Carbon monoxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil81.63KN/AMullins, Kirk, et al., 1963Uncertainty assigned by TRC = 0.05 K; TRC
Tboil81.61KN/AClayton and Giauque, 1932Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Ttriple67.95KN/AGill and Morrison, 1966Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple68.12KN/AMullins, Kirk, et al., 1963Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple68.09KN/AClayton and Giauque, 1932Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC
Quantity Value Units Method Reference Comment
Tc134.45KN/ACardoso, 1915Uncertainty assigned by TRC = 0.4 K; 4 determinations with same result; TRC
Quantity Value Units Method Reference Comment
Pc34.5300atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.5300atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.6900atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Pc34.7500atmN/ACardoso, 1915Uncertainty assigned by TRC = 0.2999 atm; TRC
Quantity Value Units Method Reference Comment
ρc11.1mol/lN/ACardoso, 1915Uncertainty assigned by TRC = 0.04 mol/l; extrapolation of rectilinear diameter to Tc; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
1.493.AStephenson and Malanowski, 1987Based on data from 68. to 108. K.; AC
1.481.N/AClayton and Giauque, 1932, 2Based on data from 69. to 83. K.; AC
1.481.CClayton and Giauque, 1932, 2AC

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
1.858.N/AStephenson and Malanowski, 1987Based on data from 54. to 61. K.; AC
1.960.AStull, 1947Based on data from 51. to 68. K.; AC
1.962.ACrommelin, Bijleveld, et al., 1931Based on data from 57. to 68. K.; AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Phase change data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess

View reactions leading to CO+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)14.014 ± 0.0003eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)142.kcal/molN/AHunter and Lias, 1998at C; HL
Proton affinity (review)101.9kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Gas basicity134.5kcal/molN/AHunter and Lias, 1998at C; HL
Gas basicity96.13kcal/molN/AHunter and Lias, 1998at O; HL
Quantity Value Units Method Reference Comment
Δf(+) ion296.7kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K296.0kcal/molN/AN/A 

Electron affinity determinations

EA (eV) Method Reference Comment
1.32608R-ARefaey and Franklin, 1976G3MP2B3 calculations indicate an EA of ca.-1.6 eV, anion unbound; B

Ionization energy determinations

IE (eV) Method Reference Comment
14.0142 ± 0.0003LSErman, Karawajczyk, et al., 1993LL
14.1PEKimura, Katsumata, et al., 1981LLK
14.014SFock, Gurtler, et al., 1980LLK
14.07 ± 0.05EIHille and Mark, 1978LLK
14.0PIRabalais, Debies, et al., 1974LLK
14.01PENatalis, 1973LLK
14.0139SOgawa and Ogawa, 1972LLK
14.01PEHotop and Niehaus, 1970RDSH
14.01PECollin and Natalis, 1969RDSH
14.00PETurner and May, 1966RDSH
14.013 ± 0.004SKrupenie, 1966RDSH
13.985PICook, Metzger, et al., 1965RDSH
14.01PEPotts and Williams, 1974Vertical value; LLK
14.01PEKatrib, Debies, et al., 1973Vertical value; LLK
14.0PEThomas, 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+20.94 ± 0.02O-PIOertel, Schenk, et al., 1980LLK
C+20.89O-(2P)EISmyth, Schiavone, et al., 1974LLK
C+20.88 ± 0.02O-EILocht and Momigny, 1971LLK
C+22.45 ± 0.10OEIHierl and Franklin, 1967RDSH
C+20.82 ± 0.05O-EIHierl and Franklin, 1967RDSH
C+22.57 ± 0.20OEIFineman and Petrocelli, 1961RDSH
C+20.89 ± 0.09O-EIFineman and Petrocelli, 1961RDSH
CO+19.5 ± 0.2O-?PIWeissler, Samson, et al., 1959RDSH
O+23.44C-EISmyth, Schiavone, et al., 1974LLK
O+23.20 ± 0.05C-EIHierl and Franklin, 1967RDSH
O+24.65 ± 0.05CEIHierl and Franklin, 1967RDSH
O+23.41 ± 0.17C-EIFineman and Petrocelli, 1961RDSH
O+24.78 ± 0.23CEIFineman and Petrocelli, 1961RDSH

Ion clustering data

Go To: Top, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Carbon monoxide = (Silver ion (1+) • Carbon monoxide)

By formula: Ag+ + CO = (Ag+ • CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.2 (+1.2,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 2Carbon monoxide)

By formula: (Ag+ • CO) + CO = (Ag+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.1 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 3Carbon monoxide)

By formula: (Ag+ • 2CO) + CO = (Ag+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
13.1 (+1.8,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Silver ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Silver ion (1+) • 4Carbon monoxide)

By formula: (Ag+ • 3CO) + CO = (Ag+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
10.8 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

Ar+ + Carbon monoxide = (Ar+ • Carbon monoxide)

