beryllium oxide


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas136.40kJ/molReviewChase, 1998Data last reviewed in June, 1975
Quantity Value Units Method Reference Comment
gas,1 bar197.63J/mol*KReviewChase, 1998Data last reviewed in June, 1975

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 5000. to 6000.
A 276.3470
B -79.40290
C 9.964611
D -0.439391
E -515.6630
F -472.1220
G 149.9360
H 136.3980
ReferenceChase, 1998
Comment Data last reviewed in June, 1975

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-542.71kJ/molReviewChase, 1998Data last reviewed in June, 1975
Quantity Value Units Method Reference Comment
liquid,1 bar35.86J/mol*KReviewChase, 1998Data last reviewed in June, 1975
Quantity Value Units Method Reference Comment
Δfsolid-609.4 ± 2.5kJ/molReviewCox, Wagman, et al., 1984CODATA Review value
Δfsolid-608.35kJ/molReviewChase, 1998α phase; Data last reviewed in June, 1975
Quantity Value Units Method Reference Comment
solid,1 bar13.77 ± 0.04J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 2780. to 5000.
A 79.49600
B 7.057823×10-8
C -1.617753×10-8
D 1.275735×10-9
E 9.949218×10-8
F -616.9559
G 66.38334
H -542.7066
ReferenceChase, 1998
Comment Data last reviewed in June, 1975

Solid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 800.800. to 2780.298. to 1500.1500. to 2780.
A 3.35897447.0620524.6897848.35281
B 131.59225.59835952.563174.393033
C -140.4937-0.495570-36.35239-0.090144
D 56.209530.0545279.4879320.007823
E -0.536669-2.947373-1.053896-3.469105
F -615.8764-631.6794-614.6045-626.3113
G -18.6788454.7647926.3598358.35048
H -608.3536-608.3536-601.6592-601.6592
ReferenceChase, 1998Chase, 1998Chase, 1998Chase, 1998
Comment α phase; Data last reviewed in June, 1975 α phase; Data last reviewed in June, 1975 β phase; Data last reviewed in June, 1975 β phase; Data last reviewed in June, 1975

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Ionization energy determinations

IE (eV) Method Reference
10.1 ± 0.4EITheard and Hildenbrand, 1964
10.4EIChupka, Berkowitz, et al., 1959

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Coblentz Society, Inc.

Spectrum

A digitized version of this spectrum is not currently available.

Additional Data

View scan of original (hardcopy) spectrum.

Owner COBLENTZ SOCIETY
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Source reference COBLENTZ NO. 1430
Date Not specified, most likely prior to 1970
Instrument Not specified, most likely a prism, grating, or hybrid spectrometer.
Data processing (NO SPECTRUM, ONLY SCANNED IMAGE IS AVAILABLE)

This IR spectrum is from the Coblentz Society's evaluated infrared reference spectra collection.


Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, NIST Free Links, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through April, 1976

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 9Be16O
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Fragments of additional singlet and triplet systems in the region 29000 - 33000 cm-1.
Bengtsson, 1928; Ciccone, 1934; missing citation
c (1 Σ) 39120.2 1081.5 (HQ) 9.1  (1.308) (0.010)    (1.495) C → A 1 R 29683.1 (HQ)
Harvey and Bell, 1935; missing citation
B 1 Σ+ 21253.94 1370.82 Z 7.746 -0.00027 1.5758 2 3 0.0154  8.41E-6 4  1.3623 B → A 5 V 11961.78 Z
Lagerqvist, 1948
           B ↔ X 6 7 R 21196.70 Z
missing citation; Rosenthal and Jenkins, 1929; Lagerqvist and Westoo, 1946; Lagerqvist, 1948; missing citation
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
b 3Σ+ 8           
Thrush, 1960
A 1Π 9405.61 1144.24 Z 8.415 0.0339 1.3661 9 2 3 0.01628 0.000055 7.79E-6  1.4631 A → X R 9234.92 Z
Herzberg, 1933; missing citation; Lagerqvist, 1947; missing citation
a 3Π (8480) 10           
X 1Σ+ 0 1487.32 Z 11.83 0.0224 1.6510 3 0.0190  8.20E-6 11  1.3309 12  

