3N) + H3N = (Na+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr61.5kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 4Ammonia) + Ammonia = (Sodium ion (1+) • 5Ammonia)

By formula: (Na+ • 4H3N) + H3N = (Na+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr44.8kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr125.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Sodium ion (1+) • 5Ammonia) + Ammonia = (Sodium ion (1+) • 6Ammonia)

By formula: (Na+ • 5H3N) + H3N = (Na+ • 6H3N)

Quantity Value Units Method Reference Comment
Δr41.kJ/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr124.J/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Nickel ion (1+) + Ammonia = (Nickel ion (1+) • Ammonia)

By formula: Ni+ + H3N = (Ni+ • H3N)

Quantity Value Units Method Reference Comment
Δr231. ± 16.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr214.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • Ammonia) + Ammonia = (Nickel ion (1+) • 2Ammonia)

By formula: (Ni+ • H3N) + H3N = (Ni+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr249. ± 13.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr231.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • 2Ammonia) + Ammonia = (Nickel ion (1+) • 3Ammonia)

By formula: (Ni+ • 2H3N) + H3N = (Ni+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr90.0 ± 7.9kJ/molCIDTWalter and Armentrout, 1998RCD
Δr74.5kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Nickel ion (1+) • 3Ammonia) + Ammonia = (Nickel ion (1+) • 4Ammonia)

By formula: (Ni+ • 3H3N) + H3N = (Ni+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr37. ± 5.9kJ/molCIDTWalter and Armentrout, 1998RCD

Lead ion (1+) + Ammonia = (Lead ion (1+) • Ammonia)

By formula: Pb+ + H3N = (Pb+ • H3N)

Quantity Value Units Method Reference Comment
Δr118.kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr98.7J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • Ammonia) + Ammonia = (Lead ion (1+) • 2Ammonia)

By formula: (Pb+ • H3N) + H3N = (Pb+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr80.3kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • 2Ammonia) + Ammonia = (Lead ion (1+) • 3Ammonia)

By formula: (Pb+ • 2H3N) + H3N = (Pb+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr54.4kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

(Lead ion (1+) • 3Ammonia) + Ammonia = (Lead ion (1+) • 4Ammonia)

By formula: (Pb+ • 3H3N) + H3N = (Pb+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr44.8kJ/molHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KHPMSGuo and Castleman, 1991gas phase; ΔrS from graph; M

Rubidium ion (1+) + Ammonia = (Rubidium ion (1+) • Ammonia)

By formula: Rb+ + H3N = (Rb+ • H3N)

Quantity Value Units Method Reference Comment
Δr78.2kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • Ammonia) + Ammonia = (Rubidium ion (1+) • 2Ammonia)

By formula: (Rb+ • H3N) + H3N = (Rb+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr63.6kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr98.7J/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 2Ammonia) + Ammonia = (Rubidium ion (1+) • 3Ammonia)

By formula: (Rb+ • 2H3N) + H3N = (Rb+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr54.8kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 3Ammonia) + Ammonia = (Rubidium ion (1+) • 4Ammonia)

By formula: (Rb+ • 3H3N) + H3N = (Rb+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr47.7kJ/molHPMSCastleman, 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr159.J/mol*KHPMSCastleman, 1978gas phase; M

(Rubidium ion (1+) • 4Ammonia) + Ammonia = (Rubidium ion (1+) • 5Ammonia)

By formula: (Rb+ • 4H3N) + H3N = (Rb+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr42.7kJ/molHPMSCastleman, 1978gas phase; M

Titanium ion (1+) + Ammonia = (Titanium ion (1+) • Ammonia)

By formula: Ti+ + H3N = (Ti+ • H3N)

Quantity Value Units Method Reference Comment
Δr195. ± 7.1kJ/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • Ammonia) + Ammonia = (Titanium ion (1+) • 2Ammonia)

By formula: (Ti+ • H3N) + H3N = (Ti+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr175. ± 15.kJ/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • 2Ammonia) + Ammonia = (Titanium ion (1+) • 3Ammonia)

By formula: (Ti+ • 2H3N) + H3N = (Ti+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr176. ± 15.kJ/molCIDTWalter and Armentrout, 1998RCD

(Titanium ion (1+) • 3Ammonia) + Ammonia = (Titanium ion (1+) • 4Ammonia)

