Hydrogen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar130.680 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar130.68J/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 2500.2500. to 6000.
A 33.06617818.56308343.413560
B -11.36341712.257357-4.293079
C 11.432816-2.8597861.272428
D -2.7728740.268238-0.096876
E -0.1585581.977990-20.533862
F -9.980797-1.147438-38.515158
G 172.707974156.288133162.081354
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Ttriple0.KN/ARoder, Childs, et al., 1973TRC
Ttriple13.95KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.06 K; see property X for dP/dT for c-l equil.; TRC
Ttriple13.96KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.05 K; temperature measured with He gas thermometer; TRC
Quantity Value Units Method Reference Comment
Ptriple0.barN/ARoder, Childs, et al., 1973TRC
Ptriple0.0721barN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.0004 bar; TRC
Quantity Value Units Method Reference Comment
Tc33.18KN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 0.2 K; derived from P-V-T measurements; TRC
Quantity Value Units Method Reference Comment
Pc13.00barN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 0.0119 bar; derived from vapor pressure extrapolated to Tc; TRC
Quantity Value Units Method Reference Comment
ρc15.4mol/lN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 2. mol/l; by extrapolation of rectilinear diameter to Tc; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
21.01 to 32.273.5431499.3957.726van Itterbeek, Verbeke, et al., 1964Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Dicobalt octacarbonyl (solution) + Hydrogen (solution) = 2Cobalt, tetracarbonylhydro- (solution)

By formula: C8Co2O8 (solution) + H2 (solution) = 2C4HCoO4 (solution)

Quantity Value Units Method Reference Comment
Δr19.7 ± 0.8kJ/molEqSRathke, Klingler, et al., 1992solvent: Supercritical carbon dioxide; Temperature range: 333-453 K. The results corrected for 1 atm pressure of H2 are 16.7 kJ/mol and -17.6 J/(mol K) Rathke, Klingler, et al., 1992; MS
Δr13.0 ± 0.9kJ/molEqSBor, 1986solvent: n-Hexane; Temperature range: ca. 300-420 K; MS
Δr26.4kJ/molKinSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; The reaction enthalpy relies on the experimental values for the forward and reverse activation enthalpies, 72.4 and 46.0 kJ/mol, respectively Alemdaroglu, Penninger, et al., 1976. A rather different value has, however, been reported for the activation enthalpy of the forward reaction, 104.6 kJ/mol Ungváry, 1972; MS
Δr27.6kJ/molEqSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; Temperature range: 353-428 K; MS
Δr13.4kJ/molEqSUngváry, 1972solvent: n-Heptane; Temperature range: 307-428 K. The results corrected for 1 atm pressure of H2 are 18.0 kJ/mol and -10.9 J/(mol K) Rathke, Klingler, et al., 1992; MS

H3+ + Hydrogen = (H3+ • Hydrogen)

By formula: H3+ + H2 = (H3+ • H2)

Quantity Value Units Method Reference Comment
Δr29. ± 2.kJ/molAVGN/AAverage of 4 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δr72.8 to 72.8J/mol*KRNGN/ARange of 6 values; Individual data points

C11H2O11Os (solution) + Carbon monoxide (solution) = Hydrogen (g) + Osmium, dodecacarbonyltri-, triangulo (solution)

By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)

Quantity Value Units Method Reference Comment
Δr-37.7 ± 9.6kJ/molES/KSPoë, Sampson, et al., 1993solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS
Δr-77.4 ± 9.7kJ/molN/APoë, Sampson, et al., 1993solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS

Cyclohexene + Hydrogen = Cyclohexane

By formula: C6H10 + H2 = C6H12

Quantity Value Units Method Reference Comment
Δr-118. ± 6.kJ/molAVGN/AAverage of 8 values; Individual data points

Chromium, hexacarbonylbis(η5-2,4-cyclopentadien-1-yl)di-, (Cr-Cr) (cr) + Hydrogen (g) = 2C8H6CrO3 (cr)

By formula: C16H10Cr2O6 (cr) + H2 (g) = 2C8H6CrO3 (cr)

Quantity Value Units Method Reference Comment
Δr-13.9 ± 4.0kJ/molRSCLandrum and Hoff, 1985The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS
Δr-15.1 ± 4.2kJ/molDSCLandrum and Hoff, 1985The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS

Hydrogen + 1-Hexene = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-125. ± 3.kJ/molAVGN/AAverage of 8 values; Individual data points

(H3+ • Hydrogen) + Hydrogen = (H3+ • 2Hydrogen)

By formula: (H3+ • H2) + H2 = (H3+ • 2H2)

Quantity Value Units Method Reference Comment
Δr14. ± 0.8kJ/molPHPMSHiraoka, 1987gas phase; M
Δr13.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; M
Δr14.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated; M
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr7.5kJ/molHPMSBennett and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr70.7J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; M
Δr67.4J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated; M
Δr82.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr45.2J/mol*KHPMSBennett and Field, 1972gas phase; Entropy change is questionable; M

Hydrogen + 1-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-125. ± 2.kJ/molAVGN/AAverage of 6 values; Individual data points

1-Octene + Hydrogen = Octane

By formula: C8H16 + H2 = C8H18

Quantity Value Units Method Reference Comment
Δr-125. ± 6.kJ/molAVGN/AAverage of 7 values; Individual data points

Hydrogen anion + Hydrogen cation = Hydrogen

By formula: H- + H+ = H2

Quantity Value Units Method Reference Comment
Δr1675.3kJ/molN/AShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1675.3kJ/molN/APratt, McCormack, et al., 1992gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B
Δr1675.3kJ/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B
Quantity Value Units Method Reference Comment
Δr1649.3 ± 0.42kJ/molH-TSShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1649.3kJ/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B

Hydrogen + Cyclopentene = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-112.7 ± 0.54kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-112. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-109.0 ± 1.8kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-110. ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-111.6 ± 0.3kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112.6 ± 0.3 kJ/mol; At 355 °K; ALS

Hydrogen + Cyclooctene, (Z)- = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-102.kJ/molChydDoering, Roth, et al., 1989liquid phase; ALS
Δr-103. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-96.40 ± 0.71kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane; ALS
Δr-96.1 ± 0.4kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid; ALS
Δr-97.40 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -98.4 ± 0.2 kJ/mol; At 355 K; ALS

0.5C36H84Cl2P4Rh2 (solution) + Hydrogen (g) = C18H44ClP2Rh (solution)

By formula: 0.5C36H84Cl2P4Rh2 (solution) + H2 (g) = C18H44ClP2Rh (solution)

Quantity Value Units Method Reference Comment
Δr-98.8 ± 2.7kJ/molRSCWang, Rosini, et al., 1995solvent: Benzene; The reaction enthalpy was calculated from the enthalpies of the reactions Rh[P(i-Pr)3]2(Cl)(H)2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution) + H2(g), -41.4 ± 1.7 kJ/mol, and 0.5{Rh[P(i-Pr)3]2(Cl)}2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution), -140.2 ± 2.1 kJ/mol Wang, Rosini, et al., 1995. The enthalpy of solution of {Rh[P(i-Pr)3]2(Cl)}2(cr) was measured as 20.1 ± 1.3 kJ/mol Wang, Rosini, et al., 1995.; MS

Hydrogen + Cyclopentene, 1-methyl- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-100.8 ± 0.63kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-101.3 ± 0.50kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,5-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-252. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS
Δr-253.9 ± 2.7kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-251.8 ± 1.5kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-251.2 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -253.3 ± 0.63 kJ/mol; At 355 °K; ALS

Hydrogen + 1-Ethylcyclopentene = Cyclopentane, ethyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-101.9 ± 0.63kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-98.3 ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-98.58 ± 0.46kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-98.58 ± 0.46kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclopentane, ethylidene- = Cyclopentane, ethyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-106.9 ± 0.4kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-101. ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-104.1 ± 0.50kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-104.1 ± 0.50kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclopentane, methylene- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-115.9 ± 0.96kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-112.5 ± 0.08kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-112.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-112.2 ± 0.3kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

C3H7+ + Hydrogen = (C3H7+ • Hydrogen)

By formula: C3H7+ + H2 = (C3H7+ • H2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.170.PHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Cobalt ion (1+) + Hydrogen = (Cobalt ion (1+) • Hydrogen)

By formula: Co+ + H2 = (Co+ • H2)

Quantity Value Units Method Reference Comment
Δr82. ± 4.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73.2 (+9.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Δr-126.6 ± 2.4kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-125.0 ± 1.8kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-122.6 ± 2.4kJ/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane; ALS
Δr-119. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS

Cyclohexane, methylene- + Hydrogen = Cyclohexane, methyl-

By formula: C7H12 + H2 = C7H14

Quantity Value Units Method Reference Comment
Δr-119.5 ± 0.65kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-116.1 ± 0.54kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-116.1 ± 0.54kJ/molEqkTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-120.1 ± 0.3kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cycloheptene = Cycloheptane

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-110. ± 0.4kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-108.2 ± 0.4kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS
Δr-108.9 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -111.0 ± 0.08 kJ/mol; At 355 K; ALS

3Hydrogen + 1,3,5-Cycloheptatriene = Cycloheptane

By formula: 3H2 + C7H8 = C7H14

Quantity Value Units Method Reference Comment
Δr-305. ± 0.4kJ/molChydRoth, Klaerner, et al., 1983liquid phase; solvent: Isooctane; ALS
Δr-294.9 ± 1.6kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS
Δr-301.7 ± 1.3kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -304.8 ± 0.04 kJ/mol; at 355 K; ALS

2Hydrogen + 1,3-Butadiene, 2,3-dimethyl- = Butane, 2,3-dimethyl-

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-231.4 ± 3.0kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-227.0 ± 2.8kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-223.4 ± 0.63kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -225.4 ± 0.63 kJ/mol; At 355 °K; ALS

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-193.8 ± 0.75kJ/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -202.2 ± 0.75 kJ/mol; At 400-550 K; ALS
Δr-193.0 ± 2.1kJ/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -188.3 kJ/mol; At 423-443 K; ALS

1-Pentene, 2,4,4-trimethyl- + Hydrogen = Pentane, 2,2,4-trimethyl-

By formula: C8H16 + H2 = C8H18

Quantity Value Units Method Reference Comment
Δr-107.kJ/molChydTurner, Nettleton, et al., 1958liquid phase; solvent: Acetic acid; ALS
Δr-112.9 ± 0.3kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -114.0 ± 0.3 kJ/mol; At 355 °K; ALS
Δr-119.6 ± 3.3kJ/molChydCrawford and Parks, 1936liquid phase; ALS

Propene + Hydrogen = Propane

By formula: C3H6 + H2 = C3H8

Quantity Value Units Method Reference Comment
Δr-123.4 ± 5.0kJ/molChydKistiakowsky and Nickle, 1951gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -124.9 ± 2.1 kJ/mol; ALS
Δr-125.0 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.00 ± 0.054 kJ/mol; At 355 °K; ALS

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Hydrogen + Acetone = Isopropyl Alcohol

By formula: H2 + C3H6O = C3H8O

Quantity Value Units Method Reference Comment
Δr-68.74 ± 0.42kJ/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-55.40 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS

(Cobalt ion (1+) • Hydrogen) + Methane = (Cobalt ion (1+) • Methane • Hydrogen)

By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)

Quantity Value Units Method Reference Comment
Δr91.2J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
94.6 (+5.0,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Cyclohexane, ethylidene- + Hydrogen = Cyclohexane, ethyl-

By formula: C8H14 + H2 = C8H16

Quantity Value Units Method Reference Comment
Δr-110. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-110.1 ± 0.2kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-110.1 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + trans-Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-144. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase; see Doering, Roth, et al., 1989; ALS
Δr-144.0 ± 1.8kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane; ALS
Δr-134.9 ± 0.88kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid; ALS

(Cobalt ion (1+) • Hydrogen) + Hydrogen = (Cobalt ion (1+) • 2Hydrogen)

By formula: (Co+ • H2) + H2 = (Co+ • 2H2)

Quantity Value Units Method Reference Comment
Δr75. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M

(Cobalt ion (1+) • 2Hydrogen) + Hydrogen = (Cobalt ion (1+) • 3Hydrogen)

By formula: (Co+ • 2H2) + H2 = (Co+ • 3H2)

Quantity Value Units Method Reference Comment
Δr44. ± 2.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M

(Cobalt ion (1+) • 3Hydrogen) + Hydrogen = (Cobalt ion (1+) • 4Hydrogen)

By formula: (Co+ • 3H2) + H2 = (Co+ • 4H2)

Quantity Value Units Method Reference Comment
Δr44. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M

(Cobalt ion (1+) • 4Hydrogen) + Hydrogen = (Cobalt ion (1+) • 5Hydrogen)

By formula: (Co+ • 4H2) + H2 = (Co+ • 5H2)

Quantity Value Units Method Reference Comment
Δr22. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M

(Cobalt ion (1+) • 5Hydrogen) + Hydrogen = (Cobalt ion (1+) • 6Hydrogen)

By formula: (Co+ • 5H2) + H2 = (Co+ • 6H2)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M

(Cobalt ion (1+) • 6Hydrogen) + Hydrogen = (Cobalt ion (1+) • 7Hydrogen)

By formula: (Co+ • 6H2) + H2 = (Co+ • 7H2)

Quantity Value Units Method Reference Comment
Δr6. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M

(H3+ • 3Hydrogen) + Hydrogen = (H3+ • 4Hydrogen)

By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase; M
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr80.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(H3+ • 2Hydrogen) + Hydrogen = (H3+ • 3Hydrogen)

By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)

Quantity Value Units Method Reference Comment
Δr13. ± 0.4kJ/molPHPMSHiraoka, 1987gas phase; M
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr84.5J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen + 4-Octene, (Z)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-118.2 ± 0.4kJ/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane; ALS
Δr-119.7 ± 2.2kJ/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane; ALS
Δr-114.6 ± 0.59kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 4-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-268.7 ± 1.1kJ/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS
Δr-262.8 ± 0.67kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-263.kJ/molChydSicher, Svoboda, et al., 1966liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclooctanone = Cyclooctyl alcohol

By formula: H2 + C8H14O = C8H16O

Quantity Value Units Method Reference Comment
Δr-55.73kJ/molChydWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-53.14kJ/molChydWiberg, Crocker, et al., 1991solid phase; ALS
Δr-39.0kJ/molChydWiberg, Crocker, et al., 1991gas phase; ALS
Δr-53.14 ± 0.59kJ/molCmWiberg, Crocker, et al., 1991solid phase; ALS

Hydrogen + Cyclohexene, 1-methyl- = Cyclohexane, methyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-111.4 ± 0.37kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-106.3 ± 0.46kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-106.3 ± 0.46kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,3-Cycloheptadiene = Cycloheptane

By formula: 2H2 + C7H10 = C7H14

Quantity Value Units Method Reference Comment
Δr-208.9 ± 0.3kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-212.4 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -214.5 ± 0.2 kJ/mol; At 355 K; ALS

Hydrogen + 2-Norbornene = Norbornane

By formula: H2 + C7H10 = C7H12

Quantity Value Units Method Reference Comment
Δr-137. ± 0.4kJ/molChydDoering, Roth, et al., 1988gas phase; ALS
Δr-141.5 ± 1.2kJ/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane; Author was aware that data differs from previously reported values; ALS
Δr-138.6 ± 0.88kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS

