Iodine
- Formula: I2
- Molecular weight: 253.80894
- IUPAC Standard InChIKey: PNDPGZBMCMUPRI-UHFFFAOYSA-N
- CAS Registry Number: 7553-56-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: I2; Eranol; Iode; Iodine-127; Iodio; Iosan Superdip; Jod; Jood; Molecular iodine; Tincture iodine; Vistarin; Iodine crystals; Iodine sublimed; Diiodine; Diatomic iodine
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Phase change data
- Reaction thermochemistry data: reactions 51 to 75
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- Constants of diatomic molecules
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 62.42 ± 0.08 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | 62.42 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 260.687 ± 0.005 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 260.69 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 457.666 to 2000. | 2000. to 6000. |
---|---|---|
A | 37.79763 | 76.73414 |
B | 0.225453 | -4.045782 |
C | -0.912556 | -1.848145 |
D | 1.034913 | 0.219044 |
E | -0.083826 | -82.39384 |
F | 50.86865 | -53.87151 |
G | 305.9199 | 281.2267 |
H | 62.42110 | 62.42110 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1982 | Data last reviewed in June, 1982 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | 13.52 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid,1 bar | 150.36 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 116.14 ± 0.30 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
Quantity | Value | Units | Method | Reference | Comment |
S°solid | 116.14 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1982 |
Liquid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 386.75 to 457.666 |
---|---|
A | 80.66919 |
B | 6.855652×10-8 |
C | -8.724352×10-8 |
D | 3.723132×10-8 |
E | 4.735829×10-10 |
F | -10.52782 |
G | 247.9798 |
H | 13.52302 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1982 |
Solid Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 386.75 |
---|---|
A | -195.7635 |
B | 918.8984 |
C | -1079.242 |
D | 534.3219 |
E | 5.156403 |
F | 43.29938 |
G | -322.4780 |
H | 0.000000 |
Reference | Chase, 1998 |
Comment | Data last reviewed in June, 1982 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
+ = I3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 136. ± 10. | kJ/mol | N/A | Taylor, Asmis, et al., 1999 | gas phase; B |
ΔrH° | 126. ± 5.9 | kJ/mol | CIDT | Do, Klein, et al., 1997 | gas phase; B |
ΔrH° | 356.1 | kJ/mol | Ther | Finch, Gates, et al., 1977 | gas phase; This value is far more bound than expected from other studies; B |
ΔrH° | 136.4 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeF3-(t); ; ΔS(EA)=2.8; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 94.14 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; FeF3-(t); ; ΔS(EA)=2.8; B |
By formula: C10Mn2O10 (cr) + I2 (cr) = 2C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -185.0 ± 8.7 | kJ/mol | PC | Harel and Adamson, 1986 | The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -187.9 ± 8.4 kJ/mol Harel and Adamson, 1986, and from the solution enthalpies of Mn2(CO)10(cr), 36.0 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Mn(CO)5(I)(cr), 26.8 ± 0.5 kJ/mol Harel and Adamson, 1986. The latter value refers to the solution in benzene and is therefore taken as an approximation; MS |
By formula: C10O10Re2 (cr) + I2 (cr) = 2C5IO5Re (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -172. ± 18. | kJ/mol | PC | Harel and Adamson, 1986 | The reaction enthalpy was calculated from the enthalpy of the same reaction in cyclohexane, -157. ± 16. kJ/mol, and from the solution enthalpies of Re2(CO)10(cr), 34.3 ± 2.1 kJ/mol, I2(cr), 20.5 ± 0.4 kJ/mol, and Re(CO)5(I)(cr), 34.7 ± 4.2 kJ/mol Harel and Adamson, 1986; MS |