By formula: (Ti+ • 3H3N) + H3N = (Ti+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr156. ± 10.kJ/molCIDTWalter and Armentrout, 1998RCD

Vanadium ion (1+) + Ammonia = (Vanadium ion (1+) • Ammonia)

By formula: V+ + H3N = (V+ • H3N)

Quantity Value Units Method Reference Comment
Δr190. ± 11.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr217.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • Ammonia) + Ammonia = (Vanadium ion (1+) • 2Ammonia)

By formula: (V+ • H3N) + H3N = (V+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr164. ± 9.2kJ/molCIDTWalter and Armentrout, 1998RCD
Δr188.kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • 2Ammonia) + Ammonia = (Vanadium ion (1+) • 3Ammonia)

By formula: (V+ • 2H3N) + H3N = (V+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr104. ± 11.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr94.6kJ/molCIDMarinelli and Squires, 1989gas phase; M

(Vanadium ion (1+) • 3Ammonia) + Ammonia = (Vanadium ion (1+) • 4Ammonia)

By formula: (V+ • 3H3N) + H3N = (V+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr95. ± 11.kJ/molCIDTWalter and Armentrout, 1998RCD
Δr78.2kJ/molCIDMarinelli and Squires, 1989gas phase; M

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 6

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   C     Symmetry Number σ = 3


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 3337  A 3336.2 symmetric level
a1 1 Sym str 3337  A 3337.2 antisymmetric level
a1 2 Sym deform 950  C 932.5 symmetric level
a1 2 Sym deform 950  C 968.3 antisymmetric level
e 3 Deg str 3444  A 3443.6 symmetric level
e 3 Deg str 3444  A 3443.9 antisymmetric level
e 4 Deg deform 1627  A 1626.1 symmetric level
e 4 Deg deform 1627  A 1627.4 antisymmetric level

Source: Shimanouchi, 1972

Notes

A0~1 cm-1 uncertainty
C3~6 cm-1 uncertainty

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPMS-100150.118.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPMS-100180.131.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Timmermans, 1921
Timmermans, J., The Freezing Points of Organic Substances IV. New Exp. Determinations, Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]

Fonseca and Lobo, 1989
Fonseca, I.M.A.; Lobo, L.Q., Thermodynamics of liquid mixtures of xenon and methyl fluoride, Fluid Phase Equilib., 1989, 47, 249. [all data]

Brunner, 1988
Brunner, E., Fluid Mixtures at High Pressures VI. Phase Separation and Critical Phenomena in 18 (n-Alkane + Ammonia) and 4 (n-Alkane _ Methanol) Mixtures, J. Chem. Thermodyn., 1988, 20, 273. [all data]

Hentze, 1977
Hentze, G., Critical temperature measurement of liquids by means of differential thermal analysis, Thermochim. Acta, 1977, 20, 27-30. [all data]

Zander and Thomas, 1979
Zander, Manfred; Thomas, Wilhelm, Some thermodynamic properties of liquid ammonia: PVT data, vapor pressure, and critical temperature, J. Chem. Eng. Data, 1979, 24, 1, 1-2, https://doi.org/10.1021/je60080a003 . [all data]

Overstreet and Giauque, 1937
Overstreet, Roy; Giauque, W.F., Ammonia. The Heat Capacity and Vapor Pressure of Solid and Liquid. Heat of Vaporization. The Entropy Values from Thermal and Spectroscopic Data, J. Am. Chem. Soc., 1937, 59, 2, 254-259, https://doi.org/10.1021/ja01281a008 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Fehsenfeld and Ferguson, 1973
Fehsenfeld, F.C.; Ferguson, E.E., Thermal Energy Positive Ion Reactions in a Wet Atmosphere Containing Ammonia, J. Chem. Phys., 1973, 59, 12, 6272, https://doi.org/10.1063/1.1680006 . [all data]

Puckett and Teague, 1971
Puckett, L.J.; Teague, M.W., Ion-Molecule Reactions in NO - NH3 Gas Mixtures, J. Chem. Phys., 1971, 54, 11, 4860, https://doi.org/10.1063/1.1674763 . [all data]

Tang and Castleman, 1975
Tang, I.N.; Castleman, A.W., Gas - Phase Solvation of the Ammonium Ion in Ammonia, J. Chem. Phys., 1975, 62, 11, 4576, https://doi.org/10.1063/1.430331 . [all data]