Propanal + Hydrogen = 1-Propanol

By formula: C3H6O + H2 = C3H8O

Quantity Value Units Method Reference Comment
Δr-84.3 ± 0.4kJ/molCmWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS
Δr-69.55 ± 0.76kJ/molEqkConnett, 1972gas phase; At 473-524 K; ALS
Δr-65.77 ± 0.67kJ/molChydBuckley and Cox, 1967gas phase; ALS

2Hydrogen + 1,3-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-224.4 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-229.6 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS

Dimanganese decacarbonyl (solution) + Hydrogen (solution) = 2Hydromanganese pentacarbonyl (solution)

By formula: C10Mn2O10 (solution) + H2 (solution) = 2C5HMnO5 (solution)

Quantity Value Units Method Reference Comment
Δr36.4 ± 1.3kJ/molEqSKlingler R.J. and Rathke, 1992solvent: Supercritical carbon dioxide; Temperature range: 373-463 K; MS

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00078500.LN/A 
0.00078640.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.00078490.LN/A 
0.00078 RN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to H2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)15.42593 ± 0.00005eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)422.3kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity394.7kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.425927EVALShiner, Gilligan, et al., 1993T = 0K; LL
15.425930EVALShiner, Gilligan, et al., 1993T = 0K; LL
15.425932 ± 0.000002SMcCormack, Gilligan, et al., 1989T = 0K; LL
15.429558 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.433174 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.425942 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.425932SEyler, Short, et al., 1986T = 0K; LBLHLM
15.425929SEyler, Short, et al., 1986T = 0K; LBLHLM
15.425930 ± 0.000027N/AEyler, Short, et al., 1986LBLHLM
15.5 ± 1.0SFarber, Srivastava, et al., 1982LBLHLM
15.98PEKimura, Katsumata, et al., 1981LLK
15.43PEBieri, Schmelzer, et al., 1980LLK
15.42589EVALHuber and Herzberg, 1979LLK
16. ± 1.EIFarber and Srivastava, 1977LLK
15.4PIRabalais, Debies, et al., 1974LLK
15.43PELee and Rabalais, 1974LLK
15.42589 ± 0.00005SHerzberg and Jungen, 1972LLK
15.4256 ± 0.0001STakezawa, 1970RDSH
15.38186 ± 0.00031PEAsbrink, 1970RDSH
15.44 ± 0.01EILossing and Semeluk, 1969RDSH
15.4256SHerzberg, 1969RDSH
15.431 ± 0.022TEVillarejo, 1968RDSH
15.439 ± 0.015PECollin and Natalis, 1968RDSH
15.43CICermak, 1968RDSH
15.37 ± 0.05EIKerwin, Marmet, et al., 1963RDSH
15.4269 ± 0.0016SBeutler and Junger, 1936RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
H+18.078 ± 0.003HPIPECOWeitzel, Mahnert, et al., 1994T = 0K; LL
H+18.0 ± 0.2HEICrowe and McConkey, 1973LLK
H+17.28 ± 0.16H-EILocht and Momigny, 1971LLK
H+17.3H-EICurran, LaboratoriesRDSH

De-protonation reactions

Hydrogen anion + Hydrogen cation = Hydrogen

By formula: H- + H+ = H2

Quantity Value Units Method Reference Comment
Δr1675.3kJ/molN/AShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1675.3kJ/molN/APratt, McCormack, et al., 1992gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B
Δr1675.3kJ/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B
Quantity Value Units Method Reference Comment
Δr1649.3 ± 0.42kJ/molH-TSShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1649.3kJ/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Hydrogen = (Ar+ • Hydrogen)

By formula: Ar+ + H2 = (Ar+ • H2)

Quantity Value Units Method Reference Comment
Δr93.7kJ/molFAShul, Passarella, et al., 1987gas phase; switching reaction(Ar+)Ar, ΔrH>; Dehmer and Pratt, 1982

Formyl cation + Hydrogen = (Formyl cation • Hydrogen)

By formula: CHO+ + H2 = (CHO+ • H2)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975, 2gas phase
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Kebarle, 1975, 2gas phase

CH5+ + Hydrogen = (CH5+ • Hydrogen)

By formula: CH5+ + H2 = (CH5+ • H2)

Quantity Value Units Method Reference Comment
Δr7.87 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr50.6J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • Hydrogen) + Hydrogen = (CH5+ • 2Hydrogen)

By formula: (CH5+ • H2) + H2 = (CH5+ • 2H2)

Quantity Value Units Method Reference Comment
Δr7.45 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • 2Hydrogen) + Hydrogen = (CH5+ • 3Hydrogen)

By formula: (CH5+ • 2H2) + H2 = (CH5+ • 3H2)

Quantity Value Units Method Reference Comment
Δr6.74 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • 3Hydrogen) + Hydrogen = (CH5+ • 4Hydrogen)

By formula: (CH5+ • 3H2) + H2 = (CH5+ • 4H2)

Quantity Value Units Method Reference Comment
Δr6.57 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

C3H7+ + Hydrogen = (C3H7+ • Hydrogen)

By formula: C3H7+ + H2 = (C3H7+ • H2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.170.PHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993

(Cobalt ion (1+) • Water) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Water)

By formula: (Co+ • H2O) + H2 = (Co+ • H2 • H2O)

Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; ΔrS(530 K)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
83. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; ΔrS(530 K)

Cobalt ion (1+) + Hydrogen = (Cobalt ion (1+) • Hydrogen)

By formula: Co+ + H2 = (Co+ • H2)

Quantity Value Units Method Reference Comment
Δr82. ± 4.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73.2 (+9.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID

(Cobalt ion (1+) • Hydrogen) + Hydrogen = (Cobalt ion (1+) • 2Hydrogen)

By formula: (Co+ • H2) + H2 = (Co+ • 2H2)

Quantity Value Units Method Reference Comment
Δr75. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K
Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K

(Cobalt ion (1+) • 2Hydrogen) + Hydrogen = (Cobalt ion (1+) • 3Hydrogen)

By formula: (Co+ • 2H2) + H2 = (Co+ • 3H2)

Quantity Value Units Method Reference Comment
Δr44. ± 2.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K

(Cobalt ion (1+) • 3Hydrogen) + Hydrogen = (Cobalt ion (1+) • 4Hydrogen)

By formula: (Co+ • 3H2) + H2 = (Co+ • 4H2)

Quantity Value Units Method Reference Comment
Δr44. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K
Quantity Value Units Method Reference Comment
Δr101.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K

(Cobalt ion (1+) • 4Hydrogen) + Hydrogen = (Cobalt ion (1+) • 5Hydrogen)

By formula: (Co+ • 4H2) + H2 = (Co+ • 5H2)

Quantity Value Units Method Reference Comment
Δr22. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K

(Cobalt ion (1+) • 5Hydrogen) + Hydrogen = (Cobalt ion (1+) • 6Hydrogen)

By formula: (Co+ • 5H2) + H2 = (Co+ • 6H2)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K

(Cobalt ion (1+) • 6Hydrogen) + Hydrogen = (Cobalt ion (1+) • 7Hydrogen)

By formula: (Co+ • 6H2) + H2 = (Co+ • 7H2)

Quantity Value Units Method Reference Comment
Δr6. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K

Iron ion (1+) + Hydrogen = (Iron ion (1+) • Hydrogen)

By formula: Fe+ + H2 = (Fe+ • H2)

Quantity Value Units Method Reference Comment
Δr52.3 ± 0.8kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 45.2 kJ/mol
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 45.2 kJ/mol

(Iron ion (1+) • Hydrogen) + Hydrogen = (Iron ion (1+) • 2Hydrogen)

By formula: (Fe+ • H2) + H2 = (Fe+ • 2H2)

Quantity Value Units Method Reference Comment
Δr71.1 ± 0.8kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 65.7 kJ/mol
Quantity Value Units Method Reference Comment
Δr105.J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 65.7 kJ/mol

(Iron ion (1+) • 2Hydrogen) + Hydrogen = (Iron ion (1+) • 3Hydrogen)

By formula: (Fe+ • 2H2) + H2 = (Fe+ • 3H2)

Quantity Value Units Method Reference Comment
Δr35. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 31. kJ/mol
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 31. kJ/mol

(Iron ion (1+) • 3Hydrogen) + Hydrogen = (Iron ion (1+) • 4Hydrogen)

By formula: (Fe+ • 3H2) + H2 = (Fe+ • 4H2)

Quantity Value Units Method Reference Comment
Δr41. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 36. kJ/mol
Quantity Value Units Method Reference Comment
Δr104.J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 36. kJ/mol

(Iron ion (1+) • 4Hydrogen) + Hydrogen = (Iron ion (1+) • 5Hydrogen)

By formula: (Fe+ • 4H2) + H2 = (Fe+ • 5H2)

Quantity Value Units Method Reference Comment
Δr11. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.2 kJ/mol
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.2 kJ/mol

(Iron ion (1+) • 5Hydrogen) + Hydrogen = (Iron ion (1+) • 6Hydrogen)

By formula: (Fe+ • 5H2) + H2 = (Fe+ • 6H2)

Quantity Value Units Method Reference Comment
Δr11. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.6 kJ/mol
Quantity Value Units Method Reference Comment
Δr75.7J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.6 kJ/mol

HN2+ + Hydrogen = (HN2+ • Hydrogen)

By formula: HN2+ + H2 = (HN2+ • H2)

Quantity Value Units Method Reference Comment
Δr30.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(HN2+ • Hydrogen) + Hydrogen = (HN2+ • 2Hydrogen)

By formula: (HN2+ • H2) + H2 = (HN2+ • 2H2)

Quantity Value Units Method Reference Comment
Δr7.5kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

Hydroxyl anion + Hydrogen = (Hydroxyl anion • Hydrogen)

By formula: HO- + H2 = (HO- • H2)

Quantity Value Units Method Reference Comment
Δr30.kJ/molCIDPaulson and Henchman, 1984gas phase; approximate value

HO2+ + Hydrogen = (HO2+ • Hydrogen)

By formula: HO2+ + H2 = (HO2+ • H2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(HO2+ • Oxygen) + Hydrogen = (HO2+ • Hydrogen • Oxygen)

By formula: (HO2+ • O2) + H2 = (HO2+ • H2 • O2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

H3+ + Hydrogen = (H3+ • Hydrogen)

By formula: H3+ + H2 = (H3+ • H2)

Quantity Value Units Method Reference Comment
Δr29. ± 2.kJ/molAVGN/AAverage of 4 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δr72.8 to 72.8J/mol*KRNGN/ARange of 6 values; Individual data points

(H3+ • Hydrogen) + Hydrogen = (H3+ • 2Hydrogen)

By formula: (H3+ • H2) + H2 = (H3+ • 2H2)

Quantity Value Units Method Reference Comment
Δr14. ± 0.8kJ/molPHPMSHiraoka, 1987gas phase
Δr13.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr14.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Δr7.5kJ/molHPMSBennett and Field, 1972gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, 1987gas phase
Δr70.7J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr67.4J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr82.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase
Δr45.2J/mol*KHPMSBennett and Field, 1972gas phase; Entropy change is questionable

(H3+ • 2Hydrogen) + Hydrogen = (H3+ • 3Hydrogen)

By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)

Quantity Value Units Method Reference Comment
Δr13. ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka, 1987gas phase
Δr84.5J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

(H3+ • 3Hydrogen) + Hydrogen = (H3+ • 4Hydrogen)

By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase
Δr80.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

(H3+ • 4Hydrogen) + Hydrogen = (H3+ • 5Hydrogen)

By formula: (H3+ • 4H2) + H2 = (H3+ • 5H2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 5Hydrogen) + Hydrogen = (H3+ • 6Hydrogen)

By formula: (H3+ • 5H2) + H2 = (H3+ • 6H2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 6Hydrogen) + Hydrogen = (H3+ • 7Hydrogen)

By formula: (H3+ • 6H2) + H2 = (H3+ • 7H2)

Quantity Value Units Method Reference Comment
Δr3.7 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 7Hydrogen) + Hydrogen = (H3+ • 8Hydrogen)

By formula: (H3+ • 7H2) + H2 = (H3+ • 8H2)

Quantity Value Units Method Reference Comment
Δr3.3 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 8Hydrogen) + Hydrogen = (H3+ • 9Hydrogen)

By formula: (H3+ • 8H2) + H2 = (H3+ • 9H2)

Quantity Value Units Method Reference Comment
Δr2.6 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka, 1987gas phase

Hydronium cation + Hydrogen = (Hydronium cation • Hydrogen)

By formula: H3O+ + H2 = (H3O+ • H2)

Quantity Value Units Method Reference Comment
Δr15. ± 2.kJ/molSCATTERINGOkumura, Yeh, et al., 1990gas phase

Potassium ion (1+) + Hydrogen = (Potassium ion (1+) • Hydrogen)

By formula: K+ + H2 = (K+ • H2)

Quantity Value Units Method Reference Comment
Δr7.78kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 6.07 kJ/mol
Quantity Value Units Method Reference Comment
Δr56.5J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 6.07 kJ/mol

(Potassium ion (1+) • Hydrogen) + Hydrogen = (Potassium ion (1+) • 2Hydrogen)

By formula: (K+ • H2) + H2 = (K+ • 2H2)

Quantity Value Units Method Reference Comment
Δr6.15kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 5.65 kJ/mol
Quantity Value Units Method Reference Comment
Δr46.9J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 5.65 kJ/mol

Lithium ion (1+) + Hydrogen = (Lithium ion (1+) • Hydrogen)

By formula: Li+ + H2 = (Li+ • H2)

Quantity Value Units Method Reference Comment
Δr27. ± 19.kJ/molEIWu, 1979gas phase

Sodium ion (1+) + Hydrogen = (Sodium ion (1+) • Hydrogen)

By formula: Na+ + H2 = (Na+ • H2)

Quantity Value Units Method Reference Comment
Δr12.3kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 10.3 kJ/mol
Quantity Value Units Method Reference Comment
Δr55.2J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 10.3 kJ/mol

(Sodium ion (1+) • Hydrogen) + Hydrogen = (Sodium ion (1+) • 2Hydrogen)

By formula: (Na+ • H2) + H2 = (Na+ • 2H2)

Quantity Value Units Method Reference Comment
Δr10.1kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 9.41 kJ/mol
Quantity Value Units Method Reference Comment
Δr51.9J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 9.41 kJ/mol

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Constants of diatomic molecules, Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin American Petroleum Institute Research Project 44
NIST MS number 245692