By formula: HI + C3H5I = C3H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33.3 ± 1.4 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; ALS |
ΔrH° | -39.7 ± 4.2 | kJ/mol | Eqk | Rodgers, Golden, et al., 1966 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -34.9 ± 0.96 kJ/mol; At 527 K; ALS |
By formula: HI + CH3I = CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -52.55 ± 0.54 | kJ/mol | Eqk | Golden, Walsh, et al., 1965 | gas phase; ALS |
ΔrH° | -53.0 ± 0.2 | kJ/mol | Eqk | Goy and Pritchard, 1965 | gas phase; ALS |
ΔrH° | -46.2 ± 5.6 | kJ/mol | Cm | Nichol and Ubbelohde, 1952 | gas phase; ALS |
C12H16Nb (cr) + 2 (cr) = C10H10I2Nb (cr) + 2 (l)
By formula: C12H16Nb (cr) + 2I2 (cr) = C10H10I2Nb (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -242.3 ± 2.4 | kJ/mol | RSC | Diogo, Simoni, et al., 1993 | The difference between the enthalpies of formation of Nb(Cp)2(I)2 and Nb(Cp)2(Me)2 is calculated as -215.1 ± 2.6 kJ/mol; MS |
C20H26CoN5O4 (solution) + (solution) = C13H19CoIN5O4 (solution) + (solution)
By formula: C20H26CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + C7H7I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -63.2 ± 3.8 | kJ/mol | RSC | Toscano, Seligson, et al., 1989 | solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Bz)(cr) was measured as 11.3 kJ/mol Toscano, Seligson, et al., 1989; MS |
C14H22CoN5O4 (solution) + (solution) = C13H19CoIN5O4 (solution) + (solution)
By formula: C14H22CoN5O4 (solution) + I2 (solution) = C13H19CoIN5O4 (solution) + CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -92.9 ± 2.5 | kJ/mol | RSC | Toscano, Seligson, et al., 1989 | solvent: Bromoform; The enthalpy of solution of Co(py)(dmg)2(Me)(cr) was measured as 10.9 kJ/mol Toscano, Seligson, et al., 1989; MS |
By formula: C5HMnO5 (l) + I2 (cr) = HI (g) + C5IMnO5 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -108. ± 8. | kJ/mol | RSC | Connor, Zafarani-Moattar, et al., 1982 | The reaction enthalpy relies on -25. ± 5. kJ/mol for the enthalpy of solution of HI(g) in benzene Connor, Zafarani-Moattar, et al., 1982.; MS |
By formula: C2H4 + I2 = C2H4I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.1 ± 0.8 | kJ/mol | Eqk | Abrams and Davis, 1954 | gas phase; ALS |
ΔrH° | -56. ± 2. | kJ/mol | Eqk | Cutherbertson and Kistiakowsky, 1935 | gas phase; Heat of dissociation; ALS |
By formula: I2 + CClF3 = CF3I + ClI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.3 ± 1.1 | kJ/mol | Eqk | Lord, Goy, et al., 1967 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 71.55 ± 0.71 kJ/mol; ALS |
By formula: HI + C6H11I = C6H12 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -32.6 ± 8.4 | kJ/mol | Cm | Brennan and Ubbelohde, 1956 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28. ± 4.2 kJ/mol; ALS |
By formula: C2H3F3 + I2 = HI + C2H2F3I
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64. ± 2. | kJ/mol | Eqk | Wu and Rodgers, 1974 | gas phase; Heat of formation Unpublished results by B.J. Zwolinski; ALS |
By formula: C2H2BrF3 + I2 = C2H2F3I + BrI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28. ± 2. | kJ/mol | Eqk | Buckley, Ford, et al., 1980 | gas phase; GLC;hf298_gas[kcal/mol]=-166.8±1.1; Kolesov and Papina, 1983; ALS |
By formula: C2H6Hg (l) + 2I2 (cr) = 2CH3I (l) + HgI2 (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -184.5 ± 0.8 | kJ/mol | RSC | Hartley, Pritchard, et al., 1950 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(solution) + (solution) = 2 (solution)