Arshadi and Futrell, 1974
Arshadi, M.R.; Futrell, J.H., Studies in High - Pressure Mass Spectrometry. V. Thermodynamics of Solvation Reactions. NH4+ - NH3, J. Phys. Chem., 1974, 78, 15, 1482, https://doi.org/10.1021/j100608a008 . [all data]

Long and Franklin, 1973
Long, J.W.; Franklin, J.L., Ion-Cluster Reactions in a Drift Tube Ion Source, Int. J. Mass Spectrom. Ion Phys, 1973, 12, 5, 403, https://doi.org/10.1016/0020-7381(73)80025-7 . [all data]

Searles and Kebarle, 1968
Searles, S.K.; Kebarle, P., Ion-Solvent-Molecule Interactions in the Gas Phase. Enthalpies and Entropies for the Reactions NH4+(NH3)(n-1) + NH3 = NH4+(NH3)n, J. Phys. Chem., 1968, 72, 2, 742, https://doi.org/10.1021/j100848a061 . [all data]

Payzant, Cunningham, et al., 1973
Payzant, J.D.; Cunningham, A.J.; Kebarle, P., Gas - Phase Solvation of Ammonium Ion by NH3 and H2O and Stabilities of Mixed Clusters NH4+(NH3)n(H2O)w, Can. J. Chem., 1973, 51, 19, 3242, https://doi.org/10.1139/v73-485 . [all data]

Wincel, 1972
Wincel, H., Ion-Molecule Reactions in Ammonia at High Pressures, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 3, 267, https://doi.org/10.1016/0020-7381(72)80053-6 . [all data]

Tschurl and Boesl, 2008
Tschurl, M.; Boesl, U., IR-photodissociation and photodetachment spectroscopy of Cl-center dot(NH3)(x) (IR : x=1-4, PD : x=1), Chem. Phys. Lett., 2008, 456, 4-6, 150-155, https://doi.org/10.1016/j.cplett.2008.03.041 . [all data]

Evans, Keesee, et al., 1987
Evans, D.H.; Keesee, R.G.; Castleman Jr., The Association of Ammonia with Halide Ions in the Gas Phase, J. Chem. Phys., 1987, 86, 5, 2927, https://doi.org/10.1063/1.452043 . [all data]

Markovich, Chesnovsky, et al., 1993
Markovich, G.; Chesnovsky, O.; Kaldor, U., Charge Transfer Excitations in the Photoelectron Spectrum of Cl-NH3: Experiment and calculation, J. Chem. Phys, 1993, https://doi.org/10.1063/1.465913 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Wei, Tzeng, et al., 1990
Wei, S.; Tzeng, W.B.; Castleman, A.W., Kinetic Energy Release Measurements of Ammonia Cluster Ions During Metastable Decomposition and Determination of Cluster Ion Binding Energies, J. Chem. Phys., 1990, 92, 1, 332, https://doi.org/10.1063/1.458434 . [all data]

Kamke, Herrmann, et al., 1988
Kamke, W.; Herrmann, R.; Wang, Z.; Hertel, I.V., On the Photoionization and Fragmentation of Ammonia Clusters using TPEPICO, Z. Phys. D., 1988, 10, 4, 491, https://doi.org/10.1007/BF01425768 . [all data]

Hogg, Haynes, et al., 1966
Hogg, A.M.; Haynes, R.M.; Kebarle, P., Ion-Solvent Molecule Interactions Studied in the Gas Phase. Heats and Entropies of Individual Steps. NH4+.(n-1)NH3 = NH4+.nNH3, J. Am. Chem. Soc., 1966, 88, 1, 28, https://doi.org/10.1021/ja00953a006 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Castleman, Holland, et al., 1978
Castleman, A.W.; Holland, P.M.; Lindsay, D.M.; Peterson, K.I., The Properties of Clusters in the Gas Phase. 2. Ammonia about Metal Ions, J. Am. Chem. Soc., 1978, 100, 19, 6039, https://doi.org/10.1021/ja00487a011 . [all data]

Wickham-Jones, Ervin, et al., 1989
Wickham-Jones, C.T.; Ervin, K.M.; Ellison, G.B.; Lineberger, W.C., NH2 Electron Affinity, J. Chem. Phys., 1989, 91, 4, 2762, https://doi.org/10.1063/1.456994 . [all data]