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Site Links, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through November, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for H2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
WAVELENGTH TABLES of the H2 spectrum from 2800 to 29000 Å with assignments of many of the lines Crosswhite, 1972. The TABLES OF ENERGY LEVELS Dieke, 1958 are also very useful as long as it is realized that the absolute values of the energy levels (n≥2) relative to the ground state need correction. Graphs and tables of POTENTIAL ENERGY CURVES for all known states of H2, H2+, and H2- Sharp, 1971.See note 1
Fragments of three other triplet systems. 2
u 3Πu 6pπ [123488.0] 3    [29.3]   [0.023]  [1.069] u → a 26232.3 4
Richardson, 1934; Dieke, 1958
t 3Σu+ 5fσ (121292) 5 (2661.4) (121.9)  6      t → a (25342)
Richardson, Yarrow, et al., 1934
q (3Σg+) 5dσ (121295) 5 [2172.6]   6      q → c (25325) 4
Richardson, Yarrow, et al., 1934, 2
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
n 3Πu 5pπ 120952.9 2321.4 62.86  29.95 1.24 7  [0.023]  1.057 n → a 24847.3 4
Richardson, 1934; Dieke, 1958
m 3Σu+ 4fσ (119317) 8 [2457.1]   6      m → a 23295.1 9
Richardson, Yarrow, et al., 1934
s 3Δg 4dδ 118875.2 2291.7 10 62.44 10  11      s → c 22949.3 12
Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958
r 3Πg 4dπ 118613.7 2280.3 13 57.96 13  11      r → c 22683.2 13
Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
p 3Σg+ 4dσ 118509.8 2303.1 76.90  6      p-k 14 
Miller and Freund, 1975
           p → c 22586.0 4
Richardson, 1934; Foster and Richardson, 1953; Dieke, 1958
v (3Πg) (118330) 15 2340 (57)  [(29.1)]     [(1.072)] v → c (22430)
Richardson, Yarrow, et al., 1934, 2
k 3Πu 4pπ 118366.2 16 2344.37 67.29 17 0.99 30.074 1.462 18  [0.0185]  1.0547 k → a 22271.0 4
Richardson, 1934; Cunningham and Dieke, 1950; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
f 3Σu+ 4pσ (116705) [2143.6] 19   [27.0] 19     [1.11] f → a 20526.0 19
Richardson, 1934; Dieke, 1958
o 3Σu+ (114234) 20 2399.1 91.0  [35]     [0.98] o → a (18160)
Richardson, Yarrow, et al., 1934
l 3Πu 113825 21 2596.8 106.0  [36]     [0.96] l → a 17846 4
Richardson, Yarrow, et al., 1934
j 3Δg 3dδ (113533) 2345.26 22 66.56 0.745 30.085 22 1.692  0.0190  1.0545 j ↔ c 23 R 17633.0 24
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
i 3Πg 3dπ (113132) 2253.55 22 67.05 25  29.221 22 1.506  0.0176  1.0700 i-d 26 
Freund and Miller, 1974
           i → e R 5384.81 27
Gloersen and Dieke, 1965
           i ↔ c 23 R 17185.8 24
Richardson, 1934; Dieke, 1958
h 3Σg+ 3sσ (112913) [2268.73] 28   [30.62] 28     1.045 1 h → c 16990.8 29
Richardson, Yarrow, et al., 1934, 3; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
g 3Σg+ 3dσ 112854.4 2290.86 105.43 30 2.403 31      g → e R 5116.6
Gloersen and Dieke, 1965
           g ↔ c 23 16917.6 29
Richardson, 1934; Richardson, Yarrow, et al., 1934, 3; Dieke, 1958
d 3Πu 3pπ 112700.3 32 2371.58 33 66.27 0.88 30.364 33 34 1.545  [1.91]  1.0496 d → a 35 R 16619.0 29
Dieke and Blue, 1935; Dieke, 1958
e 3Σu+ 3pσ 107774.7 2196.13 65.80 -0.433 27.30 1.515    1.107 e → a R 11605.6
Richardson, 1934; Dieke, 1935
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
a 3Σg+ 2sσ 95936.1 36 2664.83 71.65 37 0.92 34.216 1.671  [0.0216]  0.98879 a → b 38 39 
           (a-X) 95076.4 36
c 3Πu 3pπ 95838.5 40 2466.89 63.51 0.552 31.07 41 42 1.425  [0.0195]  1.0376 (c-X) 94881.0 43
b 3Σu+2Unstable; lower state of the continuous spectrum of H2 (a → b). Pot. function Kolos and Wolniewicz, 1965.
Several excited states above the ionization limit, established by electron impact studies and leading to two exited atoms or H + H+.
Continuous absorption above ~130000 cm-1. 44
v'=0 Rydberg series of rotational levels observed in low temperature absorption from X 1Σg+, v"=0, J"=0 and 1 and converging to:
RydbergN=2 of H2+: J=1 levels of npπ 1Πu+ (n=6,...,32, joining on to C, D, D', D")45; ν = 124591.5 46 - R/(n + 0.082)2. Similar series with v'=1,...,6 47. R(0) lines (para H2)
Herzberg, 1969; Takezawa, 1970, 2; missing citation
N=1 of H2+: J=1 levels of npπ 1Πu- (n=6,...,43, joining on to C, D, D', D")48; ν = 124476.0 46 - R/(n + 0.082)2. Similar series with v'=1,...,5. Q(1) lines (ortho H2)
Herzberg, 1969; Takezawa, 1970, 2; missing citation
N=1 of H2+: J=0 levels of npσ 1Σu+ (n=5,...,19, joining on to B, B', B")48; ν = 124476.0 46 - R/(n + 0.203)2. Similar series with v'=1,2,3. P(1) lines (ortho H2)
Takezawa, 1970, 2; missing citation
N=0 of H2+: J=1 levels of npσ 1Σu+ (n=5,...,40, joining on to B, B', B")45; ν = 124417.0 46 - R/(n + 0.203)2. Similar series with v'=1,...,6. 5 R(0) lines (para H2)
Herzberg, 1969; Takezawa, 1970, 2; missing citation
B bar 1Σu+State causing ion-pair formation after excitation of higher Rydberg states; also responsible for perturbations in B' 1Σu+. Correlates at small r with B" 1Σu+, forming a double-minimum state.
Dabrowski and Herzberg, 1974; Chupka, Dehmer, et al., 1975; Kolos, 1976
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D" 1Πu 5pπ 121211.0 49 2319.92 49 63.041  30.76 50 51 1.45 50  (0.03)  1.043 D" ← X R 120176.0 49
Monfils, 1965; Monfils, 1968
D' 1Πu 4pπ 118865.3 49 2329.97 49 63.140  29.89 52 51 1.11 52 -0.53 [0.025] 52  [(1.058)] D' ← X R 117835.2 49
Namioka, 1964; Monfils, 1965; Monfils, 1968
S 1Δg 4dδ [119893] 53 3    [(28.8)] 54     [(1.078)] S → B V 27510
Richardson, 1934; Dieke, 1958
O 1Σ+ 4sσ [(119870)] 55 3    [(32)]     [(1.02)] O → B V (27487) 56
Richardson, 1934
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
R 1Πg 4dπ (118688) 57 [2142] 58   [(30)] 54     [(1.06)] (R → C) (18488)
Richardson, 1934; Dieke, 1958
           R → B V 27376 45
Richardson, 1934; Dieke, 1958
P 1Σg+ 4dσ [119531] 59 3    [(30)] 54     [(1.06)] (P → C) 18260 49
Richardson, 1934; Dieke, 1958
           P → B V 27148 60
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
T 1Σ+ [119512.6] 61 3    [(25.4)]     [(1.148)] T → B V 27130.1
Richardson, 1934; Dieke, 1958
B" 1Σu+ 4pσ 117984.5 2197.5 68.136  26.68 62 63 1.19 62  [0.034]  [(1.1198)] B" ← X R 116886.9 64
missing citation; Monfils, 1965; Monfils, 1968; missing citation
N 1Σg+ (116287) 65 [1983.3]   [(18.4)]     [(1.35)] N → B R 24896.4
Richardson, 1934; Dieke, 1958
U (1Σg+) [116707.7] 65 66    [(18.8)]     [(1.33)] U → B 67 R 24325.1
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
M 1Σg+ (114485) 65 [2176.0]   [(13)]     [(1.60)] M → B R 23190.0 68
Richardson, 1934; Dieke, 1958
L 1Σg+ (114520) 65 [(1835)]   [(9.7)]     [(1.86)] L → B R 23054.8
Richardson, 1934; Dieke, 1958
H 1Σg+ 3sσ 113899 69 2538 124  [(29.5)]     [(1.065)] H → C R 13866.6
Richardson, 1934; Dieke, 1958
           H → B V 22754.1 70
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D 1Πu 3pπ 113888.7 2359.91 68.816 71  30.296 72 73 63 1.42 72  0.0201 74  1.0508 D → E R 13709.7
Richardson, 1937; Dieke, 1958
           D ↔ X 75 R 112872.3 76
missing citation; Monfils, 1965; Monfils, 1968; missing citation
J 1Δg 3dδ (113550) 2341.15 77 63.23 77  30.081 77 1.718 77  0.0189 77  1.0546 J → C 78 R 13435.6 79
Richardson, 1934; Dieke, 1958
           J → B 78 V 22322.5 79
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
I 1Πg 3dπ (113142) 80 2259.15 77 78.41 77 80  29.259 77 81 1.584 77  0.0180 77  1.0693 I → C 81 R 12982.5 82
Richardson, 1934; Dieke and Lewis, 1937; Dieke, 1958
           I → B V 21869.5 82
Richardson, 1934; Dieke and Lewis, 1937; Dieke, 1958
G 1Σg+ 3dσ 112834 83 2343.9 55.9 84  [(28.4)] 85     [(1.085)] G → C 86 85 R 12722.2 87
Richardson, 1934; Dieke, 1958
           G → B 86 V 21609.2 87
Richardson, 1934; Dieke, 1958
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
K (1Σg+) (112669) 88 [2232.59] 30  [10.8]     [1.76] K → C R 12538.6
Richardson, 1934; Dieke, 1958
           K → B R 21425.4
Richardson, 1934; Dieke, 1958
Q (1Πg) (113163) 89 [742]   [(16.3)]     1.43 Q → B R 21151.1
Richardson, Yarrow, et al., 1934; Dieke, 1958
B' 1Σu+ 3pσ 111642.8 90 2039.52 83.406 91  26.705 92 2.781 93  [0.012] 94  1.1192 B' → E,F 95 11311.5 96
Porto and Jannuzzi, 1963
           B' ← X 97 R 110478.2
Namioka, 1964; Namioka, 1965; Monfils, 1965
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
F 1Σg+ 2pσ2 100911 98 99 [1199] 98  100   101    F → B 102 R 103 
Dieke, 1949; Porto and Jannuzzi, 1963
E 1Σg+ 2sσ 100082.3 98 104 2588.9 104 130.5 104  32.68 104 1.818 104  [0.0228] 104  1.0118 E → B 102 V 8961.23
Dieke, 1936; Porto and Dieke, 1955; Dieke, 1958; Porto and Jannuzzi, 1963
C 1Πu 2pπ 100089.8 95 2443.77 69.524 105 106  31.3629 106 1.6647 107  0.0223 -0.00074 1.03279 C ↔ X 108 109 R 99120.17 95
Dieke, 1938; Namioka, 1964, 2; Namioka, 1965; Dabrowski and Herzberg, 1974
B 1Σu+ 2pσ 91700.0 110 1358.09 20.888 111  20.0154 112 1.1845 113  0.01625 114  1.29282 B ↔ X 115 116 117 R 90203.35
Herzberg and Howe, 1959; Wilkinson, 1968; Dabrowski and Herzberg, 1974
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
X 1Σg 1sσ2 0 4401.213 121.336 118  60.8530 119 3.0622 120  0.0471 121  0.74144 122  
Herzberg, 1950; Fink, Wiggins, et al., 1965; Terhune and Peters, 1959; Foltz, Rank, et al., 1966; Brannon, Church, et al., 1968
Raman sp. 123
Stoicheff, 1957; Foltz, Rank, et al., 1966
Rotational 124 and nuclear rf magn. Reson.
Harrick and Ramsey, 1952; Barnes, Bray, et al., 1954; Kolsky, Phipps, et al., 1952; Harrick, Barnes, et al., 1953