By formula: C10O10Re2 (solution) + I2 (solution) = 2C5IO5Re (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -157. ± 16. | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; Please also see Adamson, Vogler, et al., 1978.; MS |
(l) + 3 (cr) = GaI3 (cr) + 3 (l)
By formula: C3H9Ga (l) + 3I2 (cr) = GaI3 (cr) + 3CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -200.0 ± 8.4 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + 2 (cr) = CH3GaI2 (cr) + 2 (l)
By formula: C3H9Ga (l) + 2I2 (cr) = CH3GaI2 (cr) + 2CH3I (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -158.6 ± 4.2 | kJ/mol | RSC | Fowell and Mortimer, 1958 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
(l) + (cr) = 2C3H9ISn (l)
By formula: C6H18Sn2 (l) + I2 (cr) = 2C3H9ISn (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -184.1 ± 2.9 | kJ/mol | RSC | Pedley, Skinner, et al., 1957 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
By formula: C4H8I2 = C4H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 6.3 | kJ/mol | Cm | Cline and Kistiakowsky, 1937 | gas phase; Heat of formation derived by Cox and Pilcher, 1970; ALS |
(cr) + (solution) = (solution) + C8H5IO3W (solution)
By formula: C8H6O3W (cr) + I2 (solution) = HI (solution) + C8H5IO3W (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -67.4 ± 3.8 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C15H12MoO3 (solution) + (solution) = C8H5IMoO3 (solution) + (solution)
By formula: C15H12MoO3 (solution) + I2 (solution) = C8H5IMoO3 (solution) + C7H7I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -120.5 ± 4.2 | kJ/mol | RSC | Nolan, de la Vega, et al., 1988 | solvent: Tetrahydrofuran; MS |
C8H6MoO3 (cr) + (solution) = C8H5IMoO3 (solution) + (solution)
By formula: C8H6MoO3 (cr) + I2 (solution) = C8H5IMoO3 (solution) + HI (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -75.3 ± 2.5 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C10MnO10Re (solution) + (solution) = (solution) + (solution)
By formula: C10MnO10Re (solution) + I2 (solution) = C5IO5Re (solution) + C5IMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -233. ± 13. | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; MS |
C8H5MoNaO3 (solution) + (cr) = C8H5IMoO3 (solution) + (cr)
By formula: C8H5MoNaO3 (solution) + I2 (cr) = C8H5IMoO3 (solution) + INa (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -133.1 ± 5.4 | kJ/mol | RSC | Nolan, López de la Vega, et al., 1986 | solvent: Tetrahydrofuran; MS |
By formula: C2F4I2 = C2F4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69. ± 2. | kJ/mol | Eqk | Wu, Pickard, et al., 1975 | gas phase; Spectrophotometery at 298.15°K; ALS |
By formula: 2C3H8S + I2 = 2HI + C6H14S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: 2C5H12S + I2 = 2HI + C10H22S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -124.9 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C4H10S2 + I2 = 2HI + C4H8S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -123.2 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
By formula: C8H16O2S2 + I2 = 2HI + C8H14O2S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -109.6 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
C22H36Zr (solution) + 2 (solution) = C20H30I2Zr (solution) + 2 (solution)
By formula: C22H36Zr (solution) + 2I2 (solution) = C20H30I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -292.9 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
By formula: C3H8S2 + I2 = 2HI + C3H6S2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -107.7 | kJ/mol | Cm | Sunner, 1955 | liquid phase; solvent: Ethanol/water(90/10); ALS |
C12H16Zr (solution) + 2 (solution) = C10H10I2Zr (solution) + 2 (solution)
