Formyl cation


Ion clustering data

Go To: Top, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Formyl cation + Carbon monoxide = (Formyl cation • Carbon monoxide)

By formula: CHO+ + CO = (CHO+ • CO)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molPHPMSJennings, Headley, et al., 1982gas phase
Δr12.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Δr11.7kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase
Δr20.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase

(Formyl cation • Carbon monoxide) + Carbon monoxide = (Formyl cation • 2Carbon monoxide)

By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Δr6.6kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr15.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(Formyl cation • 2Carbon monoxide) + Carbon monoxide = (Formyl cation • 3Carbon monoxide)

By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Δr6.3kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase
Δr26.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(Formyl cation • 3Carbon monoxide) + Carbon monoxide = (Formyl cation • 4Carbon monoxide)

By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.5 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Δr6.2kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase
Δr29.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(Formyl cation • 4Carbon monoxide) + Carbon monoxide = (Formyl cation • 5Carbon monoxide)

By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Δr5.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase
Δr32.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(Formyl cation • 5Carbon monoxide) + Carbon monoxide = (Formyl cation • 6Carbon monoxide)

By formula: (CHO+ • 5CO) + CO = (CHO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.4 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 6Carbon monoxide) + Carbon monoxide = (Formyl cation • 7Carbon monoxide)

By formula: (CHO+ • 6CO) + CO = (CHO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 7Carbon monoxide) + Carbon monoxide = (Formyl cation • 8Carbon monoxide)

By formula: (CHO+ • 7CO) + CO = (CHO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr22.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 8Carbon monoxide) + Carbon monoxide = (Formyl cation • 9Carbon monoxide)

By formula: (CHO+ • 8CO) + CO = (CHO+ • 9CO)

Quantity Value Units Method Reference Comment
Δr2.1 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 9Carbon monoxide) + Carbon monoxide = (Formyl cation • 10Carbon monoxide)

By formula: (CHO+ • 9CO) + CO = (CHO+ • 10CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 10Carbon monoxide) + Carbon monoxide = (Formyl cation • 11Carbon monoxide)

By formula: (CHO+ • 10CO) + CO = (CHO+ • 11CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 11Carbon monoxide) + Carbon monoxide = (Formyl cation • 12Carbon monoxide)

By formula: (CHO+ • 11CO) + CO = (CHO+ • 12CO)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 12Carbon monoxide) + Carbon monoxide = (Formyl cation • 13Carbon monoxide)

By formula: (CHO+ • 12CO) + CO = (CHO+ • 13CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 13Carbon monoxide) + Carbon monoxide = (Formyl cation • 14Carbon monoxide)

By formula: (CHO+ • 13CO) + CO = (CHO+ • 14CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase
Quantity Value Units Method Reference Comment
Δr23.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase

(Formyl cation • 14Carbon monoxide) + Carbon monoxide = (Formyl cation • 15Carbon monoxide)

By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.76kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated

Formyl cation + Carbon dioxide = (Formyl cation • Carbon dioxide)

By formula: CHO+ + CO2 = (CHO+ • CO2)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr21.4cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase

(Formyl cation • Carbon dioxide) + Carbon dioxide = (Formyl cation • 2Carbon dioxide)

By formula: (CHO+ • CO2) + CO2 = (CHO+ • 2CO2)

Quantity Value Units Method Reference Comment
Δr7.2kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr19.7cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase

(Formyl cation • 2Carbon dioxide) + Carbon dioxide = (Formyl cation • 3Carbon dioxide)

By formula: (CHO+ • 2CO2) + CO2 = (CHO+ • 3CO2)

Quantity Value Units Method Reference Comment
Δr6.9kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase
Quantity Value Units Method Reference Comment
Δr22.7cal/mol*KPHPMSHiraoka, Shoda, et al., 1986gas phase

(Formyl cation • 3Carbon dioxide) + Carbon dioxide = (Formyl cation • 4Carbon dioxide)

By formula: (CHO+ • 3CO2) + CO2 = (CHO+ • 4CO2)