Notes

1Franck-Condon factors Liszt and Smith, 1971.
2Numerous perturbations between levels of A 1Π and B 1Σ, A 1Π and X 1Σ, as well as perturbations by unidentified levels [probably belonging to a 3Π and b 3Σ, see Huo, Freed, et al., 1967]. For an extensive treatment see Lagerqvist and Westoo, 1945, Lagerqvist and Westoo, 1946, Lagerqvist, 1946, Lagerqvist, 1948.
3RKRV potential curves Thakur and Singh, 1967.
4βe= -0.07E-6. Hv= +[27 - 2(v+1/2)]E-12.
5Very weak system.
6Radiative lifetime τ(v=0)=90 ns Capelle, Johnson, et al., 1972; f00=0.0335. A much smaller value, f00(B-X) = 0.00194 Drake, Tyte, et al., 1967, was estimated from shock tube measurements Drake, Tyte, et al., 1967.
7Franck-Condon factors Nicholls, Fraser, et al., 1960, Liszt and Smith, 1971; approximate electronic transition moments, band oscillator strengths Drake, Tyte, et al., 1967.
8The theoretical calculations of Verhaegen and Richards, 1966 place the 3 Σ+ state at 4100 cm-1 below B 1Σ+, in rough agreement with O'Neil, Pearson, et al., 1971 who calculate its energy at 15400 cm-1 above X 1Σ.
9Λ-type doubling, Δvfe= +0.00055 J(J+1).
10Theoretical calculations Huo, Freed, et al., 1967, Verhaegen and Richards, 1966 place the 3Π state at 920 to 2600 cm-1 below A 1Π, in reasonable agreement with Pearson, O'Neil, et al., 1972 who predict it at 5900 cm-1 above X 1Σ+.
11βe~-0.01; Hv= +[12.5 - 1.1(v+1/2)]E-12.
12For computed ground state properties see Yoshimine, 1964 Schaefer, 1971.
13Thermochemical value (mass-spectrom.) Chupka, Berkowitz, et al., 1959, 2; in good agreement with 4.52 eV derived from an ab initio calculation Schaefer, 1971 of X 1Σ+. Extrapolations of X and A to their common limit Be(1S) + O(1D) lead to 3.9 and 4.82 eV, respectively Lagerqvist, 1954. A considerably higher thermochemical value of 5.51 eV was determined by Drummond and Barrow, 1953.
14βe= -0.044E-6

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Constants of diatomic molecules, NIST Free Links, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Theard and Hildenbrand, 1964
Theard, L.P.; Hildenbrand, D.L., Heat of formation of Be2O(g) by mass spectrometry, J. Chem. Phys., 1964, 41, 3416. [all data]

Chupka, Berkowitz, et al., 1959
Chupka, W.A.; Berkowitz, J.; Giese, C.F., Vaporization of beryllium oxide and its reaction with tungsten, J. Chem. Phys., 1959, 30, 827. [all data]

Bengtsson, 1928
Bengtsson, E., Uber das bandenspektrum des berylliumoxyds, Ark. Mat. Astron. Fys., 1928, 28, 1. [all data]

Ciccone, 1934
Ciccone, A., Bande ultraviolette dell'ossido di Berillio, Ric. Sci. Progr. Tec., 1934, 1, 2, 123. [all data]

Harvey and Bell, 1935
Harvey, A.; Bell, H., The band spectrum of beryllium monoxide, Proc. Phys. Soc. London, 1935, 47, 415. [all data]

Lagerqvist, 1948
Lagerqvist, Dissertation, Stockholm, 1948, 0. [all data]

Rosenthal and Jenkins, 1929
Rosenthal, J.E.; Jenkins, F.A., Quantum analysis of the beryllium oxide bands, Phys. Rev., 1929, 33, 163. [all data]

Lagerqvist and Westoo, 1946
Lagerqvist, A.; Westoo, R., Perturbations in the 1Σ-1Σ system of the band-spectrum of beryllium oxide, Ark. Mat. Astron. Fys., 1946, 32, 1. [all data]

Thrush, 1960
Thrush, B.A., The ground state of beryllium oxide, Proc. Chem. Soc. London, 1960, 339. [all data]