By formula: Ar+ + CO = (Ar+ • CO)

Quantity Value Units Method Reference Comment
Δr18. ± 4.kcal/molPIPECONorwood, Guo, et al., 1989gas phase; Ar+(2P3/2); M

(Ar+ • Carbon monoxide) + Carbon monoxide = (Ar+ • 2Carbon monoxide)

By formula: (Ar+ • CO) + CO = (Ar+ • 2CO)

Quantity Value Units Method Reference Comment
Δr3.kcal/molPIPECONorwood, Guo, et al., 1989gas phase; approximate value from Ar+(2P3/2) 2CO -> Ar+(2P3/2) + 2CO; M

Trifluoromethyl cation + Carbon monoxide = (Trifluoromethyl cation • Carbon monoxide)

By formula: CF3+ + CO = (CF3+ • CO)

Quantity Value Units Method Reference Comment
Δr16.0kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 2Carbon monoxide)

By formula: (CF3+ • CO) + CO = (CF3+ • 2CO)

Quantity Value Units Method Reference Comment
Δr6.3kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 2Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 3Carbon monoxide)

By formula: (CF3+ • 2CO) + CO = (CF3+ • 3CO)

Quantity Value Units Method Reference Comment
Δr5.8kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 3Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 4Carbon monoxide)

By formula: (CF3+ • 3CO) + CO = (CF3+ • 4CO)

Quantity Value Units Method Reference Comment
Δr5.4kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 4Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 5Carbon monoxide)

By formula: (CF3+ • 4CO) + CO = (CF3+ • 5CO)

Quantity Value Units Method Reference Comment
Δr3.2kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 5Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 6Carbon monoxide)

By formula: (CF3+ • 5CO) + CO = (CF3+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.9kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(Trifluoromethyl cation • 6Carbon monoxide) + Carbon monoxide = (Trifluoromethyl cation • 7Carbon monoxide)

By formula: (CF3+ • 6CO) + CO = (CF3+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.6kcal/molPHPMSHiraoka, Nasu, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KPHPMSHiraoka, Nasu, et al., 1996gas phase; M

(CFeO- • 4294967295Carbon monoxide) + Carbon monoxide = CFeO-

By formula: (CFeO- • 4294967295CO) + CO = CFeO-

Quantity Value Units Method Reference Comment
Δr34.8 ± 3.5kcal/molN/AVillalta and Leopold, 1993gas phase; B
Δr33.7 ± 3.5kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; B

Formyl cation + Carbon monoxide = (Formyl cation • Carbon monoxide)

By formula: CHO+ + CO = (CHO+ • CO)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molPHPMSJennings, Headley, et al., 1982gas phase; M
Δr12.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr11.7kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M
Quantity Value Units Method Reference Comment
Δr22.5cal/mol*KPHPMSJennings, Headley, et al., 1982gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Δr20.9cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; M

(Formyl cation • Carbon monoxide) + Carbon monoxide = (Formyl cation • 2Carbon monoxide)

By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.6kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr24.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 2Carbon monoxide) + Carbon monoxide = (Formyl cation • 3Carbon monoxide)

By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr4.7 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.3kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr26.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 3Carbon monoxide) + Carbon monoxide = (Formyl cation • 4Carbon monoxide)

By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.5 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr6.2kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr18.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr29.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 4Carbon monoxide) + Carbon monoxide = (Formyl cation • 5Carbon monoxide)

By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr5.8kcal/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr22.9cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr32.cal/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Formyl cation • 5Carbon monoxide) + Carbon monoxide = (Formyl cation • 6Carbon monoxide)

By formula: (CHO+ • 5CO) + CO = (CHO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.4 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 6Carbon monoxide) + Carbon monoxide = (Formyl cation • 7Carbon monoxide)

By formula: (CHO+ • 6CO) + CO = (CHO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 7Carbon monoxide) + Carbon monoxide = (Formyl cation • 8Carbon monoxide)

By formula: (CHO+ • 7CO) + CO = (CHO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 8Carbon monoxide) + Carbon monoxide = (Formyl cation • 9Carbon monoxide)

By formula: (CHO+ • 8CO) + CO = (CHO+ • 9CO)

Quantity Value Units Method Reference Comment
Δr2.1 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 9Carbon monoxide) + Carbon monoxide = (Formyl cation • 10Carbon monoxide)

By formula: (CHO+ • 9CO) + CO = (CHO+ • 10CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 10Carbon monoxide) + Carbon monoxide = (Formyl cation • 11Carbon monoxide)

By formula: (CHO+ • 10CO) + CO = (CHO+ • 11CO)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 11Carbon monoxide) + Carbon monoxide = (Formyl cation • 12Carbon monoxide)

By formula: (CHO+ • 11CO) + CO = (CHO+ • 12CO)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 12Carbon monoxide) + Carbon monoxide = (Formyl cation • 13Carbon monoxide)