Quantity Value Units Method Reference Comment
Δr8.4kcal/molPHPMSHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr24.cal/mol*KN/AHiraoka, Shoda, et al., 1986gas phase; Entropy change calculated or estimated

Formyl cation + Hydrogen = (Formyl cation • Hydrogen)

By formula: CHO+ + H2 = (CHO+ • H2)

Quantity Value Units Method Reference Comment
Δr3.9kcal/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr20.5cal/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

Vibrational and/or electronic energy levels

Go To: Top, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

Σ+ 1 CH stretch 3088.74 gas LD CC Gudeman, Begemann, et al., 1983
Amano, 1983
Owrutsky, Keim, et al., 1989
Keim, Polak, et al., 1990
1 CH stretch 3076.31 H gas PF Nizkorodov, Maier, et al., 1995
1 CH stretch 3046.12 gas PF Nizkorodov, Dopfer, et al., 1996
1 CH stretch 2815.06 A gas PF Nizkorodov, Dopfer, et al., 1995
1 CH stretch 2840 H gas PF Bieske, Nizkorodov, et al., 1995
Π 2 Bend 829.72 gas DL MPI Davies and Rothwell, 1984
Kawaguchi, Yamada, et al., 1985
Foltynowicz, Robinson, et al., 2000
Σ+ 3 CO stretch 2183.95 gas DL Foster, McKellar, et al., 1984
Davies, Hamilton, et al., 1984
Liu, Lee, et al., 1988
3 CO stretch 2135.71 A gas DL Linnartz, Speck, et al., 1998

Additional references: Jacox, 1994, page 37; Jacox, 1998, page 145; Jacox, 2003, page 33; Dyke, Jonathan, et al., 1980; Bogey, Demuynck, et al., 1981; Sastry, Herbst, et al., 1981; Woods, Saykally, et al., 1981; Foster and McKellar, 1984; Kawaguchi, McKellar, et al., 1986; Dyke, 1987; Woods, 1988; Ohshima, Sumiyoshi, et al., 1997; Olkhov, Nizkorodov, et al., 1997; Foltynowicz, Robinson, et al., 2001; Foltynowicz, Robinson, et al., 2001, 2; Dore, Beninati, et al., 2003

Notes

H(1/2)(2ν)
A0~1 cm-1 uncertainty

References

Go To: Top, Ion clustering data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Hiraoka, Shoda, et al., 1986
Hiraoka, K.; Shoda, T.; Morise, K.; Yamabe, S.; Kawai, E.; Hirao, K., Stability and structure of cluster ions in the gas phase: Carbon dioxide with Cl-, H3O+, HCO2+ and HCO+, J. Chem. Phys., 1986, 84, 2091. [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., Stability and Structure of H3CO+ Formed from COH+ + H2 at Low Temperature, J. Chem. Phys., 1975, 63, 4, 1688, https://doi.org/10.1063/1.431499 . [all data]

Gudeman, Begemann, et al., 1983
Gudeman, C.S.; Begemann, M.H.; Pfaff, J.; Saykally, R.J., Velocity-Modulated Infrared Laser Spectroscopy of Molecular Ions: The ν_{1} Band of HCO^{+}, Phys. Rev. Lett., 1983, 50, 10, 727, https://doi.org/10.1103/PhysRevLett.50.727 . [all data]

Amano, 1983
Amano, T., The ν1 fundamental band of HCO+ by difference frequency laser spectroscopy, J. Chem. Phys., 1983, 79, 7, 3595, https://doi.org/10.1063/1.446216 . [all data]

Owrutsky, Keim, et al., 1989
Owrutsky, J.C.; Keim, E.R.; Coe, J.V.; Saykally, R.J., Absolute IR intensities of the .nu.1 bands of hydrodinitrogen(1+) and oxomethylium determined by direct laser absorption spectroscopy in fast ion beams, J. Phys. Chem., 1989, 93, 16, 5960, https://doi.org/10.1021/j100353a003 . [all data]