Notes

1The Te values for the upper states of the triplet transitions are based on Te" for the lower state (a or c) and have been calculated assuming Y'00 ~ Y"00.
23B→c, 3C→c, 7pπ→a Richardson, 1934, Richardson, Yarrow, et al., 1934, 2.
3Only v=0 observed.
4Referred to the (non-existent) N=0 level in 3Π states; the N=1 levels of c 3Π (+ and -) lie 60.7 cm-1 above N=0.
5t and q are designated 3F and 3G, respectively, in Richardson, Yarrow, et al., 1934, 2, Richardson, Yarrow, et al., 1934.
6The states g 3Σg+(3dσ), p 3Σg+(4dσ), q 3Σg+(5dσ), m 3Σu+(4fσ) and t 3Σu+(5fσ) are strongly affected by l-uncoupling. The N=1 levels lie below N=0 for v=0 and 1; meaningful B values cannot be given until the whole d and f complexes have been fully analyzed, see Ginter, 1967.
7Represents B0 and B1 of 3Π- only; B2 = 26.26 Richardson, Yarrow, et al., 1934, B3 = 24.54 Richardson, Yarrow, et al., 1934.
83E of Richardson, Yarrow, et al., 1934.
9Refers to N'=0 which lies above N'=4 because of strong l-uncoupling.
10Constants refer to N=2; from v= 0,1,2.
11Because of strong l-uncoupling no meaningful B values can be given; see 6.
12Refers to the N=2 level of s 3Δg- above the hypothetical level N=0 of c 3Πu; see 4.
13The constants refer to N=1 of r 3Πg-; ν00 is the energy above the hypothetical level N=0 of c(v=0), see 4.
14Anticrossings and microwave transitions. The energy difference between k 3Πu(v=1,N=3) and p 3Σg+(v=1,N=5) is +0.2785 cm-1. Fine structure parameters.
153A of Richardson, Yarrow, et al., 1934, 2; probably a doubly excited state. The possibility (1sσ)(4fπ) mentioned by Richardson, Yarrow, et al., 1934, 2 and quoted in MOLSPEC 1 can be ruled out since it does not give rise to an even state.
16A0(ortho)= -0.00937 Freund, Miller, et al., 1973, Miller, Freund, et al., 1974, Miller and Freund, 1975, A0(para)= -0.00710 cm-1 Freund, Miller, et al., 1973, Miller, Freund, et al., 1974, Miller and Freund, 1975; also hyperfine structure investigated by these authors.
17ωeye= +0.99 Cunningham and Dieke, 1950.
18From B0 and B1 of Π- only Richardson, 1934.
19Calculated from the data in Richardson, 1934 and Dieke, 1958. ΔG(1/2) and ν00 refer to actual N=0 level which is strongly perturbed.
203D of Richardson, Yarrow, et al., 1934. Probably a doubly excited state: (2pσ)(3dσ).
213Y of Richardson, Yarrow, et al., 1934. Probably a doubly excited state: (2pσ)(3dπ).
22These constants [from Ginter, 1967] refer to the 3Π- and 3Δ- components and are based on "Approximation 2" of Ginter, 1966 for the evaluation of the l-uncoupling. The observed levels are given by Dieke, 1958.
23Observed in absorption in flash discharges Herzberg, 1967.
24Lower component of N'=l (i 3Π) or 2 (J 3Δ) relative to the (non-existent) N"=0 level of c 3Π.
25Ab initio calculations Browne, 1965, Wright and Davidson, 1965 give a pronounced potential maximum near 2.5 Å for this state.
26Anticrossings and microwave transitions; i 3Πg(v=3,N=2) is 1.9244 cm-1 above d 3Πg(v=3,N=1).
27Refers to Π-(N=1). Π+(N=1) is at 5471.70 cm-1 above e 3Σu+(v=0,N=0). The rotational levels are very irregular, only partly on account of l-uncoupling.
28From Dieke, 1958. ωe = 2395.2 Richardson, Yarrow, et al., 1934, 3, ωexe = 64.2 Richardson, Yarrow, et al., 1934, 3, B0 = 30.0 Richardson, Yarrow, et al., 1934, 3. According to Dieke, 1958 the v=0 levels may be spurious. If so, only v=1 remains with B1 = 28.72.
29Referred to the (non-existent) N=0 level in 3Π states; the N=1 levels of c 3Π (+ and -) lie 60.7 cm-1 above N=0.
30Calculated from the N=0 levels of Dieke, 1958.
31The states g 3Σg+ (3dσ), p 3Σg+ (4dσ), q 3Σg+ (5dσ), m 3Σu+ (4fσ) and t 3Σu+ (5fσ) are strongly affected by l-uncoupling. The N=1 levels lie below N=0 for v=0 and 1; meaningful B values cannot be given until the whole d and f complexes have been fully analyzed, see Ginter, 1967.
32The fine structure in the N=1 levels of both ortho- and para-H2 has been observed in microwave-optical double resonance by Freund and Miller, 1973 who give Ae = 0.0281 Freund and Miller, 1973 as well as spin-spin coupling constants. For para-H2, v=0, N=1, the three component levels J=1,2, and 0 are at -0.01241, -0.00695, and +0.07197 cm-1, respectively. For ortho-H2 the hyperfine structure has also been studied.
33Constants refer to 3Π-. 3Π+ is strongly perturbed, i.e. the Λ - type doubling is fairly large and irregular Dieke, 1935, 2.
34Breaking-off of P and R branches (3Π+) above v'=3 on account of predissociation. Breaking-off of Q branches (3Π-) for v'=7,8 above N=1 on account of preionization Beutler and Junger, 1936, 2.
35Lifetime τ=63 ns Cahill, 1969; see, however, Marechal, Jost, et al., 1972 who give τ= 31 ns Marechal, Jost, et al., 1972.
36The T000) value is derived from singlet-triplet anti-crossings in a magnetic field Miller and Freund, 1974, Jost and Lombardi, 1974 and corresponds to v=0, N=0. It agrees fairly well with 95073.2 obtained from the energy of a 3Σu+(v=0,N=0) below the ionization limit, 29344 ± 2 cm-1 Beutler and Junger, 1936, 2, combined with the new value of I.P.(H2). Dieke, 1958 gives T0 = 95226 without explanation; the most recent theoretical value is T0= 95077.3 Kolos, 1975. The Te value in the table takes account of Y00 in both upper (Y'00= 4.92) and lower state.
37ωeye= +0.92. Precise ab initio potential function (including diagonal corrections) and predicted vibrational levels in Kolos and Wolniewicz, 1968. Except for a constant shift, the latter agree well with the observed levels Dieke, 1958.
38Lifetime τ(v=0,1) = 10.45 ns Smith and Chevalier, 1972, King, Read, et al., 1975.
39Reproduction in MOLSPEC 1, Fig.l2.
40A = -0.1249 cm-1 Jette, 1974, Jette and Miller, 1974. Te takes account of Y00 in both upper (Y'00= 4.18) and lower state.
41The Λ-type doubling is quite small (~ 0.5 cm-1 for N=6); the constants refer to the average. The triplet splitting in N=2 of para-H2 has been fully resolved in molecular beam experiments of Lichten, 1960 yielding Δν(J=2-1) = 0.16438 Lichten, 1960, Δν(J=2-3) = 0.19674 cm-1 Lichten, 1960 with J=2 at the top. The hyperfine structure in N=1,J=2 of ortho-H2 is Δν(F=3-2) = 0.0236 Frey and Mizushima, 1962, Δν(F=2-1) = 0.0154 cm-1 Frey and Mizushima, 1962 as quoted by Frey and Mizushima, 1962. Foster and Richardson, 1953 give spin splittings for N = 1,2,3,4,5 without resolving J=N+l from J=N-1.
42The levels of c 3Πu+ are strongly predissociated by the b 3Σu+ state Herzberg, 1967; the levels of c 3Πu- are either very weakly affected by a forbidden predissociation to b 3Σu+ Lichten, 1962, Chiu, 1964 or decay radiatively (by magnetic dipole radiation) to the b 3Σu+ state as suggested by the lifetime measurements of Johnson, 1972, τ(v=0)= 1.02 ms Johnson, 1972 independent of spin component and isotope. Johnson, 1974 observed quenching of c 3Πu- in an electric field. The Stark effect is large (~ E+4 times greater than for the ground state) and has been studied experimentally by Kagann and English, 1976 and compared with the theoretical values of English and Albritton, 1975.
43This number, obtained from ν00(a-X) + ν00(e-a) + ν00(g-e) - ν00(g-c), is 87 cm-1 higher than given in MOLSPEC 1, a change made necessary by the work of Gloersen and Dieke, 1965. See also 36.
44Theoretical and experimental values for the ionization probability into the various vibrational levels of H2+ are given by Dunn, 1966, Villarejo, 1968, 2, Nicholls, 1968, Ford, Docken, et al., 1975 and Villarejo, 1968, Turner, 1968, respectively. The ionization cross section near the ionization limit has been studied at high resolution by Chupka and Berkowitz, 1968, Comes and Wellern, 1968. See also Backx, Wight, et al., 1976.
45For high n there is strong l-uncoupling and the two series of 1Σu+ and 1Πu+ levels of para-H2 should be called np0 and np2, respectively, corresponding to the fact that the first converges to N=0, the second to N=2 of H2+ There are strong systematic perturbations between the J=1 levels of these two series (because of l- uncoupling) so that the formulae as given do not represent the series very well. An accurate representation can be obtained by Fano's quantum defect theory; see Herzberg and Jungen, 1972. Levels of npπ, 1Πu+ above N=0 of H2+ are preionized resulting in asymmetrically broadened absorption lines with apparent emission wings.
46Limits of Rydberg series above v"=0, J"=0.
47 Chupka, Dehmer, et al., 1975 have observed Rydberg levels with v = 9,10,11 in the study of ion-pair formation.
48These two series of ortho levels are essentially unperturbed.
49Average of Π+ and Π-. ν00 referred to (N'=0).
50Refers to Π-; Π+ is perturbed; B0+) = 30.178, B1+) = 31.370.
51RKR potential function in Monfils, 1968, 2.
52Refers to Π-; γe = -0.53. Π+ is perturbed, B0+) = 31.095, B1+) = 29.165.
534F of Dieke, 1958, 41χ of Richardson, 1934.
54The states P,R,S form a d complex with strong uncoupling. As a result the constants given have only limited meaning.
5541O of Richardson, 1934, not given by Dieke, 1958.
56From R(0) and P(1) according to the data of Richardson, 1934.
5741B of Richardson, 1934, 4E of Dieke, 1958.
58Refers to 1Π-.
5941C of Richardson, 1934, 4D of Dieke, 1958.
60The J=1 level is observed at 27207.62 cm-1 above J=0, v=0 of B 1Σu+. The value given for J=0 is extrapolated and, because of the uncoupling, is rather uncertain.
6141K of Richardson, 1934, doubly excited state.
62Representing only B0 and B1. The Bv curve has a positive curvature for low v and a strong negative curvature for high v. Bv = 27.13 - 2.35(v+1/2) + 0.665(v+1/2)2 - 0.0729(v+1/2)3 Monfils, 1965.
63RKR potential function Monfils, 1968, 2. Ab initio potential function Kolos, 1976.
64Deperturbed value from Namioka, 1964. The observed value for J=0 [perturbed by B'(v=4)] is 116885.6 according to Namioka, 1964 and 116885.3 according to Monfils, 1965, while in the more recent paper Monfils, 1968 gives 116882.00.
65All these states are considered as doubly excited states by Dieke, 1958. They may well form one or two double-minimum states (similar to E, F) together with H 1Σg+.
66Only v=0.
67This is the λ4142.8 progression of Richardson, 1934 as revised by Dieke, 1958.
68These values agree with Dieke, 1958; Richardson, 1934 gives 23057.22 and 23191.66 for L and M, respectively.
69310 of Richardson, 1934.
70From R(0) of the 0-0 band and F(1)-F(0) as given by Richardson, 1934. The basis for 22751.6 in Richardson, 1934 is not clear.
71ωexe= +1.0274(v+1/2)3 - 0.04202(v+1/2)4; the vibrational constants Monfils, 1968 refer to the average of Π+ and Π-. See also 73.
72The rotational constants Namioka, 1964 represent only the levels v= 0, 1, 2 of Π-. The Π+ levels are strongly perturbed by the B' state which also causes the predissociation of 1Π+ for v'≥ 3; see 73. Monfils, 1965 gives for the deperturbed values: Bv+)= 32.51- 2.00(v+1/2) + 0.071(v+1/2)2 - 0.0040(v+1/2)3 ; Bv-)= 30.81 - 1.96(v+1/2) + 0.102(v+1/2)2 - 0.0053(v+1/2)3 .
73Strong predissociation for v'≥3; no bands with v'≥3 have ever been observed in emission. In absorption strongly broadened lines with apparent emission wings (Beutler- Fano shapes) in D 1Πu- ← X 1Σg- Herzberg, 1971; line widths of 4 and 11.5 cm-1 for J=1 and 2, respectively, have been observed Comes and Schumpe, 1971 and accounted for by interaction with the continuum of B' 1Σu- Fiquet-Fayard and Gallais, 1971, Julienne, 1971, Fiquet-Fayard and Gallais, 1972. Widths for D 1Πu- ← X 1Σg- (Q) lines are much smaller. Lyα fluorescence as a result of predissociation Comes and Wellern, 1968, Comes and Wenning, 1969, Mentall and Gentieu, 1970. Electric field induced component of predissociation Comes and Wenning, 1970.
74From Namioka, 1964; Monfils, 1965 gives Dv+) = 0.033+0.0010(v+1/2) Monfils, 1965, Dv-) =0.0283 - 0.0012(v+1/2) Monfils, 1965.
75RKR Franck-Condon factors Spindler, 1969. Absorption coefficients of D←X bands Cook and Metzger, 1964. 0scillator strengths f00 = 0.00614 Lewis, 1974, f20 = 0.0109 Lewis, 1974.
76Average of Π+ and Π- extrapolated to J=0. The Λ-type doubling for v=0, J=1 is 4.2 cm-1 with Π+ above Π-.
77These constants Ginter, 1967 refer to Π- and Δ- and take into account the effects of l- uncoupling in the d-complex according to the formulae of Ginter, 1966. They cannot be used to derive energy levels without the use of these formulae. The observed levels are given in Dieke, 1958.
78The forbidden 1Δg1Σu- transition occurs because of strong uncoupling in the upper state. Only Q branches are observed in these bands.
79Refers to J=2 of Δ- at 10.8 cm-1 below J=2 of Δ+.
8031B of Richardson, 1934, 3E of Dieke, 1958. Mulliken, 1964 and Browne, 1965 predict a fairly high (0.4 eV) maximum in the potential function of this state.
81Zeeman effect studies Dieke, Cunningham, et al., 1953 yield g(v=0,J=1) = 0.498 Dieke, Cunningham, et al., 1953, g(v=0,J=2) = 0.412 Dieke, Cunningham, et al., 1953, etc.; lifetime τ(v=0,J=2) = 38 ns van der Linde and Dalby, 1972, see 85.
82Referred to J'=1 of I 1Π-; J=1 of I 1Π+ is 62.32 cm-1 higher.
8331C of Richardson, 1934, 3D of Dieke, 1958.
84No levels higher than v=3 have been observed which suggests that the dissociation limit is 12S + 22S,2P at 118377.6 cm-1. The constants represent only v=0,1,2.
85This value Richardson, 1934 does not represent the low rotational levels because of l-uncoupling, e.g. the J=1 level is below J=0. The actual levels are given in Dieke, 1958. Hyperfine structure for v=1,J=1; A = 1.0 ± 0.17 MHz Melieres-Marechal and Lombardi, 1974. Large Zeeman splittings corresponding to the strong l-uncoupling Dieke, Cunningham, et al., 1953, g(v=0,J=1) = 0.901 Dieke, Cunningham, et al., 1953, g(v=0,J=2) = 0.571 Dieke, Cunningham, et al., 1953, etc.; see also Freund and Miller, 1972. Lifetimes from Hanle effect observations van der Linde and Dalby, 1972; τ(v=0,J=1) = 27 ns van der Linde and Dalby, 1972, τ(v=0,J=2,3) = 39 ns van der Linde and Dalby, 1972.
86The G→B system gives rise to the strongest lines in the visible region.
87Referred to J'=0 which, because of l-uncoupling, has an anomalous position.
8831K of Richardson, 1934, probably due to (2sσ)2.
89Fragmentary, possibly (2pσ)(2pπ).
90Takes account of Y00 in both upper and lower state. Y'00 = 15.3 cm-1 is rather uncertain and depends strongly on the number of levels included. See 93.
91ωexe= +3.533(v+1/2)3 - 0.93750(v+1/2)4; these are the constants of Namioka, 1964 [except Te which is taken from Dabrowski and Herzberg, 1974], they apply only to v=0,...,4. Monfils, 1968 gives a very different set of constants based on seven levels v=0,...,6. The ΔG curve (in H2, HD, and D2) has a characteristic tail which makes representation of the higher vibrational levels by a conventional formula meaningless Namioka, 1964, Dabrowski and Herzberg, 1974.
92RKR potential functions Namioka, 1965, Monfils, 1968, 2. A very slight maximum of the potential function at 2.9 Angstroms has been predicted by Ford, Browne, et al., 1975 but not confirmed in the calculations of Kolos, 1976; see also Wolniewicz, 1975. The experimental data, while suggesting an anomalous form of the potential function, do not indicate a maximum Dabrowski and Herzberg, 1974.
93av= +0.540(v+1/2)2 - 0.0917(v+1/2)3; these constants Namioka, 1964 represent only the first five (deperturbed) Bv values. If only three levels are used Bv= 26.371- 1.9000(v+1/2)-0.0050(v+1/2)2 leading to a very different Y00 value (3.6) from the one used here (see 90).
94The higher Dv values are quite irregular.
95The Te values for B and C include the effects of Y00 on the zero point energies in both upper and lower states; Y'00(B) = 8.7, Y'00(C) = 5.0 cm-1. On the other hand, the Te value of C 1Πu and ν00(C-X) exclude the term - BΛ2 in the energy formula, a term that is usually included to form part of the effective potential energy. With this inclusion and disregarding Y00 Namioka, 1965 gives Te = 100063.42 and ν00 = 99090.35 on the basis of older data for v=0...4 and his own precise data for v=5....13.
96From the 0-1 band of Porto and Jannuzzi, 1963; from T0(B')-T0(E) one obtains 11313.62.
97RKR Franck-Condon factors Spindler, 1969. Oscillator strengths f10 = 0.0028 Lewis, 1974, f30 = 0.0048 Lewis, 1974.
98Because of strong interaction the two states E [21X of Richardson, 1934, 2A of Dieke, 1958] and F, in zero approximation lsσ2sσ and (2pσ)2, form a single state with two minima as first recognized by Davidson, 1961. The most detailed calculation of the potential function and the energy levels is that of Kolos and Wolniewicz, 1969 whose numbering and ΔG(1/2) value for the F 1Σg- component has been adopted in the table. According to Kolos and Wolniewicz, 1969 ν00(F-B) would be at 9146.8 cm-1 but v=0,1,2,3 of F have not been observed. The observed v=4 level lies just below the potential maximum.
99From the observed ν40 and the energy of v=4 above the (outer) minimum as calculated by Kolos and Wolniewicz, 1969.
100B4 = 6.24 129
101R4=2.315 129
102Franck-Condon factors Lin, 1974. Electronic transition moment Wolniewicz, 1969.
103ν40 =13635.1
104These numbers represent only the lower vibrational levels near the inner minimum. Owing to the interaction of E and F (see 98) higher ΔG(v+1/2), Bv, Dv values are irregular.
105ωexe= +0.73l2(v+1/2)3 - 0.04l5(v+1/2)4. These constants refer to the (unperturbed) Π- component and are based on an 8-level fit to the data of Dabrowski and Herzberg, 1974 [v=0-4] and Namioka, 1964, 2 [v=5-7]. Somewhat different constants are given by Namioka, 1965. Note, that the Te values in Dieke, 1958 are too low by 8.4 cm-1 Namioka, 1965. The constants of Monfils, 1968 are affected by not recognizing this error.
106Theoretical work King and Van Vleck, 1939, Mulliken, 1960, Kolos and Wolniewicz, 1965, Rothenberg and Davidson, 1966, Kolos, 1967 has predicted, and the analysis of the spectrum Namioka, 1964, Dabrowski and Herzberg, 1974 has confirmed, that the potential curve of C 1Πu has a van der Waals maximum of ~ 105 cm-1 above the asymptote near r=4.8 Angstroms. ab initio potential function (without diagonal corrections) and predicted vibrational levels Kolos and Wolniewicz, 1968. RKR potential functions Namioka, 1965 Monfils, 1968, 2; see, however, Julienne, 1973.
107αv= +0.0296(v+1/2)2 - 0.00296(v+1/2)3. These constants refer to the Π- component (Π+ is strongly perturbed by B 1Σu-) and are from an 8-level least- squares fit of the data of Dabrowski and Herzberg, 1974 [v = 0-4] and Namioka, 1964, 2 [v=5-7]. Somewhat discordant Bv values for both Π- and Π+ (the latter after deperturbation) are given by Namioka, 1964, 2, Monfils, 1965, Dabrowski and Herzberg, 1974. The Λ-type doubling for v=0, J-l is 1.17 cm-1; for other v, J as well as theoretical values see Julienne, 1973, Ford, 1974.
108Lifetime τ(v=0,1,2,3) = 0.6 ns Hesser, 1968.
109RKR Franck-Condon factors calculated by missing citation,89 and "measured" by Geiger and Schmoranzer, 1969, Schmoranzer and Geiger, 1973, Fabian and Lewis, 1974 who have also determined the dependence of the transition moment on r. Ab initio calculation of the latter by Wolniewicz, 1969. Theoretical transition probabilities and f values Wolniewicz, 1969, Allison and Dalgarno, 1970, Allison and Dalgarno, 1970, 2, Dalgarno and Stephens, 1970, experimental values Hesser, 1968, Fabian and Lewis, 1974, Lewis, 1974: f10 = 0.059, f20 = 0.060, f30 = 0.044,... Calculated transitions to the continuum of X 1Σg- Stephens and Dalgarno, 1972. Selective enhancements of v=0 and 2 of C 1Πu in Ar-H2 mixtures have been studied by Takezawa, Innes, et al., 1966; similar enhancements have also been observed in Kr-H2 mixtures. For stimulated emission in the Q(1) and P(3) lines of the 1-4, 2-5, 2-6, 3-7 Werner bands see Hodson and Dreyfus, 1972, Waynant, 1972.
110The Te values for B and C include the effects of Y00 on the zero point energies in both upper and lower states; Y'00(B) = 8.7, Y'00(C) = 5.0 cm-1. On the other hand, the Te value of C 1Πu and ν00(C-X) exclude the term - BΛ2 in the energy formula, a term that is usually included to form part of the effective potential energy. With this inclusion and disregarding Y00 Namioka, 1965 gives Te = 100063.42 and ν00 = 99090.35 on the basis of older data for v=0...4 and his own precise data for v=5....13.
111ωexe= +0.7196(v+1/2)3 - 0.0598(v+1/2)4 +0.002l6(v+1/2)5, Y00 = 8.7; from a least squares fit Dabrowski and Herzberg, 1974 to the first eight levels as given by Herzberg and Howe, 1959. Wilkinson, 1968 gives slightly different constants based on the first five levels only. Monfils, 1968 and Namioka, 1964, 2 have observed levels up to v= 35 and 37, respectively, very close to the dissociation limit at 118377.6 cm-1 Herzberg, 1970. The dissociation energy of the B 1Σu- state is 28174.2 cm-1.
112RKR potential functions Tobias and Vanderslice, 1961, Namioka, 1965,$ 72, Spindler, 1969; see also Stwalley, 1973. Precise ab initio potential function (including diagonal corrections) and predicted vibrational levels Kolos and Wolniewicz, 1968, Kolos and Wolniewicz, 1975.
113αv= +0.1214(v+1/2)2 - 0.0117(v+1/2)3 + 0.00046(v+1/2)4, from a least squares fit Dabrowski and Herzberg, 1974 to the first eight levels. Wilkinson, 1968 gives slightly different constants based on the first five levels only. For v≥8 there are strong rotational perturbations caused by interaction with C 1Πu. Only after deperturbation can meaningful Bv values for these levels be obtained [see Dabrowski and Herzberg, 1974]. For a theoretical discussion of the intensities in the perturbed region see Ford, 1974.
114Dv= -2.165E-3(v+1/2) + 2.289E-4(v+1/2)2 - 1.185E-5(v+1/2)3. For individual Bv and Dv values see Herzberg and Howe, 1959, Namioka, 1964, 2, Dabrowski and Herzberg, 1974.
115Lifetime τ(v=3...7) = 0.8 ns Hesser, 1968; τ(v=8...11) = 1.0 ns Smith and Chevalier, 1972.
116Franck-Condon factors from RKR potentials Halmann and Laulicht, 1966, Spindler, 1969; from ab initio potential functions Dalgarno and Allison, 1968, Allison and Dalgarno, 1970, Allison and Dalgarno, 1970, 2, including theoretical oscillator strengths; see also Lin, 1975. J dependence of Franck-Condon factors and transition probabilities Villarejo, Stockbauer, et al., 1969, Wolniewicz, 1969, Becker and Fink, 1971. Experimental Franck-Condon factors and oscillator strengths Geiger and Topschowsky, 1966, Haddad, Lokan, et al., 1968, Hesser, Brooks, et al., 1968, Geiger and Schmoranzer, 1969, Fabian and Lewis, 1974, Lewis, 1974, Schmoranzer, 1975; Σfv'0 = 0.29. Variation of transition moment with r Hesser, Brooks, et al., 1968, Geiger and Schmoranzer, 1969, Schmoranzer, 1975 and, ab initio, Dalgarno and Allison, 1968, Wolniewicz, 1969. Selective enhancements of v=3 and 10 of B 1Σu- in an Ar-H2 mixture, first observed by Lyman, have recently been studied by Takezawa, Innes, et al., 1966; similar enhancements were also observed in Kr-H2 mixtures. Stimulated emission in the P branches of the 3-10, 4-11, 5-12, 6-13, 7-13 Lyman bands Hodgson, 1970, Waynant, Shipman, et al., 1970.
117A continuous spectrum corresponding to transitions to the continuum of X 1Σg- has been observed Dalgarno, Herzberg, et al., 1970 and the intensity distribution found to be in agreement with calculations. Dalgarno and Stephens, 1970, Stephens and Dalgarno, 1972 have calculated transition probabilities and the fractions that go to the continuum for v' = 0.... 36. Allison and Dalgarno, 1969 calculated the continuous spectrum corresponding to absorption from the ground state to the continuum of B 1σu-.
118ωexe= +0.8129(v+1/2)3; these constants Foltz, Rank, et al., 1966 represent only the levels v=0,1,2,3. Herzberg and Howe, 1959 has less accurate constants representing higher G(v) values. "True" ωe= 4403.2 Fink, Wiggins, et al., 1965 (including Dunham corrections) Fink, Wiggins, et al., 1965. The zero-point energy (Y00 = 8.93 included) is 2179.27 cm-1. Herzberg and Monfils, 1960.
119RKR potential functions Tobias and Vanderslice, 1961, Weissman, Vanderslice, et al., 1963, Ginter and Battino, 1965, see also Zhirnov and Vasilevskii, 1970; ab initio potential functions Kolos and Wolniewicz, 1974, Kolos and Wolniewicz, 1975, 2. Rotational and vibrational levels calculated from the latter are given in Kolos and Wolniewicz, 1975, 2; see also Waech and Bernstein, 1967, Kolos and Wolniewicz, 1968, 2. Waech and Bernstein, 1967 include some of the quasi-bound levels above the dissociation limit [see also Allison, 1969]; for their experimental observation see Herzberg and Howe, 1959, Herzberg and Mckenzie, 1979. Recent comparisons between ab initio calculated and observed energy levels Bunker, 1972, Orlikowski and Wolniewicz, 1974, Dabrowski and Herzberg, 1976, Bishop and Shih, 1976.
120αv= +0.0577(v+1/2)2 - 0.0051(v+1/2)3; these constants Foltz, Rank, et al., 1966 represent only B0...3 which are the best known Bv values. Brannon, Church, et al., 1968 from the field-induced spectrum give a very slightly different B0 (59.3343 versus 59.3362); see also Buijs and Gush, 1971. The formula Bv= 60.8635 - 3.07638(v+1/2) + 0.06017(v+1/2)2 - 0.0048l(v+1/2)3 (v≤8) of Herzberg and Howe, 1959 holds up to v=8. Higher Bv values Herzberg and Howe, 1959 require higher and higher terms in the formula. All the constants given are Y01,...Y31 values; Fink, Wiggins, et al., 1965 have introduced Dunham corrections and give the "true" Be = 60.8679 Fink, Wiggins, et al., 1965. According to Ramsey, 1952 the hyperfine levels F=1 and 2 for J=1,v=0 are 1.823E-5 and 2.005E-5 cm-1 below the F=0 component.
121Dv= -0.00274(v+1/2) + 0.00040(v+1/2)2; Hv = [4.9-0.5(v+1/2)]E-5 Fink, Wiggins, et al., 1965; see also Foltz, Rank, et al., 1966.
122Quadrupole 130 and field-induced sp..131
123Raman cross sections Harney, Randolph, et al., 1975.
124Rotational g factor gJ = 0.88291.
125This is an upper limit (36118.3 ± 0.5 cm-1), the lower limit being 4.4779 eV. According to Herzberg, 1970 the true value is probably close to the upper limit; see also Stwalley, 1970 who gives D00 = 36118.6 cm-1 Stwalley, 1970 on the basis of a reassignment of the last vibrational levels of the B state. The most recent theoretical value of Kolos and Wolniewicz, 1968, 2 - including a small non-adiabatic correction of Bunker, 1979 - is D00= 36117.9 cm-1 Kolos and Wolniewicz, 1968, 2, Bunker, 1979. An earlier independent calculation Hunter, 1966 (not including the non-adiabatic correction) gave D00= 36118.1 cm-1 Hunter, 1966.
126From the limit of the npσ, 1Σu+ Rydberg series (124417.2 cm-1) taking account of perturbations and pressure shift of high n lines Herzberg and Jungen, 1972. The earlier value of Takezawa, 1970, 2 was higher by 1.2 cm-1 because it was not corrected for pressure shift. The latest theoretical (ab initio) value Jeziorski and Kolos, 1969 including relativistic, Lamb shift, and non-adiabatic corrections is 15.42590 eV; see Herzberg and Jungen, 1972.
127The two J=2 levels are observed at 27631.3 and 27732.9 cm-1 above J=0, v=0 of B 1Σu+ Dieke, 1958. The ν00 value given is an extrapolated average for J=0 and, because of the uncoupling, is rather uncertain.
128The two J=1 levels are observed at 27385.8 and 27487.1 cm-1 above J=0, v=0 of B 1Σu+ Dieke, 1958. The ν00 value given is an extrapolated average for J=0 and, because of the uncoupling, is rather uncertain.
129Vibrational numbering of Kolos and Wolniewicz, 1969. See 98.
130 Fink, Wiggins, et al., 1965 give absolute intensity measurements of the quadrupole rotation-vibration spectrum (1-0, 2-0, 3-0) as well as corrections for pressure shifts; see also Margolis, 1973, McKellar, 1974, Chackerian and Giver, 1975. Dependence of quadrupole moment on r Kolos and Wolniewicz, 1965. Predicted intensities in the rotation-vibration spectrum James, 1969, in the rotation spectrum Dalgarno and Wright, 1972. Predicted lifetimes of rotation-vibration levels Black and Dalgarno, 1976, e.g. τ(v=1,J=1)= 1.17E+6 s Black and Dalgarno, 1976.
131The rotation and rotation-vibration spectrum has been observed in pressure- induced absorption, see the review by Welsh, 1972.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Roder, Childs, et al., 1973
Roder, H.M.; Childs, G.E.; McCarty, R.D.; Angerhofer, P.E., Survey of the Prop. of the Hydrogen Isotopes Below Their Critical Temp, Natl. Bur. Stand. (U. S.), 1973. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Onnes, Crommelin, et al., 1917
Onnes, H.K.; Crommelin, C.-A.; Cath, P.G., Isothermals of di-atomic substances and their binary mixtures. XIX. A preliminary determination of the critical point of hydrogen., Proc. K. Ned. Akad. Wet., 1917, 20, 178-184. [all data]