Herzberg, 1933
Herzberg, L., Uber ein neues bandensystem des berylliumoxyds und die struktur des BeO-molekuls, Z. Phys., 1933, 84, 571. [all data]

Lagerqvist, 1947
Lagerqvist, A., The band-spectrum of beryllium oxide between λ 10000 Å and λ 11600 Å, Ark. Mat. Astron. Fys., 1947, 34, 1. [all data]

Liszt and Smith, 1971
Liszt, H.S.; Smith, Wm.H., RKR Franck-Condon factors for blue and ultraviolet transitions of some metal oxides, J. Quant. Spectrosc. Radiat. Transfer, 1971, 11, 1043. [all data]

Huo, Freed, et al., 1967
Huo, W.M.; Freed, K.F.; Klemperer, W., Valence excited states of BeO, J. Chem. Phys., 1967, 46, 3556. [all data]

Lagerqvist and Westoo, 1945
Lagerqvist, A.; Westoo, R., Perturbed bands of beryllium oxide between λ 8000 Å and λ 10000 Å, Ark. Mat. Astron. Fys., 1945, 31, 1. [all data]

Lagerqvist, 1946
Lagerqvist, A., Rotational perturbations in the band-spectrum of beryllium oxide, Ark. Mat. Astron. Fys., 1946, 33, 1. [all data]

Thakur and Singh, 1967
Thakur, S.N.; Singh, R.B., Potential curves and bond strength of CP, BeO and MgO, J. Sci. Res. Banaras Hindu Univ., 1967, 18, 1, 253-264. [all data]

Capelle, Johnson, et al., 1972
Capelle, G.A.; Johnson, S.E.; Broida, H.P., Radiative lifetimes of BeO, J. Chem. Phys., 1972, 56, 6264. [all data]

Drake, Tyte, et al., 1967
Drake, G.W.F.; Tyte, D.C.; Nicholls, R.W., A study of emissivities and transition probabilities of diatomic molecules in optically thick hot gases with applications to the B1Σ-X1Σ transition of BeO, J. Quant. Spectrosc. Radiat. Transfer, 1967, 7, 639. [all data]

Nicholls, Fraser, et al., 1960
Nicholls, R.W.; Fraser, P.A.; Jarmain, W.R.; McEachran, R.P., Vibrational transition probabilities of diatomic molecules: collected results. IV. BeO, BO, CH+, CO, NO, SH, O2, O2+, Astrophys. J., 1960, 131, 399. [all data]

Verhaegen and Richards, 1966
Verhaegen, G.; Richards, W.G., Valence levels of beryllium oxide, J. Chem. Phys., 1966, 45, 1828. [all data]

O'Neil, Pearson, et al., 1971
O'Neil, S.V.; Pearson, P.K.; Schaefer, H.F., III, Repulsive 3Σ- and low-lying (≥1.9 eV) 3Σ+ states of BeO, Chem. Phys. Lett., 1971, 10, 404. [all data]

Pearson, O'Neil, et al., 1972
Pearson, P.K.; O'Neil, S.V.; Schaefer, H.F., III, Role of electron correlation in a priori predictions of the electronic ground state of BeO, J. Chem. Phys., 1972, 56, 3938. [all data]

Yoshimine, 1964
Yoshimine, M., Computed potential curve and spectroscopic constants for beryllium oxide ground state in molecular orbital approximation, J. Chem. Phys., 1964, 40, 2970. [all data]

Schaefer, 1971
Schaefer, H.F., III, Electron correlation in the lowest 1Σ+ state of beryllium oxide, J. Chem. Phys., 1971, 55, 176. [all data]

Chupka, Berkowitz, et al., 1959, 2
Chupka, W.A.; Berkowitz, J.; Giese, C.F., Vaporization of beryllium oxide and its reaction with tungsten, J. Chem. Phys., 1959, 30, 827-834. [all data]

Lagerqvist, 1954
Lagerqvist, A., The energy of dissociation of BeO, Ark. Fys., 1954, 7, 473. [all data]

Drummond and Barrow, 1953
Drummond, G.; Barrow, R.F., Thermochemical properties of gaseous beryllium and magnesium oxides, Trans. Faraday Soc., 1953, 49, 599. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Gas phase ion energetics data, IR Spectrum, Constants of diatomic molecules, NIST Free Links, References