Keim, Polak, et al., 1990
Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J., Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams, J. Chem. Phys., 1990, 93, 5, 3111, https://doi.org/10.1063/1.458845 . [all data]

Nizkorodov, Maier, et al., 1995
Nizkorodov, S.A.; Maier, J.P.; Bieske, E.J., The infrared spectrum of He--HCO+, J. Chem. Phys., 1995, 103, 4, 1297, https://doi.org/10.1063/1.469806 . [all data]

Nizkorodov, Dopfer, et al., 1996
Nizkorodov, S.A.; Dopfer, O.; Meuwly, M.; Maier, J.P.; Bieske, E.J., Mid-infrared spectra of the proton-bound complexes Nen--HCO+ (n=1,2), J. Chem. Phys., 1996, 105, 5, 1770, https://doi.org/10.1063/1.472052 . [all data]

Nizkorodov, Dopfer, et al., 1995
Nizkorodov, S.A.; Dopfer, O.; Ruchti, T.; Meuwly, M.; Maier, J.P.; Bieske, E.J., Size Effects in Cluster Infrared Spectra: the .nu.1 Band of Arn-HCO+ (n = 1-13), J. Phys. Chem., 1995, 99, 47, 17118, https://doi.org/10.1021/j100047a013 . [all data]

Bieske, Nizkorodov, et al., 1995
Bieske, E.J.; Nizkorodov, S.A.; Bennett, F.R.; Maier, J.P., The infrared spectrum of the H2--HCO+ complex, J. Chem. Phys., 1995, 102, 13, 5152, https://doi.org/10.1063/1.469240 . [all data]

Davies and Rothwell, 1984
Davies, P.B.; Rothwell, W.J., Diode laser detection of the bending mode of HCO+, J. Chem. Phys., 1984, 81, 12, 5239, https://doi.org/10.1063/1.447688 . [all data]

Kawaguchi, Yamada, et al., 1985
Kawaguchi, K.; Yamada, C.; Saito, S.; Hirota, E., Magnetic field modulated infrared laser spectroscopy of molecular ions: The ν2 band of HCO+, J. Chem. Phys., 1985, 82, 4, 1750, https://doi.org/10.1063/1.448407 . [all data]

Foltynowicz, Robinson, et al., 2000
Foltynowicz, R.J.; Robinson, J.D.; Zuckerman, E.J.; Hedderich, H.G.; Grant, E.R., Experimental Characterization of the Higher Vibrationally Excited States of HCO+: Determination of ω2, x22, g22, and B(030), J. Mol. Spectrosc., 2000, 199, 2, 147, https://doi.org/10.1006/jmsp.1999.8014 . [all data]

Foster, McKellar, et al., 1984
Foster, S.C.; McKellar, A.R.W.; Sears, T.J., Observation of the ν3 fundamental band of HCO+, J. Chem. Phys., 1984, 81, 1, 578, https://doi.org/10.1063/1.447344 . [all data]

Davies, Hamilton, et al., 1984
Davies, P.B.; Hamilton, P.A.; Rothwell, W.J., Infrared laser spectroscopy of the ν3 fundamental of HCO+, J. Chem. Phys., 1984, 81, 4, 1598, https://doi.org/10.1063/1.447889 . [all data]

Liu, Lee, et al., 1988
Liu, D.-J.; Lee, S.-T.; Oka, T., The ν3 fundamental band of HCNH+ and the 2ν3 ← ν3 and ν2 + ν3 ← ν2 hot bands of HCO+, J. Mol. Spectrosc., 1988, 128, 1, 236, https://doi.org/10.1016/0022-2852(88)90221-4 . [all data]

Linnartz, Speck, et al., 1998
Linnartz, H.; Speck, T.; Maier, J.P., High-resolution infrared spectrum of the ν3 band in Ar--HCO+, Chem. Phys. Lett., 1998, 288, 2-4, 504, https://doi.org/10.1016/S0009-2614(98)00304-2 . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Dyke, Jonathan, et al., 1980
Dyke, J.M.; Jonathan, N.B.H.; Morris, A.; Winter, M.J., The first ionization potential of the formyl radical, HCO(X2A'), studied using photoelectron spectroscopy, Mol. Phys., 1980, 39, 629. [all data]