van Itterbeek, Verbeke, et al., 1964
van Itterbeek, A.; Verbeke, O.; Theewes, F.; Staes, K.; de Boelpaep, J., The Difference in Vapour Pressure Between Normal and Equilibrium Hydrogen. Vapour Pressure of Normal Hydrogen Between 20 ºK and 32 ºK, Physica (Amsterdam), 1964, 30, 6, 1238-1244, https://doi.org/10.1016/0031-8914(64)90114-4 . [all data]

Rathke, Klingler, et al., 1992
Rathke, J.W.; Klingler, R.J.; Krause, T.R., Organometallics, 1992, 11, 585. [all data]

Bor, 1986
Bor, G., Pure & Appl. Chem., 1986, 58, 543. [all data]

Alemdaroglu, Penninger, et al., 1976
Alemdaroglu, N.H.; Penninger, J.M.L.; Oltay, E., Monatsh. Chem., 1976, 107, 1043. [all data]

Ungváry, 1972
Ungváry, F., J. Organometal. Chem., 1972, 36, 363. [all data]

Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y., J. Am. Chem. Soc., 1993, 115, 3174. [all data]

Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D., J. Organometal. Chem., 1985, 282, 215. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Hiraoka, 1987
Hiraoka, K., A Determination of the Stabilities of H3+(H2)n with n=1-9 from Measurements of the gas-Phase Ion Equilibria H3+(H2)n-1 + H2 = H3+(H2)n, J. Chem. Phys., 1987, 87, 7, 4048, https://doi.org/10.1063/1.452909 . [all data]

Beuhler, Ehrenson, et al., 1983
Beuhler, R.J.; Ehrenson, S.; Friedman, L., Hydrogen Cluster Ion Equilibria, J. Chem. Phys., 1983, 79, 12, 5982, https://doi.org/10.1063/1.445781 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., A Determination of the Stabilities of H5+, H7+, H9+, and H11+ from Measurement of the Gas Phase Ion Equilibria Hn+ + H2 = H(n + 2)+ (n = 3, 5, 7, 9), J. Chem. Phys., 1975, 62, 6, 2267, https://doi.org/10.1063/1.430751 . [all data]

Bennett and Field, 1972
Bennett, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VII. The Hydrogen System, J. Am. Chem. Soc., 1972, 94, 25, 8669, https://doi.org/10.1021/ja00780a003 . [all data]

Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W., Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2, Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h . [all data]

Pratt, McCormack, et al., 1992
Pratt, S.T.; McCormack, E.F.; Dehmer, J.L.; Dehmer, P.M., Field-Induced Ion-Pair Formation in Molecular Hydrogen, Phys. Rev. Lett., 1992, 68, 5, 584, https://doi.org/10.1103/PhysRevLett.68.584 . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C., Threshold Photodetachment of H-, Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104 . [all data]

Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N., Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements, Tetrahedron, 1982, 38, 1593-1597. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Doering, Roth, et al., 1989
Doering, W.E.; Roth, W.R.; Bauer, F.; Breuckmann, R.; Ebbrecht, T.; Herbold, M.; Schmidt, R.; Lennartz, H-W.; Lenoir, D.; Boese, R., Rotational barriers of strained olefines, Chem. Ber., 1989, 122, 1263-1266. [all data]

Rogers, Von Voithenberg, et al., 1978
Rogers, D.W.; Von Voithenberg, H.; Allinger, N.L., Heats of hydrogenation of the cis and trans isomers of cyclooctene, J. Org. Chem., 1978, 43, 360-361. [all data]

Turner and Meador, 1957
Turner, R.B.; Meador, W.R., Heats of hydrogenation. IV. Hydrogenation of some cis- and trans-cycloolefins, J. Am. Chem. Soc., 1957, 79, 4133-4136. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Wang, Rosini, et al., 1995
Wang, K.; Rosini, G.P.; Nolan, S.P.; Goldman, A.S., J. Am. Chem. Soc., 1995, 117, 5082. [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Turner and Garner, 1958
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1958, 80, 1424-1430. [all data]

Turner and Garner, 1957
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1957, 80, 1424-1430. [all data]

Turner and Garner, 1957, 2
Turner, R.B.; Garner, R.H., The stability relationship of 1-methyl-cyclopentene and methylenecyclopentane, J. Am. Chem. Soc., 1957, 79, 253. [all data]

Fang and Rogers, 1992
Fang, W.; Rogers, D.W., Enthalpy of hydrogenation of the hexadienes and cis- and trans-1,3,5-hexatriene, J. Org. Chem., 1992, 57, 2294-2297. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Winkler, R.E., Heats of hydrogenation. I. Apparatus and the heats of hydrogenation of bicyclo[2,2,1]heptene, bicyclo[2,2,1]heptadiene, bicyclo[2,2,2]octene and bicyclo[2,2,2]octadiene, J. Am. Chem. Soc., 1957, 79, 4116-4121. [all data]

Roth, Klaerner, et al., 1983
Roth, W.R.; Klaerner, F.G.; Gerit, F.; Grimme, W.; Koeser, H.G.; Busch, R.; Muskulus, B.; Breuckmann, R.; Scholz, B.P.; Lennartz, H.W., Stereochemistry of the bicyclo[2.1.0]pentane ring opening: thermolysis of tricyclo[3.2.0.0(,)]heptane derivatives, Chem. Ber., 1983, 116, 2717-2737. [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Turner, Nettleton, et al., 1958
Turner, R.B.; Nettleton, J.E.; Perelman, Heats of Hydrogenation. VI. Heats of hydrogenation of some substituted ethylenes, J. Am. Chem. Soc., 1958, 80, 1430-1433. [all data]

Crawford and Parks, 1936
Crawford, B.L., Jr.; Parks, G.S., The heat of hydrogenation of diisobutylene, J. Am. Chem. Soc., 1936, 58, 373. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Rogers, Dejroongruang, et al., 1992
Rogers, D.W.; Dejroongruang, K.; Samuel, S.D.; Fang, W.; Zhao, Y., Enthalpies of hydrogenation of the octenes and the methylheptenes, J. Chem. Thermodyn., 1992, 24, 561-565. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Sicher, Svoboda, et al., 1966
Sicher, J.; Svoboda, M.; Zavada, J.; Turner, R.B.; Goebel, P., Sterochemical studies - XXXVI. An approach to conformational analysis of medium ring compounds. Unsaturated ten-membered ring derivates, Tetrahedron, 1966, 22, 659-671. [all data]

Doering, Roth, et al., 1988
Doering, W.E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, F.H., Verbotene Reaktionen. - [2 + 2]-Cycloreversion starrer Cyclobutane, Chem. Ber., 1988, 121, 1-9. [all data]

Rogers, Choi, et al., 1980
Rogers, D.W.; Choi, L.S.; Girellini, R.S., Heats of hydrogenation and formation of quadricyclene, norbornadiene, norbornene, and nortricyclene, J. Phys. Chem., 1980, 84, 1810-1814. [all data]

Connett, 1972
Connett, J.E., Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 233-237. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Klingler R.J. and Rathke, 1992
Klingler R.J.; Rathke, J.W., Inorg. Chem., 1992, 31, 804. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Shiner, Gilligan, et al., 1993
Shiner, D.; Gilligan, J.M.; Cook, B.M.; Lichten, W., H2, D2, and HD ionization potentials by accurate calibration of several iodine lines, Phys. Rev. A, 1993, 47, 4042. [all data]

McCormack, Gilligan, et al., 1989
McCormack, E.; Gilligan, J.M.; Cornaggia, C.; Eyler, E.E., Measurement of high Rydberg states and the ionization potential of H2, Phys. Rev. A, 1989, 39, 2260. [all data]

Glab and Hessler, 1987
Glab, W.L.; Hessler, J.P., Multiphoton excitation of high singlet np Rydberg states of molecular hydrogen: Spectroscopy and dynamics, Phys. Rev. A, 1987, 35, 2102. [all data]

Eyler, Short, et al., 1986
Eyler, E.E.; Short, R.C.; Pipkin, F.M., Precision spectroscopy of the nf triplet Rydberg states of H2 and determination of the triplet ionization potential, Phys. Rev. Lett., 1986, 56, 2602. [all data]

Farber, Srivastava, et al., 1982
Farber, M.; Srivastava, R.D.; Moyer, J.W., Mass spectrometric determination of the thermodynamics of potassium hydroxide and minor potassium-containing species required in magnetohydrodynamic power systems, J. Chem. Thermodyn., 1982, 14, 1103. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Schmelzer, et al., 1980
Bieri, G.; Schmelzer, A.; Asbrink, L.; Jonsson, M., Fluorine and the fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II) photoelectron spectroscopy, Chem. Phys., 1980, 49, 213. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Farber and Srivastava, 1977
Farber, M.; Srivastava, R.D., Mass spectrometric determination of the heats of formation of the silane fluorides, Chem. Phys. Lett., 1977, 51, 307. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Lee and Rabalais, 1974
Lee, T.H.; Rabalais, J.W., Vibrational transition probabilities in photoelectron spectra, J. Chem. Phys., 1974, 61, 2747. [all data]

Herzberg and Jungen, 1972
Herzberg, G.; Jungen, Ch., Rydberg series and ionization potential of the H2 molecule, J. Mol. Spectrosc., 1972, 41, 425. [all data]

Takezawa, 1970
Takezawa, S., Absorption spectrum of H2 in the vacuum-uv region. II. Rydberg series converging to the first six vibrational levels of the H2+ ground state, J. Chem. Phys., 1970, 52, 5793. [all data]

Asbrink, 1970
Asbrink, L., The photoelectron spectrum of H2, Chem. Phys. Lett., 1970, 7, 549. [all data]

Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P., Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]

Herzberg, 1969
Herzberg, G., Dissociation energy and ionization potential of molecular hydrogen, Phys. Rev. Letters, 1969, 23, 1081. [all data]

Villarejo, 1968
Villarejo, D., Measurement of threshold electrons in the photoionization of H2 and D2, J. Chem. Phys., 1968, 48, 4014. [all data]

Collin and Natalis, 1968
Collin, J.E.; Natalis, P., Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Kerwin, Marmet, et al., 1963
Kerwin, L.; Marmet, P.; Clarke, E.M., Recent work with the electrostatic electron selector, Advan. Mass Spectrom., 1963, 2, 522. [all data]

Beutler and Junger, 1936
Beutler, H.; Junger, H.-O., Uber das Absorptionsspektrum des Wasserstoffs. III. Die Autoionisierung im Term 3pπ 1u des H2 und ihre Auswahlgesetze. Bestimmung der lonisierungsenergie des H2, Z. Physik, 1936, 100, 80. [all data]

Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M., ZEKE-PEPICO investigations of dissociation energies in ionic reactions, Chem. Phys. Lett., 1994, 224, 371. [all data]

Crowe and McConkey, 1973
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact. I. Protons from H2, J. Phys. B:, 1973, 6, 2088. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Curran, Laboratories
Curran, R.K., Negative ion formation in various gases at pressures up to .5 mm of Hg, Scientific Paper 62-908-113-P7, Westinghouse Research, Laboratories, Pittsburgh, 1962. [all data]

Shul, Passarella, et al., 1987
Shul, R.J.; Passarella, R.; Upshulte, B.L.; Keesee, R.G.; Castleman, A.W., Thermal Energy Reactions Invoving Ar+ Monomer and Dimer with N2, H2, Xe, and Kr, J. Chem. Phys., 1987, 86, 8, 4446, https://doi.org/10.1063/1.452718 . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Hiraoka and Kebarle, 1975, 2
Hiraoka, K.; Kebarle, P., Stability and Structure of H3CO+ Formed from COH+ + H2 at Low Temperature, J. Chem. Phys., 1975, 63, 4, 1688, https://doi.org/10.1063/1.431499 . [all data]

Hiraoka, Kudaka, et al., 1991
Hiraoka, K.; Kudaka, I.; Yamabe, S., Gas-Phase Solvation of CH5+ with H2, Chem. Phys. Lett., 1991, 184, 4, 271, https://doi.org/10.1016/0009-2614(91)85122-D . [all data]

Bushnell, Kemper, et al., 1995
Bushnell, J.E.; Kemper, P.R.; Bowers, M.T., Factors Affecting sigma Bond Activation in Simple Systems; Measurement of Experimental Binding energies of Fe+(H2)1-6 Clusters, J. Phys. Chem., 1995, 99, 42, 15602, https://doi.org/10.1021/j100042a040 . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Paulson and Henchman, 1984
Paulson, J.F.; Henchman, M.J., NATO Advanced Study Institute, Ionic Processes in the Gas Phase, Series C, M. A. Almoster - Ferreira, ed(s)., Reidel, Boston, 1984, 331. [all data]

Okumura, Yeh, et al., 1990
Okumura, M.; Yeh, L.I.; Myers, J.D.; Lee, Y.T., Infrared Spectra of the Solvated Hydronium Ion: Vibrational Predissociation Spectroscopy of Mass-Selected H3O+.(H2O)n.(H2)m, J. Phys. Chem., 1990, 94, 9, 3416, https://doi.org/10.1021/j100372a014 . [all data]

Bushnell, Kemper, et al., 1994
Bushnell, J.E.; Kemper, P.R.; Bowers, M.T., Na+/K+(H2)1,2 clusters: experiment, J. Phys. Chem., 1994, 98, 8, 2044, https://doi.org/10.1021/j100059a011 . [all data]

Wu, 1979
Wu, C.H., Binding Energies of LiH2 and LiH2+ and the Ionization Potential of LiH2, J. Chem. Phys., 1979, 71, 2, 783, https://doi.org/10.1063/1.438367 . [all data]

Crosswhite, 1972
Crosswhite, H.M., The hydrogen molecule wavelength tables of Gerhard Heinrich Dieke, Wiley-Interscience, Division of John Wiley & Sons, Inc., New York, 1972, 616. [all data]

Dieke, 1958
Dieke, G.H., The molecular spectrum of hydrogen and its isotopes, J. Mol. Spectrosc., 1958, 2, 494. [all data]

Sharp, 1971
Sharp, T.E., Potential-energy curves for molecular hydrogen and its ions, At. Data, 1971, 2, 119. [all data]

Richardson, 1934
Richardson, O.W., Molecular Hydrogen and Its Spectrum, Yale University Press, New Haven, 1934, 343. [all data]

Richardson, Yarrow, et al., 1934
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B., The spectrum of H2. Part III. New bands and band systems ending on 2s 3Σ and an extension of the singlet system 1Q → 2p 1Σ, Proc. R. Soc. London A, 1934, 147, 272. [all data]

Richardson, Yarrow, et al., 1934, 2
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B., The spectrum of H2. Part II - The band systems due to transitions from four new triplet states to 2p 3Π, Proc. R. Soc. London A, 1934, 147, 251. [all data]

Foster and Richardson, 1953
Foster, E.W.; Richardson, O., The fine structure of the 4d3Σ, 3Πcd, 3Δd → 2p 3Πcd transitions of the H2 spectrum, Proc. R. Soc. London A, 1953, 217, 433. [all data]

Miller and Freund, 1975
Miller, T.A.; Freund, R.S., Anticrossings and microwave transitions between the k(4p) 3Πu, v = 1, N = 3 and the p(4d) 3Σg+, v = 1, N = 5 levels of H2, J. Chem. Phys., 1975, 62, 2240. [all data]

Cunningham and Dieke, 1950
Cunningham; Dieke, Johns Hopkins University, Department of Physics, Rpt. NYO-692, 1950, 1. [all data]

Freund and Miller, 1974
Freund, R.S.; Miller, T.A., Anticrossings and microwave transitions between electronic states of H2, J. Chem. Phys., 1974, 60, 4900. [all data]

Gloersen and Dieke, 1965
Gloersen, P.; Dieke, G.H., Molecular spectra of hydrogen and helium in the infrared, J. Mol. Spectrosc., 1965, 16, 191. [all data]

Richardson, Yarrow, et al., 1934, 3
Richardson, O.W.; Yarrow, F.R.S.; Rymer, T.B., The spectrum of H2 (the ordinary hydrogen molecule). Part I - The 3, 4d 3Σ, Π, Δ → 2p 3Π and 3s 3Σ → 2p 3Π systems, Proc. R. Soc. London A, 1934, 147, 24. [all data]

Dieke and Blue, 1935
Dieke, G.H.; Blue, R.W., The Fulcher bands of HD and D2, Phys. Rev., 1935, 47, 261. [all data]

Dieke, 1935
Dieke, G.H., The 3p3Σ→2s3Σ bands of HD and D2, Phys. Rev., 1935, 48, 606. [all data]

Kolos and Wolniewicz, 1965
Kolos, W.; Wolniewicz, L., Potential-energy curves for the X1Σg+, b3Σu+, and C1Πu states of the hydrogen molecule, J. Chem. Phys., 1965, 43, 2429. [all data]

Takezawa, 1970, 2
Takezawa, S., Absorption spectrum of H2 in the vacuum-uv region. I. Rydberg states and ionization energies, J. Chem. Phys., 1970, 52, 2575. [all data]

Dabrowski and Herzberg, 1974
Dabrowski, I.; Herzberg, G., The absorption spectrum of D2 from 1100 to 840 Å, Can. J. Phys., 1974, 52, 1110. [all data]

Chupka, Dehmer, et al., 1975
Chupka, W.A.; Dehmer, P.M.; Jivery, W.T., High resolution photoionization study of ion-pair formation in H2, HD, and D2, J. Chem. Phys., 1975, 63, 3929. [all data]

Kolos, 1976
Kolos, W., Ab initio potential energy curves and vibrational levels for the B", B«macron», and B'1Σu+ states of the hydrogen molecule, J. Mol. Spectrosc., 1976, 62, 429. [all data]

Monfils, 1965
Monfils, A., The absorption spectra of the molecules H2, HD, and D2. Part VI. Rotational analysis of the B', B", D, D', and D" states, J. Mol. Spectrosc., 1965, 15, 265. [all data]

Monfils, 1968
Monfils, A., Absorption spectra of molecules H2, HD, and D2. VII. Vibrational constants of the B, B', B", C, D, D', and D" states, J. Mol. Spectrosc., 1968, 25, 513. [all data]