By formula: C12H16Zr (solution) + 2I2 (solution) = C10H10I2Zr (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -291.2 ± 2.5 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H30O2Zr (solution) + (solution) = C20H30I2Zr (solution) + 2 (solution)
By formula: C22H30O2Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + 2CO (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -191.6 ± 1.7 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C22H36Hf (solution) + 2 (solution) = C20H30HfI2 (solution) + 2 (solution)
By formula: C22H36Hf (solution) + 2I2 (solution) = C20H30HfI2 (solution) + 2CH3I (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -265.3 ± 3.3 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C37H30ClIrO3P2S (solution) + (solution) = C37H30ClI2IrOP2 (solution) + (solution)
By formula: C37H30ClIrO3P2S (solution) + I2 (solution) = C37H30ClI2IrOP2 (solution) + O2S (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -102.9 ± 0.4 | kJ/mol | RSC | Drago, Nozari, et al., 1979 | solvent: Benzene; MS |
By formula: HI + C7H7I = C7H8 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -33. ± 4.6 | kJ/mol | Cm | Graham, Nichol, et al., 1955 | liquid phase; solvent: p-Xylene; ALS |
By formula: H2 + 2CH3I = 2CH4 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -126. ± 3. | kJ/mol | Chyd | Carson, Carter, et al., 1961 | liquid phase; solvent: Ether; ALS |
C20H32Zr (solution) + (solution) = C20H30I2Zr (solution) + (g)
By formula: C20H32Zr (solution) + I2 (solution) = C20H30I2Zr (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -309.2 ± 3.3 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C20H32Hf (solution) + (solution) = C20H30HfI2 (solution) + (g)
By formula: C20H32Hf (solution) + I2 (solution) = C20H30HfI2 (solution) + H2 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -296.6 ± 2.9 | kJ/mol | RSC | Schock and Marks, 1988 | solvent: Toluene; MS |
C16H10O6W2 (cr) + (solution) = 2C8H5IO3W (solution)
By formula: C16H10O6W2 (cr) + I2 (solution) = 2C8H5IO3W (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -146.4 ± 3.8 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
C16H10Mo2O6 (cr) + (solution) = 2C8H5IMoO3 (solution)
By formula: C16H10Mo2O6 (cr) + I2 (solution) = 2C8H5IMoO3 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -133.1 ± 4.2 | kJ/mol | RSC | Landrum and Hoff, 1985 | solvent: Dichloromethane; MS |
(solution) + (solution) = 2 (solution)
By formula: C10Mn2O10 (solution) + I2 (solution) = 2C5IMnO5 (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -187.9 ± 8.4 | kJ/mol | PC | Harel and Adamson, 1986 | solvent: Cyclohexane; MS |
By formula: I- + I2 = (I- • I2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | N/A | Downs and Adams, 1973 | gas phase; from ΔrH(f); M |
By formula: H2 + 2C2H5I = 2C2H6 + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -88.7 ± 3.3 | kJ/mol | Chyd | Ashcroft, Carson, et al., 1965 | liquid phase; ALS |
2 + = C6H14Hg + 2
By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 242.3 ± 1.9 | kJ/mol | Cm | Mortimer, Pritchard, et al., 1952 | liquid phase; ALS |
2 + = C6H14Hg + 2
By formula: 2C3H7I + HgI2 = C6H14Hg + 2I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 215.7 ± 2.4 | kJ/mol | Cm | Mortimer, Pritchard, et al., 1952 | liquid phase; ALS |
By formula: HI + CH3IS = CH4S + I2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -12.0 ± 2.3 | kJ/mol | Eqk | Shum and Benson, 1983 | gas phase; ALS |
By formula: C3H6O + I2 = HI + C3H5IO
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.6 ± 5.0 | kJ/mol | Eqk | Solly, Golden, et al., 1970 | gas phase; ALS |
By formula: I2 + CBrF3 = CF3I + BrI
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.0 ± 0.1 | kJ/mol | Eqk | Lord, Goy, et al., 1967 | gas phase; ALS |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Taylor, Asmis, et al., 1999