MacKay, Hemsworth, et al., 1976
MacKay, G.J.; Hemsworth, R.S.; Bohme, D.K., Absolute gas-phase acidities of CH3NH2, C2H5NH2, (CH3)2NH, and (CH3)3N, Can. J. Chem., 1976, 54, 1624. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Meot-Ner (Mautner) and Sieck, 1990
Meot-Ner (Mautner), M.; Sieck, L.W., Ion Thermochemistry at High Temperatures. 1. Thermochemistry of the Ammonium Ion from Variable - Temperature Equilibrium Measurements. Proton Transfer, Association, and Decomposition Reactions in Ammonia, Isobutene, and t-Butylamine, J. Phys. Chem., 1990, 94, 19, 7730, https://doi.org/10.1021/j100382a076 . [all data]

Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B., Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments, Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Deakyne, Knuth, et al., 1994
Deakyne, C.A.; Knuth, D.M.; Speller, C.V.; Meot-Ner (Mautner), M.; Sieck, L.W., Filling of Solvent Shells about Ions. Part 3. Isomeric Clusters of (HCN)n(NH3)mH+, J. Mol. Structure (Theochem), 1994, 307, 217, https://doi.org/10.1016/0166-1280(94)80130-4 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Castleman, 1978
Castleman, A.W., The Properties of Clusters in the Gas Phase: Ammonia about Bi+, Rb+, and K+, Chem. Phys. Lett., 1978, 53, 3, 560, https://doi.org/10.1016/0009-2614(78)80069-4 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S., Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations, J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943 . [all data]

Snodgrass, Coe, et al., 1995
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; Mchugh, K.M.; Arnold, S.T.; Bowen, K.H., Negative ion photoelectron spectroscopy of NH2-(NH3)1 and NH2-(NH3)2: Gas phase basicities of partially solvated anions, J. Phys. Chem., 1995, 99, 24, 9675, https://doi.org/10.1021/j100024a006 . [all data]

Coe, Snodgrass, et al., 1985
Coe, J.V.; Snodgrass, J.T.; Friedhoff, C.B.; McHugh, K.M.; Bowen, K.H., Negative ion photoelectron spectroscopy of the negative ion H-(NH3), J. Chem. Phys., 1985, 83, 3169. [all data]

Walter and Armentrout, 1998
Walter, D.; Armentrout, P.B., Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with H2, D2 and HD, J. Am. Chem. Soc., 1998, 120, 13, 3176, https://doi.org/10.1021/ja973202c . [all data]

Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W., The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes, J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497 . [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Clustering Reactions of Na+ and Pb+ with Several Important Ligands, Zeit. Phys. D., 1991, 19, 1-4, 397, https://doi.org/10.1007/BF01448337 . [all data]

Yamdagni and Kebarle, 1974
Yamdagni, R.; Kebarle, P., The hydrogen bond energies in ClHCl- and Cl-(HCl)n, Can. J. Chem., 1974, 52, 2449. [all data]

Snodgrass, Coe, et al., 1989
Snodgrass, J.T.; Coe, J.V.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H., Photoelectron Spectroscopy of the Negative Cluster Ions, NH2-(NH3)n=1,2, J. Chem. Phys., 1989, 92, xxxx. [all data]

Tzeng, Wei, et al., 1991
Tzeng, W.B.; Wei, S.; Castleman, A.W., Stability, Structure and Binding - Energies of Solvated Cluster Ions - Ammonia Acetonitrile and Ammonia Acetaldehyde Systems, J. Phys. Chem., 1991, 95, 15, 5757, https://doi.org/10.1021/j100168a011 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Qi, Sheng, et al., 1995
Qi, F.; Sheng, L.; Zhang, Y.; Yu, S.; Li, W.-K., Experimental and theoretical study of the dissociation energies DO(H2N-H) and DO(H2N+-H) and other related quantities, Chem. Phys. Lett., 1995, 234, 450. [all data]

Ruede, Troxler, et al., 1993
Ruede, R.; Troxler, H.; Beglinger, C.; Jungen, M., The dissociation energies of the positive ions NH3+, NF3+, PH3+, PF3+ and PCl3+, Chem. Phys. Lett., 1993, 203, 477. [all data]

Reiser, Habenicht, et al., 1993
Reiser, G.; Habenicht, W.; Muller-Dethlefs, K., Zero kinetic energy (ZEKE) photoelectron spectroscopy of ammonia by nonresonant two-photon ionization from the neutral ground state, J. Chem. Phys., 1993, 98, 8462. [all data]