Namioka, 1964
Namioka, T., Absorption spectra of H2 in the vacuum ultraviolet region. II. The B'-X, B"-X, D-X, and D'-X bands, J. Chem. Phys., 1964, 41, 2141. [all data]

Richardson, 1937
Richardson, O.W., The band systems ending on the 1sσ 2sσ1Σg(1Xg) state of H2. Part I., Proc. R. Soc. London A, 1937, 160, 487-507. [all data]

Dieke and Lewis, 1937
Dieke, G.H.; Lewis, M.N., Bands of HD and D2 ending on the 2p1Σ state, Phys. Rev., 1937, 52, 100. [all data]

Porto and Jannuzzi, 1963
Porto, S.P.S.; Jannuzzi, N., New singlet transitions in the near infrared spectrum of molecular hydrogen, J. Mol. Spectrosc., 1963, 11, 378. [all data]

Namioka, 1965
Namioka, T., Absorption spectra of H2 in the vacuum-ultraviolet region. III. Potential-energy curves for the B1Σu+, C1Πu, B'1Σu+, and D1Πu states, J. Chem. Phys., 1965, 43, 1636. [all data]

Dieke, 1949
Dieke, G.H., Bands from doubly excited levels of the hydrogen molecule, Phys. Rev., 1949, 76, 50. [all data]

Dieke, 1936
Dieke, G.H., The 2s1Σ→2p1Σ bands of the hydrogen molecule, Phys. Rev., 1936, 50, 797. [all data]

Porto and Dieke, 1955
Porto, S.P.S.; Dieke, G.H., Infrared spectrum of hydrogen and deuterium between one and two microns, J. Opt. Soc. Am., 1955, 45, 447. [all data]

Dieke, 1938
Dieke, G.H., Bands of H2 ending on the 2p1Π level, Phys. Rev., 1938, 54, 439. [all data]

Namioka, 1964, 2
Namioka, T., Absorption spectra of H2 in the vacuum-ultraviolet region. I. The Lyman and the Werner bands, J. Chem. Phys., 1964, 40, 3154. [all data]

Herzberg and Howe, 1959
Herzberg, G.; Howe, L.L., The Lyman bands of molecular hydrogen, Can. J. Phys., 1959, 37, 636. [all data]

Wilkinson, 1968
Wilkinson, P.G., The electronic isotope shift in the Lyman bands of H2, HD, and D2, Can. J. Phys., 1968, 46, 1225. [all data]

Herzberg, 1950
Herzberg, G., Forbidden transitions in diatomic molecules. I. The quadrupole rotation-vibration spectrum of H2, Can. J. Res. Sect. A, 1950, 28, 144. [all data]

Fink, Wiggins, et al., 1965
Fink, U.; Wiggins, T.A.; Rank, D.H., Frequency and intensity measurements on the quadrupole spectrum of molecule hydrogen, J. Mol. Spectrosc., 1965, 18, 384. [all data]

Terhune and Peters, 1959
Terhune, R.W.; Peters, C.W., Electric field induced vibration rotation spectrum of H2 and D2, J. Mol. Spectrosc., 1959, 3, 138. [all data]

Foltz, Rank, et al., 1966
Foltz, J.V.; Rank, D.H.; Wiggins, T.A., Determinations of some hydrogen molecular constants, J. Mol. Spectrosc., 1966, 21, 203. [all data]

Brannon, Church, et al., 1968
Brannon, P.J.; Church, C.H.; Peters, C.W., Electric field induced spectra of molecular hydrogen, deuterium and deuterium hydride, J. Mol. Spectrosc., 1968, 27, 44. [all data]

Stoicheff, 1957
Stoicheff, B.P., High resolution Raman spectroscopy of gases. IX. Spectra of H2, HD, and D2, Can. J. Phys., 1957, 35, 730. [all data]

Harrick and Ramsey, 1952
Harrick, N.J.; Ramsey, N.F., Rotational magnetic moment, magnetic susceptibilities, and electron distribution in the hydrogen molecule, Phys. Rev., 1952, 88, 228. [all data]

Barnes, Bray, et al., 1954
Barnes, R.G.; Bray, P.J.; Ramsey, N.F., Variations of hydrogen rotational magnetic moments with rotational quantum number and with isotopic mass, Phys. Rev., 1954, 94, 893. [all data]

Kolsky, Phipps, et al., 1952
Kolsky, H.G.; Phipps, T.E., Jr.; Ramsey, N.F.; Silsbee, H.B., Nuclear radiofrequency spectra of H2 and D2 in high and low magnetic fields, Phys. Rev., 1952, 87, 395. [all data]

Harrick, Barnes, et al., 1953
Harrick, N.J.; Barnes, R.G.; Bray, P.J.; Ramsey, N.F., Nuclear radiofrequency spectra of D2 and H2 in intermediate and strong magnetic fields, Phys. Rev., 1953, 90, 260. [all data]

Ginter, 1967
Ginter, M.L., Molecular constants for the l-uncoupled electronic states 3d 1,3Δg and 3d 1,3Πg of the hydrogen molecule, J. Chem. Phys., 1967, 46, 3687. [all data]

Freund, Miller, et al., 1973
Freund, R.S.; Miller, T.A.; Zegarski, B.R., Fine structure of para H2, k(4p)3Πu, Chem. Phys. Lett., 1973, 23, 120. [all data]

Miller, Freund, et al., 1974
Miller, T.A.; Freund, R.S.; Zagarski, B.R., Fine and hyperfine structure of ortho-H2, k(4p) 3Πu, J. Chem. Phys., 1974, 60, 3195. [all data]

Ginter, 1966
Ginter, M.L., Spectrum and structure of the He2 molecule. IV. Characterization of the singlet and triplet states associated with the UAO's 3dσ, 3dπ, and 3dδ, J. Chem. Phys., 1966, 45, 248. [all data]

Herzberg, 1967
Herzberg, G., A new predissociation of the H2 molecule, Sci. Light (Tokyo), 1967, 16, 14. [all data]

Browne, 1965
Browne, J.C., Quantum mechanical potential energy curves for the 1Πu and 3Πu states of He2 and the 1Πg and 3Πg states of H2, Phys. Rev. A: Gen. Phys., 1965, 138, 9. [all data]

Wright and Davidson, 1965
Wright, W.M.; Davidson, E.R., 1s3d 3Πg state of the hydrogen molecule, J. Chem. Phys., 1965, 43, 840. [all data]

Freund and Miller, 1973
Freund, R.S.; Miller, T.A., Fine structure of para-H2 d(3p) 3Πu (ν=0-3) via microwave optical magnetic resonance induced by electrons, J. Chem. Phys., 1973, 58, 3565. [all data]

Dieke, 1935, 2
Dieke, G.H., The triplet 3p complex of the hydrogen molecule, Phys. Rev., 1935, 48, 610. [all data]

Beutler and Junger, 1936, 2
Beutler, H.; Junger, H.-O., Pradissoziation und autoionisierung in den termfolgen des Wasserstoff-(H2-) spektrums, Z. Phys., 1936, 101, 285. [all data]

Cahill, 1969
Cahill, P., Determination of the lifetime of the d3Πu state of H2, J. Opt. Soc. Am., 1969, 59, 875. [all data]

Marechal, Jost, et al., 1972
Marechal, M.A.; Jost, R.; Lombardi, M., Lifetimes, g factors, and collision cross sections of hydrogen molecules in the (1s3p) 3Πu level, Phys. Rev. A: Gen. Phys., 1972, 5, 732. [all data]

Miller and Freund, 1974
Miller, T.A.; Freund, R.S., Singlet-triplet anticrossings in H2, J. Chem. Phys., 1974, 61, 2160. [all data]

Jost and Lombardi, 1974
Jost, R.; Lombardi, M., Determination of the singlet-triplet separation of H2 by a "level-anticrossing" technique, Phys. Rev. Lett., 1974, 33, 53. [all data]

Kolos, 1975
Kolos, W., Revised theoretical energy for the a3Σg+ state of H2, Chem. Phys. Lett., 1975, 31, 43. [all data]

Kolos and Wolniewicz, 1968
Kolos, W.; Wolniewicz, L., Vibrational and rotational energies of the B1Σu+, C1Πu, C1Πu, and a3Σg+ states of the hydrogen molecule, J. Chem. Phys., 1968, 48, 3672. [all data]

Smith and Chevalier, 1972
Smith, W.H.; Chevalier, R., Radiative-lifetime studies of the emission continua of the hydrogen and deuterium molecules, Astrophys. J., 1972, 177, 835. [all data]

King, Read, et al., 1975
King, G.C.; Read, F.H.; Imhof, R.E., The measurement of molecular lifetimes by the photon-photon delayed coincidence method, J. Phys. B:, 1975, 8, 665. [all data]

Jette, 1974
Jette, A.N., Spin-other-orbit and spin-spin interactions in the metastable, C3Πu(1s,2p) state of H2, J. Chem. Phys., 1974, 61, 816. [all data]

Jette and Miller, 1974
Jette, A.N.; Miller, T.A., Fine structure in Rydberg states of the H2 molecule, Chem. Phys. Lett., 1974, 29, 547. [all data]

Lichten, 1960
Lichten, W., Metastable hydrogen molecules, Phys. Rev., 1960, 120, 848. [all data]

Frey and Mizushima, 1962
Frey, D.A.; Mizushima, M., Hyperfine structure of the hydrogen molecule in its metastable 3Πu state, Phys. Rev., 1962, 128, 2683. [all data]

Lichten, 1962
Lichten, W., Measurements of lifetimes of metastable hydrogen molecules: a forbidden predissociation in H2, Bull. Am. Phys. Soc., 1962, 7, 43. [all data]

Chiu, 1964
Chiu, L.-Y.C., Electron magnetic perturbation in diatomic molecules of Hund's case b, J. Chem. Phys., 1964, 40, 2276. [all data]

Johnson, 1972
Johnson, C.E., Lifetime of the c3Πu metastable state of H2, D2, and HD, Phys. Rev. A: Gen. Phys., 1972, 5, 1026. [all data]

Johnson, 1974
Johnson, C.E., Quenching of the c3Πu metastable state of H2 and D2 by an electric field, Phys. Rev. A: Gen. Phys., 1974, 9, 576. [all data]

Kagann and English, 1976
Kagann, R.H.; English, T.C., Stark-Zeeman effect of metastable orthohydrogen and parahydrogen, Phys. Rev. A: Gen. Phys., 1976, 13, 1451. [all data]

English and Albritton, 1975
English, T.C.; Albritton, D.L., Theory of the Stark effect of metastable parahydrogen, J. Phys. B:, 1975, 8, 2123. [all data]

Dunn, 1966
Dunn, G.H., Franck-Condon factors for the ionization of H2 and D2, J. Chem. Phys., 1966, 44, 2592. [all data]

Villarejo, 1968, 2
Villarejo, D., Vibration-rotation interaction effects in calculated Franck-Condon factors. I. The ionization of H2 and D2, J. Chem. Phys., 1968, 49, 2523. [all data]

Nicholls, 1968
Nicholls, R.W., Franck-Condon factors for ionizing transitions of O2, CO, NO and H2 and for the NO+(A1-Σx1Σ) band system, J. Phys. B:, 1968, 1, 1192. [all data]

Ford, Docken, et al., 1975
Ford, A.L.; Docken, K.K.; Dalgarno, A., Cross sections for photoionization of vibrationally excited molecular hydrogen, Astrophys. J., 1975, 200, 788. [all data]

Turner, 1968
Turner, D.W., High resolution molecular photoelectron spectroscopy. I. Fine structure in the spectra of hydrogen and oxygen, Proc. Roy. Soc. (London), 1968, A307, 15. [all data]

Chupka and Berkowitz, 1968
Chupka, W.A.; Berkowitz, J., Photoionization of the H2 molecule near threshold, J. Chem. Phys., 1968, 48, 5726. [all data]

Comes and Wellern, 1968
Comes, F.J.; Wellern, H.O., Die Spektroskopie des Wasserstoffmolekuls in der Nahe seiner Ionisierungs-grenze., Z. Naturforsch., 1968, 23a, 881. [all data]

Backx, Wight, et al., 1976
Backx, C.; Wight, G.R.; van der Wiel, M.J., Oscillator strengths (10-70 eV) for absorption, ionization and dissociation in H2, HD and D2, obtained by an electron-ion coincidence method, J. Phys. B:, 1976, 9, 315. [all data]

Monfils, 1968, 2
Monfils, A., Calcul des fonctions potentielles de divers etats signulets excites des molecules H2, HD et D2, Bull. Cl. Sci. Acad. R. Belg., 1968, 54, 44. [all data]

Herzberg, 1971
Herzberg, G., Beutler-Fano shape in the predissociation of H2 in Topics in Modern Physics, W.E. Brittin; Odabasi,H., ed(s)., Colorado Associated University Press, Boulder, Colorado, 1971, 191-197. [all data]

Comes and Schumpe, 1971
Comes, F.J.; Schumpe, G., Einfluss der Rotation auf die Lebensdauer pradissoziierender Molekule, Z. Naturforsch. A, 1971, 26, 538. [all data]

Fiquet-Fayard and Gallais, 1971
Fiquet-Fayard, F.; Gallais, O., Calculs numeriques de facteurs de Franck-Condon et effets isotopiques: perturbation de H2 C1Πu et predissociation de H2 D1Πu, Mol. Phys., 1971, 20, 527. [all data]

Julienne, 1971
Julienne, P.S., Predissociation of the H2 D1Πu state, Chem. Phys. Lett., 1971, 8, 27. [all data]

Fiquet-Fayard and Gallais, 1972
Fiquet-Fayard, F.; Gallais, O., Predissociation of H2 and D2 (D1Πu): comparison of calculated and experimental line-widths, Chem. Phys. Lett., 1972, 16, 18. [all data]

Comes and Wenning, 1969
Comes, F.J.; Wenning, U., Photoinduzierte Stossprozesse metastabiler Wasserstoffatome mit H2 im Energiebereich von 0,05 - 0,47 eV, Z. Naturforsch. A, 1969, 24, 587. [all data]

Mentall and Gentieu, 1970
Mentall, J.E.; Gentieu, E.P., Lyman-α fluorescence from the photodissociation of H2, J. Chem. Phys., 1970, 52, 5641. [all data]

Comes and Wenning, 1970
Comes, F.J.; Wenning, U., Pradissoziation im elektrischen Feld - ein neues Phanomen in der Molekulspektroskopie, Z. Naturforsch. A, 1970, 25, 406. [all data]

Spindler, 1969
Spindler, R.J., Jr., Franck-Condon factors for band systems of molecular hydrogen. I. The (B1Σu+ - X1Σg+), (I1Πg - B1Σu+) and (d3Πu - a3Σg+) systems, J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 597. [all data]

Cook and Metzger, 1964
Cook, G.R.; Metzger, P.H., Photoionization and absorption cross sections of H2 and D2 in the vacuum ultraviolet region, J. Opt. Soc. Am., 1964, 54, 968. [all data]

Lewis, 1974
Lewis, B.R., Experimentally-determined oscillator strengths for molecular hydrogen. II. The Lyman and Werner bands below 900 Å, the B'-X and the D-X bands, J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 537. [all data]

Mulliken, 1964
Mulliken, R.S., Rare-gas and hydrogen molecule electronic states, noncrossing rule, and recombination of electrons with rare-gas and hydrogen ions, Phys. Rev., 1964, 136, 962. [all data]