Taylor, T.R.; Asmis, K.R.; Zanni, M.T.; Neumark, D.M.,
Characterization of the I-3 radical by anion photoelectron spectroscopy,
J. Chem. Phys., 1999, 110, 16, 7607-7609, https://doi.org/10.1063/1.478672
. [all data]
Do, Klein, et al., 1997
Do, K.; Klein, T.P.; Pommerening, C.A.; Sunderlin, L.S.,
A New Flowing Afterglow-Guided Ion Beam Tandem Mass Spectrometer. Applications to the Thermochemistry of Polyiodide Ions,
J. Am. Soc. Mass Spectrom., 1997, 8, 7, 688, https://doi.org/10.1016/S1044-0305(97)00116-5
. [all data]
Finch, Gates, et al., 1977
Finch, A.; Gates, P.N.; Peake, S.J.,
Thermochemistry of polyhalides. III. Cesium and rubidium tetrachloroiodates,
J. Inorg. Nucl. Chem., 1977, 39, 2135. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Harel and Adamson, 1986
Harel, Y.; Adamson, A.W.,
J. Phys. Chem., 1986, 90, 6693. [all data]
Rodgers, Golden, et al., 1966
Rodgers, A.S.; Golden, D.M.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + C3H6 = C3H5I + HI,
J. Am. Chem. Soc., 1966, 88, 3194-3196. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W.,
The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical,
J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]
Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O.,
Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide,
J. Phys. Chem., 1965, 69, 3040-3041. [all data]
Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2,
J. Am. Chem. Soc., 1952, 415-421. [all data]
Diogo, Simoni, et al., 1993
Diogo, H.P.; Simoni, J.A.; Minas da Piedade, M.E.; Dias, A.R.; Martinho Simões, J.A.,
J. Am. Chem. Soc., 1993, 115, 2764. [all data]
Toscano, Seligson, et al., 1989
Toscano, P.J.; Seligson, A.L.; Curran, M.T.; Skrobutt, A.T.; Sonnenberger, D.C.,
Inorg. Chem., 1989, 28, 166; ibid. 1989. [all data]
Connor, Zafarani-Moattar, et al., 1982
Connor, J.A.; Zafarani-Moattar, M.T.; Bickerton, J.; El-Saied, N.I.; Suradi, S.; Carson, R.; Al Takkhin, G.; Skinner, H.A.,
Organomet., 1982, 1, 1166. [all data]
Abrams and Davis, 1954
Abrams, A.; Davis, T.W.,
Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems,
J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]
Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B.,
The thermal equilibrium between ethylene iodide, ethylene and iodine,
J. Chem. Phys., 1935, 3, 631-634. [all data]
Lord, Goy, et al., 1967
Lord, A.; Goy, C.A.; Pritchard, H.O.,
The heats of formation of trifluoromethyl chloride and bromide,
J. Phys. Chem., 1967, 71, 2705-2707. [all data]
Brennan and Ubbelohde, 1956
Brennan, D.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part IV. Bond-strength differences based on the reaction: RI + HI = RH + I2, where R = p-methoxyphenyl and cyclohexyl,
J. Chem. Soc., 1956, 3011-3016. [all data]
Wu and Rodgers, 1974
Wu, E.; Rodgers, A.S.,
Thermochemistry of gas-phase equilibrium CF3CH3 + I2 = CF3CH2I + HI. The carbon-hydrogen bond dissociation energy in 1,1,1-trifluoroethane and the heat of formation of the 2,2,2-trifluoroethyl radical,
J. Phys. Chem., 1974, 78, 2315-2317. [all data]
Buckley, Ford, et al., 1980
Buckley, G.S.; Ford, W.G.F.; Rodgers, A.S.,
The thermochemistry of the gas phase reaction: CF3CH2Br + I2 = CF3CH2I + IBr. Polarity effects in thermochemistry,
Thermochim. Acta, 1980, 42, 349-355. [all data]
Kolesov and Papina, 1983
Kolesov, V.P.; Papina, T.S.,
Thermochemistry of Haloethanes,
Russ. Chem. Rev., 1983, 52, 425. [all data]
Hartley, Pritchard, et al., 1950
Hartley, K.; Pritchard, H.O.; Skinner, H.A.,
Thermochemistry of metallic alkyls. III.?mercury dimethyl and mercury methyl halides,