Locht, Hottmann, et al., 1992
Locht, R.; Hottmann, K.; Hagenow, G.; Denzer, W.; Baumgartel, H., The threhold-photoelectron spectrum of NH3, Chem. Phys. Lett., 1992, 190, 124. [all data]

Locht, Leyh, et al., 1991
Locht, R.; Leyh, B.; Denzer, W.; Hagenow, G.; Baumgartel, H., The photoionization of ammonia revisited. The vibrational autoionization of NH3 and its three isotopomers in the 10-12 eV photon energy range, Chem. Phys., 1991, 155, 407. [all data]

Habenicht, 1989
Habenicht, W., [Title unavailable], Ph.D. Thesis, Technische Universitat Munchen, 1989. [all data]

Baldwin, Loudon, et al., 1977
Baldwin, M.A.; Loudon, A.G.; Webb, K.S.; Cardnell, P.C., Charge location and fragmentation under electron impact. V-The ionization potentials of (methylated) phosphoramides, guanidines, formamides, acetamides, ureas and thioureas, Org. Mass Spectrom., 1977, 12, 279. [all data]

Debies and Rabalais, 1975
Debies, T.P.; Rabalais, J.W., Calculated photoionization cross-sections and angular distributions for the isoelectronic series Ne, HF, H2O, NH3, and CH4, J. Am. Chem. Soc., 1975, 97, 487. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Photoelectron spectrum and gas-phase basicity of manxine. Evidence for a planar bridgehead nitrogen, J. Am. Chem. Soc., 1975, 97, 4136. [all data]

Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C., Ionization and dissociation by electron impact. II. NH3 and PH3, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 277. [all data]

Potts and Price, 1972
Potts, A.W.; Price, W.C., Photoelectron spectra and valence shell orbital structures of groups V VI hydrides, Proc. R. Soc. London A:, 1972, 326, 181. [all data]

Weiss and Lawrence, 1970
Weiss, M.J.; Lawrence, G.M., Photoelectron spectroscopy of NH3 and ND3 using molecular beams, J. Chem. Phys., 1970, 53, 214. [all data]

Branton, Frost, et al., 1969
Branton, G.R.; Frost, D.C.; Herring, F.G.; McDowell, C.A.; Stenhouse, I.A., The ionization potentials of ammonia and ammonia-d3, measured by photoelectron spectroscopy, and an INDO calculation of these values, Chem. Phys. Lett., 1969, 3, 581. [all data]

Potapov, 1968
Potapov, V.K., Mechanism of ionic-molecular reactions, Dokl. Akad. Nauk SSSR, 1968, 183, 386, In original 843. [all data]

Chupka and Russell, 1968
Chupka, W.A.; Russell, M.E., Ion-molecule reactions of NH3+ by photoionization, J. Chem. Phys., 1968, 48, 1527. [all data]

Dibeler, Walker, et al., 1966
Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Mass spectrometric study of photoionization. V.Water and ammonia, J.Res. NBS, 1966, 70A, 459. [all data]

Watanabe and Sood, 1965
Watanabe, K.; Sood, S.P., Absorption and photoionization coefficients of NH3 in the 580-1650 A region, Sci. Light (Tokyo), 1965, 14, 36. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Watanabe and Mottl, 1957
Watanabe, K.; Mottl, J.R., Ionization potentials of ammonia and some amines, J. Chem. Phys., 1957, 26, 1773. [all data]

Baumgartel, Jochims, et al., 1989
Baumgartel, H.; Jochims, H.-W.; Ruhl, E.; Bock, H.; Dammel, R.; Minkwitz, J.; Nass, R., Photoelectron and photoionization mass spectra of the fluoramines NH3-nFn1, Inorg. Chem., 1989, 28, 943. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Campbell, Liesegang, et al., 1979
Campbell, M.J.; Liesegang, J.; Riley, J.D.; Leckey, R.C.G.; Jenkin, J.G.; Poole, R.T., The electronic structure of the valence bands of solid NH3 and H2O studied by ultraviolet photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1979, 15, 83. [all data]

Daamen and Oskam, 1978
Daamen, H.; Oskam, A., Bonding properties of some monosubstituted chromium and tungsten hexacarbonyls M(CO)5L (L=amine, substituted pyridine, azine), Inorg. Chim. Acta, 1978, 26, 81. [all data]