Dieke, Cunningham, et al., 1953
Dieke, G.H.; Cunningham, S.P.; Byrne, F.T., The Zeeman effect in the molecular spectra of hydrogen, Phys. Rev., 1953, 92, 81. [all data]

van der Linde and Dalby, 1972
van der Linde, J.; Dalby, F.W., Zero field level crossing in excited states of molecular hydrogen, Can. J. Phys., 1972, 50, 287. [all data]

Melieres-Marechal and Lombardi, 1974
Melieres-Marechal, M.-A.; Lombardi, M., Weak hyperfine structure measurement using the magnetic repolarization effect: application to N = 1 v = 1 (1s3d)1Σ, J. Chem. Phys., 1974, 61, 2600. [all data]

Freund and Miller, 1972
Freund, R.S.; Miller, T.A., Microwave optical magnetic resonance induced by electrons (MOMRIE) in H2 G(3d 1Σg+), J. Chem. Phys., 1972, 56, 2211. [all data]

Ford, Browne, et al., 1975
Ford, A.L.; Browne, J.C.; Shipsey, E.J.; DeVries, P., Adiabatic ab initio potential curves for the B' 1Σu+ state of H2, J. Chem. Phys., 1975, 63, 362. [all data]

Wolniewicz, 1975
Wolniewicz, L., Theoretical investigation of the B'1Σu+ state of the hydrogen molecule, Chem. Phys. Lett., 1975, 31, 248. [all data]

Davidson, 1961
Davidson, E.R., First excited 1Σg+ state of the hydrogen molecule, J. Chem. Phys., 1961, 35, 1189. [all data]

Kolos and Wolniewicz, 1969
Kolos, W.; Wolniewicz, L., Theoretical investigation of the lowest double-minimum state E, F1Σg+ of the hydrogen molecule, J. Chem. Phys., 1969, 50, 3228. [all data]

Lin, 1974
Lin, C.S., Theoretical analysis of the vibrational structure of the electronic transitions involving a state with double minimum: E,F 1Σg+ of H2, J. Chem. Phys., 1974, 60, 4660. [all data]

Wolniewicz, 1969
Wolniewicz, L., Theoretical investigation of the transition probabilities in the hydrogen molecule, J. Chem. Phys., 1969, 51, 5002. [all data]

King and Van Vleck, 1939
King, G.W.; Van Vleck, J.H., Dipole-dipole resonance forces, Phys. Rev., 1939, 55, 1165. [all data]

Mulliken, 1960
Mulliken, R.S., The interaction of differently excited like atoms at large distances, Phys. Rev., 1960, 120, 1674. [all data]

Rothenberg and Davidson, 1966
Rothenberg, S.; Davidson, E.R., Hydrogen-molecule excited states: 1Πu, J. Chem. Phys., 1966, 44, 730. [all data]

Kolos, 1967
Kolos, W., Long-range interaction between 1s and 2s or 2p hydrogen atoms, Int. J. Quantum Chem., 1967, 1, 169. [all data]

Julienne, 1973
Julienne, P.S., Nonadiabatic effects in the B, C, B', and D states of H2, J. Mol. Spectrosc., 1973, 48, 508. [all data]

Ford, 1974
Ford, A.L., Lambda-Doubling in the C1Πu state of H2, J. Mol. Spectrosc., 1974, 53, 364. [all data]

Hesser, 1968
Hesser, J.E., Absolute Transition Probabilities in Ultraviolet Molecular Spectra, J. Chem. Phys., 1968, 48, 6, 2518, https://doi.org/10.1063/1.1669477 . [all data]

Geiger and Schmoranzer, 1969
Geiger, J.; Schmoranzer, H., Electronic and vibrational transition probabilities of isotopic hydrogen molecules H2, HD, and D2 based on electron energy loss spectra, J. Mol. Spectrosc., 1969, 32, 39. [all data]

Schmoranzer and Geiger, 1973
Schmoranzer, H.; Geiger, J., Light emission of electron impact excited hydrogen molecules and the dependence of electronic transition moment on internuclear distance, J. Chem. Phys., 1973, 59, 6153. [all data]

Fabian and Lewis, 1974
Fabian, W.; Lewis, B.R., Experimentally determined oscillator strengths for molecular hydrogen. I. The Lyman and Werner bands above 900 Å, J. Quant. Spectrosc. Radiat. Transfer, 1974, 14, 523. [all data]

Allison and Dalgarno, 1970
Allison, A.C.; Dalgarno, A., Band oscillator strengths and transition probabilities for the Lyman and Werner systems of H2, HD, and D2, At. Data, 1970, 1, 289. [all data]

Allison and Dalgarno, 1970, 2
Allison, A.C.; Dalgarno, A., Isotope effects in the Lyman and Werner systems of molecular hydrogen, Mol. Phys., 1970, 19, 567. [all data]

Dalgarno and Stephens, 1970
Dalgarno, A.; Stephens, T.L., Discrete absorption and photodissociation of molecular hydrogen, Astrophys. J., 1970, 160, 107. [all data]

Stephens and Dalgarno, 1972
Stephens, T.L.; Dalgarno, A., Spontaneous radiative dissociation in molecular hydrogen, J. Quant. Spectrosc. Radiat. Transfer, 1972, 12, 569. [all data]

Takezawa, Innes, et al., 1966
Takezawa, S.; Innes, F.R.; Tanaka, Y., Selective enhancement in hydrogenlike molecules with the rare gases. I. H2 with Ar and Kr, J. Chem. Phys., 1966, 45, 2000. [all data]

Hodson and Dreyfus, 1972
Hodson, R.T.; Dreyfus, R.W., Vacuum-UV laser action observed in H2 Werner bands: 1161-1240 Å, Phys. Rev. Lett., 1972, 28, 536. [all data]

Waynant, 1972
Waynant, R.W., Observations of gain by stimulated emission in the Werner band of molecular hydrogen, Phys. Rev. Lett., 1972, 28, 533. [all data]

Herzberg, 1970
Herzberg, G., The dissociation energy of the hydrogen molecule, J.Mol. Spectry., 1970, 33, 147. [all data]

Tobias and Vanderslice, 1961
Tobias, I.; Vanderslice, J.T., Potential energy curves for the X1Σg+ and B1Σu+ states of hydrogen, J. Chem. Phys., 1961, 35, 1852. [all data]

Stwalley, 1973
Stwalley, W.C., Potential energy curve of the B1Σu+ state of H2, J. Chem. Phys., 1973, 58, 536. [all data]

Kolos and Wolniewicz, 1975
Kolos, W.; Wolniewicz, L., New ab initio potential energy curve and vibrational levels for the B1Σu+ state of the hydrogen molecule, Can. J. Phys., 1975, 53, 2189. [all data]

Halmann and Laulicht, 1966
Halmann, M.; Laulicht, I., Isotope effects on Franck-Condon factors. V. Electronic transitions of isotopic O2, N2, C2, and H2 molecules, J. Chem. Phys., 1966, 44, 2398. [all data]

Dalgarno and Allison, 1968
Dalgarno, A.; Allison, A.C., Band oscillator strengths of the Lyman system of molecular hydrogen, Astrophys. J., 1968, 154, 95. [all data]

Lin, 1975
Lin, C.S., Calculation of the Franck-Condon factors: single-α approximation method, Can. J. Phys., 1975, 53, 310. [all data]

Villarejo, Stockbauer, et al., 1969
Villarejo, D.; Stockbauer, R.; Inghram, M.G., Vibration-rotation interaction effects in calculated Franck-Condon factors. II. Hydrogen Lyman and Fulcher bands, J. Chem. Phys., 1969, 50, 1754. [all data]

Becker and Fink, 1971
Becker, K.H.; Fink, E.H., Relative line intensities in the Lyman bands of HD and H2, Z. Naturforsch. A, 1971, 26, 319. [all data]

Geiger and Topschowsky, 1966
Geiger, J.; Topschowsky, M., Ubergangswahrscheinlichkeiten im Elektronen- und Schwingungsspektrum des Wasserstoffmolekuls, Z. Naturforsch. A, 1966, 21, 626. [all data]

Haddad, Lokan, et al., 1968
Haddad, G.N.; Lokan, K.H.; Farmer, A.J.D.; Carver, J.H., An experimental determination of the oscillator strengths for some transitions in the Lyman bands of molecular hydrogen, J. Quant. Spectrosc. Radiat. Transfer, 1968, 8, 1193. [all data]

Hesser, Brooks, et al., 1968
Hesser, J.E.; Brooks, N.H.; Lawrence, G.M., H2 Lyman-band oscillator strengths, J. Chem. Phys., 1968, 49, 5388. [all data]

Schmoranzer, 1975
Schmoranzer, H., Electronic transition moment in the B1Σu+ -X1Σg+ Lyman band system of H2 based on keV electron impact excited vacuum UV emission intensities, J. Phys. B:, 1975, 8, 1139. [all data]

Hodgson, 1970
Hodgson, R.T., Vacuum-ultraviolet laser action observed in the Lyman bands of molecular hydrogen, Phys. Rev. Lett., 1970, 25, 494. [all data]

Waynant, Shipman, et al., 1970
Waynant, R.W.; Shipman, J.D., Jr.; Elton, R.C.; Ali, A.W., Vacuum ultraviolet laser emission from molecular hydrogen, Appl. Phys. Lett., 1970, 17, 383. [all data]

Dalgarno, Herzberg, et al., 1970
Dalgarno, A.; Herzberg, G.; Stephens, T.L., A new continuous emission spectrum of the hydrogen molecule, Astrophys. J., 1970, 162, 49. [all data]

Allison and Dalgarno, 1969
Allison, A.C.; Dalgarno, A., Photodissociation of vibrationally excited H2, HD, and D2 by absorption into the continua of the Lyman and Werner systems, At. Data, 1969, 1, 91. [all data]

Herzberg and Monfils, 1960
Herzberg, G.; Monfils, A., The dissociation energies of the H2, HD, and D2 molecules, J. Mol. Spectrosc., 1960, 5, 482. [all data]

Weissman, Vanderslice, et al., 1963
Weissman, S.; Vanderslice, J.T.; Battino, R., On the recalculation of the potential curves for the ground states of I2 and H2, J. Chem. Phys., 1963, 39, 2226. [all data]

Ginter and Battino, 1965
Ginter, M.L.; Battino, R., On the calculation of potential curves by the Rydberg-Klein-Rees method. I. Experimental limitations, extrapolation procedures, and applications to the third-group hydrides, J. Chem. Phys., 1965, 42, 3222. [all data]

Zhirnov and Vasilevskii, 1970
Zhirnov, N.I.; Vasilevskii, A.S., A new method for constructing the potential curves of diatomic molecules on the basis of spectroscopic data. IV. The potential curve of the ground electronic state of the H2 molecule, Opt. Spectrosc. Engl. Transl., 1970, 29, 352, In original 658. [all data]

Kolos and Wolniewicz, 1974
Kolos, W.; Wolniewicz, L., Variational calculation of the long-range interaction between two ground-state hydrogen atoms, Chem. Phys. Lett., 1974, 24, 457. [all data]

Kolos and Wolniewicz, 1975, 2
Kolos, W.; Wolniewicz, L., Improved potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule, J. Mol. Spectrosc., 1975, 54, 303. [all data]

Waech and Bernstein, 1967
Waech, T.G.; Bernstein, R.B., Calculated spectrum of quasibound states for H2(1Σg+) and resonances in H + H scattering, J. Chem. Phys., 1967, 46, 4905. [all data]

Kolos and Wolniewicz, 1968, 2
Kolos, W.; Wolniewicz, L., Improved theoretical ground-state energy of the hydrogen molecule, J. Chem. Phys., 1968, 49, 404. [all data]

Allison, 1969
Allison, A.C., Quasi-bound states in H2, Chem. Phys. Lett., 1969, 3, 371. [all data]

Herzberg and Mckenzie, 1979
Herzberg; Mckenzie, To be Published cited in Huber and Herzberg, 1979, 2, 1979, 255. [all data]

Bunker, 1972
Bunker, P.R., On the breakdown of the Born-Oppenheimer approximation for a diatomic molecule, J. Mol. Spectrosc., 1972, 5, 478. [all data]

Orlikowski and Wolniewicz, 1974
Orlikowski, T.; Wolniewicz, L., Nonadiabatic corrections to the vibrational energies of the hydrogen molecule, Chem. Phys. Lett., 1974, 24, 461. [all data]

Dabrowski and Herzberg, 1976
Dabrowski, I.; Herzberg, G., The absorption and emission spectra of HD in the vacuum ultraviolet, Can. J. Phys., 1976, 54, 525. [all data]

Bishop and Shih, 1976
Bishop, D.M.; Shih, S.-K., An effective Schrodinger equation for the rovibronic energies of H2 and D2, J. Chem. Phys., 1976, 64, 162. [all data]

Buijs and Gush, 1971
Buijs, H.L.; Gush, H.P., Statis field induced spectrum of hydrogen, Can. J. Phys., 1971, 49, 2366. [all data]

Ramsey, 1952
Ramsey, N.F., Theory of molecular hydrogen and deuterium in magnetic fields, Phys. Rev., 1952, 85, 60. [all data]

Harney, Randolph, et al., 1975
Harney, R.C.; Randolph, J.E.; Milanovich, F.P., Relative Raman cross sections for the S(0) through S(4) rotational transitions in hydrogen, Astrophys. J., 1975, 200, 179. [all data]

Stwalley, 1970
Stwalley, W.C., The dissociation energy of the hydrogen molecule using long-range forces, Chem. Phys. Lett., 1970, 6, 241. [all data]

Bunker, 1979
Bunker, Unpublished cited in Huber and Herzberg, 1979, 2, 1979, 255. [all data]

Hunter, 1966
Hunter, G., Adiabatic dissociation energies for the ground states of the H2, HD, and D2 molecules, J. Chem. Phys., 1966, 45, 3022. [all data]

Jeziorski and Kolos, 1969
Jeziorski, B.; Kolos, W., On the ionization potential of H2, Chem. Phys. Lett., 1969, 3, 677. [all data]

Margolis, 1973
Margolis, J.S., Measurement of some 1-0 H2 quadrupole transition strengths, J. Mol. Spectrosc., 1973, 48, 409. [all data]

McKellar, 1974
McKellar, A.R.W., The significance of pressure shifts for the interpretation of H2 quadrupole lines in planetary spectra, Icarus, 1974, 22, 212. [all data]

Chackerian and Giver, 1975
Chackerian, C., Jr.; Giver, L.P., Density-dependent frequency shift of the hydrogen S2(1) quadrupole line, J. Mol. Spectrosc., 1975, 58, 339. [all data]

James, 1969
James, T.C., Intensity of the quadrupole rotation-vibration spectrum of molecular hydrogen, J. Mol. Spectrosc., 1969, 32, 512. [all data]

Dalgarno and Wright, 1972
Dalgarno, A.; Wright, E.L., Infrared emissivities of H2 and HD, Astrophys. J., 1972, 174, 49. [all data]

Black and Dalgarno, 1976
Black, J.H.; Dalgarno, A., Interstellar H2: the population of excited rotational states and the infrared response to ultraviolet radiation, Astrophys. J., 1976, 203, 132. [all data]

Welsh, 1972
Welsh, H.L., Pressure-induced absorption spectra of hydrogen in MTP International Review of Science; Physical Chemistry, Series 1, Vol. 3, London, Butterworths, Baltimore, University Park Press, 1972, 33-71. [all data]

Huber and Herzberg, 1979, 2
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Constants of diatomic molecules, Site Links, NIST Free Links, References