Trans. Faraday Soc., 1950, 46, 1019, https://doi.org/10.1039/tf9504601019
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Adamson, Vogler, et al., 1978
Adamson, A.W.; Vogler, A.; Kunkely, H.; Wachter, R.,
J. Am. Chem. Soc., 1978, 100, 1298. [all data]
Fowell and Mortimer, 1958
Fowell, P.A.; Mortimer, C.T.,
J. Chem. Soc., 1958, 3734.. [all data]
Pedley, Skinner, et al., 1957
Pedley, J.B.; Skinner, H.A.; Chernick, C.L.,
Thermochemistry of metallic alkyls. Part 8.?Tin tetramethyl, and hexamethyl distannane,
Trans. Faraday Soc., 1957, 53, 1612, https://doi.org/10.1039/tf9575301612
. [all data]
Cline and Kistiakowsky, 1937
Cline, J.E.; Kistiakowsky, G.B.,
The gaseous equilibrium of 1,2-diiodobutane, butene-1 and iodine,
J. Chem. Phys., 1937, 5, 990. [all data]
Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D.,
J. Organometal. Chem., 1985, 282, 215. [all data]
Nolan, de la Vega, et al., 1988
Nolan, S.P.; de la Vega, R.L.; Mukerjee, S.L.; Gonzalez, A.A.; Zhang, K.; Hoff, C.,
Polyhedron, 1988, 7, 1491. [all data]
Nolan, López de la Vega, et al., 1986
Nolan, S.P.; López de la Vega, R.; Hoff, C.D.,
J. Organometal. Chem., 1986, 315, 187. [all data]
Wu, Pickard, et al., 1975
Wu, E.C.; Pickard, J.M.; Rodgers, A.S.,
Thermochemistry of the gas-phase reaction tetrafluoroethylene + iodine = 1,2-diiodoperfluoroethane. Heat of formation of 1,2-diiodoperfluoroethane and of iodoperfluoroethane,
J. Phys. Chem., 1975, 79, 1078-1081. [all data]
Sunner, 1955
Sunner, S.,
Strain in 6,8-thioctic acid,
Nature (London), 1955, 176, 217. [all data]
Schock and Marks, 1988
Schock, L.E.; Marks, T.J.,
J. Am. Chem. Soc., 1988, 110, 7701. [all data]
Drago, Nozari, et al., 1979
Drago, R.S.; Nozari, M.S.; Klinger, R.J.; Chamberlain, C.S.,
Inorg. Chem., 1979, 18, 1254. [all data]
Graham, Nichol, et al., 1955
Graham, W.S.; Nichol, R.J.; Ubbelohde, A.R.,
A thermochemical evaluation of bond strengths in some carbon compounds. Part III. Bond strengths based on the reactions: (a) Ph·CH2I + HI=Ph·CH3 + I2 and (b) PhI + HI=PhH + I2,
J. Chem. Soc., 1955, 115-121. [all data]
Carson, Carter, et al., 1961
Carson, A.S.; Carter, W.; Pedley, J.B.,
The thermochemistry of reductions caused by lithium aluminium hydride I. The C-I bond dissociation energy in CH3I,
Proc. Roy. Soc. London A, 1961, 260, 550-557. [all data]
Downs and Adams, 1973
Downs, A.J.; Adams, G.J.,
Comprehensive Inorganic Chemistry, J. C. Bailar, H. J. Emeleus, R. Nyholm and A. F. Trotman - Dickerson, ed(s)., Pergamon Press, New York, 1973, 1543. [all data]
Ashcroft, Carson, et al., 1965
Ashcroft, S.J.; Carson, A.S.; Carter, W.; Laye, P.G.,
Thermochemistry of reductions caused by lithium aluminium hydride. Part 3.- The C-halogen bond dissociation energies in ethyl iodine and ethyl bromide,
Trans. Faraday Soc., 1965, 61, 225-229. [all data]
Mortimer, Pritchard, et al., 1952
Mortimer, C.T.; Pritchard, H.O.; Skinner, H.A.,
Thermochemistry of metallic alkyls. Part V - Mercury di-propyl and mercury di-isopropyl,
Trans. Faraday Soc., 1952, 48, 220-229. [all data]
Shum and Benson, 1983
Shum, L.G.S.; Benson, S.W.,
Thermochemnistry and kinetics of the reaction of methyl mercaptan with iodine,
Int. J. Chem. Kinet., 1983, 15, 433-453. [all data]
Solly, Golden, et al., 1970
Solly, R.K.; Golden, D.M.; Benson, S.W.,
Thermochemical properties of iodoacetone. Intramolecular electrostatic interactions in polar molecules,
J. Am. Chem. Soc., 1970, 92, 4653-4656. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) S°liquid,1 bar Entropy of liquid at standard conditions (1 bar) S°solid Entropy of solid at standard conditions S°solid,1 bar Entropy of solid at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.