Bogey, Demuynck, et al., 1981
Bogey, M.; Demuynck, C.; Destombes, J.L., Centrifugal distortion effects in HCO, Mol. Phys., 1981, 43, 5, 1043, https://doi.org/10.1080/00268978100101861 . [all data]

Sastry, Herbst, et al., 1981
Sastry, K.V.L.N.; Herbst, E.; De Lucia, F.C., Millimeter and submillimeter spectra of HCO+ and DCO+, J. Chem. Phys., 1981, 75, 8, 4169, https://doi.org/10.1063/1.442513 . [all data]

Woods, Saykally, et al., 1981
Woods, R.C.; Saykally, R.J.; Anderson, T.G.; Dixon, T.A.; Szanto, P.G., The molecular structure of HCO+ by the microwave substitution method, J. Chem. Phys., 1981, 75, 9, 4256, https://doi.org/10.1063/1.442627 . [all data]

Foster and McKellar, 1984
Foster, S.C.; McKellar, A.R.W., The ν3 fundamental bands of HN+2, DN+2, and DCO+, J. Chem. Phys., 1984, 81, 8, 3424, https://doi.org/10.1063/1.448066 . [all data]

Kawaguchi, McKellar, et al., 1986
Kawaguchi, K.; McKellar, A.R.W.; Hirota, E., Magnetic field modulated infrared laser spectroscopy of molecular ions: The ν1 band of DCO+, J. Chem. Phys., 1986, 84, 3, 1146, https://doi.org/10.1063/1.450503 . [all data]

Dyke, 1987
Dyke, J.M., J. Chem. Soc., 1987, Faraday Trans. 2 83, 69. [all data]

Woods, 1988
Woods, R.C., Microwave Spectroscopy of Molecular Ions in the Laboratory and in Space [and Discussion], Phil. Trans. Roy. Soc. (London) A324, 1988, 324, 1578, 141, https://doi.org/10.1098/rsta.1988.0007 . [all data]

Ohshima, Sumiyoshi, et al., 1997
Ohshima, Y.; Sumiyoshi, Y.; Endo, Y., Rotational spectrum of the Ar--HCO+ ionic complex, J. Chem. Phys., 1997, 106, 7, 2977, https://doi.org/10.1063/1.473416 . [all data]

Olkhov, Nizkorodov, et al., 1997
Olkhov, R.V.; Nizkorodov, S.A.; Dopfer, O., Hindered rotation in ion-neutral molecular complexes: The ν[sub 1] vibration of H[sub 2]--HCO[sup +] and D[sub 2]--DCO[sup +], J. Chem. Phys., 1997, 107, 20, 8229, https://doi.org/10.1063/1.475027 . [all data]

Foltynowicz, Robinson, et al., 2001
Foltynowicz, R.J.; Robinson, J.D.; Grant, E.R., Double-resonant photoionization efficiency spectroscopy: A precise determination of the adiabatic ionization potential of DCO, J. Chem. Phys., 2001, 114, 12, 5224, https://doi.org/10.1063/1.1349080 . [all data]

Foltynowicz, Robinson, et al., 2001, 2
Foltynowicz, R.J.; Robinson, J.D.; Grant, E.R., An experimental measure of anharmonicity in the bending of DCO[sup +], J. Chem. Phys., 2001, 115, 2, 878, https://doi.org/10.1063/1.1379336 . [all data]

Dore, Beninati, et al., 2003
Dore, L.; Beninati, S.; Puzzarini, C.; Cazzoli, G., Study of vibrational interactions in DCO[sup +] by millimeter-wave spectroscopy and determination of the equilibrium structure of the formyl ion, J. Chem. Phys., 2003, 118, 17, 7857, https://doi.org/10.1063/1.1564042 . [all data]


Notes

Go To: Top, Ion clustering data, Vibrational and/or electronic energy levels, References