Muller and Schulz, 1990
Muller, U.; Schulz, G., Electron-impact dissociation of ammonia; formation of NH+ ions in excited states, Chem. Phys. Lett., 1990, 170, 401. [all data]

Locht, Servais, et al., 1988
Locht, R.; Servais, C.; Ligot, M.; Derwa, F.; Momigny, J., The dissociative electroionization of ammonia and ammonia-d3. I. The NH+ and NH2+ dissociation channels, Chem. Phys., 1988, 123, 443. [all data]

Reed and Snedden, 1959
Reed, R.I.; Snedden, W., The ionisation potential of NH, J. Chem. Soc., 1959, 4132. [all data]

Powis, 1981
Powis, I., Influence of angular momentum in the dissociation of NH3+, J. Chem. Soc. Faraday Trans. 2, 1981, 77, 1433. [all data]

McCulloh, 1976
McCulloh, K.E., Energetics and mechanisms of fragment ion formation in the photoionization of normal and deuterated water and ammonia, Int. J. Mass Spectrom. Ion Phys., 1976, 21, 333. [all data]

Foner and Hudson, 1958
Foner, S.N.; Hudson, R.L., Mass spectrometric detection of triazene and tetrazene and studies of the free radicals NH2, and N2H3, J. Chem. Phys., 1958, 29, 442. [all data]

Li and Stone, 1990
Li, X.; Stone, A.J., Gas-Phase (CH3)3Si+ Affinities of Alkylamines and Proton Affinities of Trimethylsilyl Alkylamines, Int. J. Mass Spectrom. Ion Proc., 1990, 101, 2-3, 149, https://doi.org/10.1016/0168-1176(90)87008-5 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner and Field, 1974
Meot-Ner, (Mautner); Field, F.H., Solvation and Association of Protonated Gaseous Amino Acids, J. Am. Chem. Soc., 1974, 96, 10, 3168, https://doi.org/10.1021/ja00817a024 . [all data]

Marinelli and Squires, 1989
Marinelli, P.J.; Squires, R.R., Sequential Solvation of Atomic Transition Metal Ions: The Second Solvent Molecule Can Bind More Strongly than the First, J. Am. Chem. Soc., 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a052 . [all data]

Spears and Ferguson, 1973
Spears, K.G.; Ferguson, E.E., Termolecular and Saturated Termolecular Kinetics for Li+ and F-, J. Chem. Phys., 1973, 59, 8, 4174, https://doi.org/10.1063/1.1680610 . [all data]

Schwartz, Davico, et al., 2000
Schwartz, R.L.; Davico, G.E.; Kim, J.B.; Lineberger, C.W., Negative Ion Photoelectron Spectroscopy of OH-(NH3), J. Chem. Phys., 2000, 112, 11, 4966, https://doi.org/10.1063/1.481051 . [all data]

Stephan, Futrell, et al., 1982
Stephan, K.; Futrell, J.H.; Peterson, K.I.; Castleman, A.W.; Wagner, H.E.; Djuric, N.; Mark, T.D., An Electron - Impact Study of Ammonia Clusters in a Supersonic Molecular Beam: Appearence Potentials of NH4+, (NH3)2H+, (NH3)3+, (NH3)3H+ and (NH2 NH3)+, Int. J. Mass Spectrom. Ion Phys., 1982, 44, 3-4, 167, https://doi.org/10.1016/0020-7381(82)80023-5 . [all data]

Ng, Trevor, et al., 1977
Ng, C.Y.; Trevor, D.J.; Tiedemann, P.W.; Ceyer, S.T.; Kronebush, B.H.; Mahan, B.H.; Lee, Y.T., Photoinization of Dimeric Polyatomic Molecules: Proton Affinities of H2O and HF, J. Chem. Phys., 1977, 67, 9, 4235, https://doi.org/10.1063/1.435404 . [all data]

Breen, Tzeng, et al., 1989
Breen, J.J.; Tzeng, W.B.; Kilgore, K.; Keesee, R.G.; Castleman, A.W., Intracluster Reactions in Phenylacetylene - Ammonia Clusters Initiated through Resonant Enhanced Ionization, J. Phys. Chem., 1989, 90, 1, 19, https://doi.org/10.1063/1.456521 . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, Site Links, NIST Free Links, References