By formula: (CHO+ • 12CO) + CO = (CHO+ • 13CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 13Carbon monoxide) + Carbon monoxide = (Formyl cation • 14Carbon monoxide)

By formula: (CHO+ • 13CO) + CO = (CHO+ • 14CO)

Quantity Value Units Method Reference Comment
Δr1.8 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Formyl cation • 14Carbon monoxide) + Carbon monoxide = (Formyl cation • 15Carbon monoxide)

By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.76kcal/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(CHO- • 4294967295Carbon monoxide) + Carbon monoxide = CHO-

By formula: (CHO- • 4294967295CO) + CO = CHO-

Quantity Value Units Method Reference Comment
Δr5.42 ± 0.45kcal/molN/AMurray, Miller, et al., 1986gas phase; B

(CNiO- • 4294967295Carbon monoxide) + Carbon monoxide = CNiO-

By formula: (CNiO- • 4294967295CO) + CO = CNiO-

Quantity Value Units Method Reference Comment
Δr33.0 ± 5.8kcal/molN/AStevens, Feigerle, et al., 1982gas phase; B
Δr32.4 ± 5.8kcal/molCIDTSunderlin, Wang, et al., 1992gas phase; Affinity: CO..Ni-; B

CO+ + Carbon monoxide = (CO+ • Carbon monoxide)

By formula: CO+ + CO = (CO+ • CO)

Quantity Value Units Method Reference Comment
Δr16.kcal/molPIPECONorwood, Guo, et al., 1988gas phase; CO+ in state B, ΔrH>; M
Δr22.4kcal/molPILinn, Ono, et al., 1981gas phase; M
Δr28. ± 7.kcal/molEIMunson and Franlin, 1962gas phase; from IP'switching reaction and heats of formation; M
Δr25.4kcal/molPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KPHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.9340.HPMSChong and Franklin, 1971gas phase; equilibrium uncertain; M
11.5695.PHPMSMeot-Ner (Mautner) and Field, 1974gas phase; ΔrH>, DG>; M

(CO+ • Carbon monoxide) + Carbon monoxide = (CO+ • 2Carbon monoxide)

By formula: (CO+ • CO) + CO = (CO+ • 2CO)

Quantity Value Units Method Reference Comment
Δr12.5kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Δr3.7kcal/molPILinn, Ono, et al., 1981gas phase; M
Quantity Value Units Method Reference Comment
Δr35.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 2Carbon monoxide) + Carbon monoxide = (CO+ • 3Carbon monoxide)

By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)

Quantity Value Units Method Reference Comment
Δr7.21kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr24.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 3Carbon monoxide) + Carbon monoxide = (CO+ • 4Carbon monoxide)

By formula: (CO+ • 3CO) + CO = (CO+ • 4CO)

Quantity Value Units Method Reference Comment
Δr4.40kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr20.5cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(CO+ • 4Carbon monoxide) + Carbon monoxide = (CO+ • 5Carbon monoxide)

By formula: (CO+ • 4CO) + CO = (CO+ • 5CO)

Quantity Value Units Method Reference Comment
Δr4.25kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers; M
Quantity Value Units Method Reference Comment
Δr24.4cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers; M

(CO+ • 5Carbon monoxide) + Carbon monoxide = (CO+ • 6Carbon monoxide)

By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)

Quantity Value Units Method Reference Comment
Δr2.70kcal/molPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; two isomers, at low and high temperatures; M

(CO+ • 6Carbon monoxide) + Carbon monoxide = (CO+ • 7Carbon monoxide)

By formula: (CO+ • 6CO) + CO = (CO+ • 7CO)

Quantity Value Units Method Reference Comment
Δr2.25kcal/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • 7Carbon monoxide) + Carbon monoxide = (CO+ • 8Carbon monoxide)

By formula: (CO+ • 7CO) + CO = (CO+ • 8CO)

Quantity Value Units Method Reference Comment
Δr1.58kcal/molPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M
Quantity Value Units Method Reference Comment
Δr12.4cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; break in the van't Hoff plot; M

(CO+ • 9Carbon monoxide) + Carbon monoxide = (CO+ • 10Carbon monoxide)

By formula: (CO+ • 9CO) + CO = (CO+ • 10CO)

Quantity Value Units Method Reference Comment
Δr1.85kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 11Carbon monoxide) + Carbon monoxide = (CO+ • 12Carbon monoxide)

By formula: (CO+ • 11CO) + CO = (CO+ • 12CO)

Quantity Value Units Method Reference Comment
Δr2.13kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.1cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 12Carbon monoxide) + Carbon monoxide = (CO+ • 13Carbon monoxide)

By formula: (CO+ • 12CO) + CO = (CO+ • 13CO)

Quantity Value Units Method Reference Comment
Δr2.10kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.7cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 13Carbon monoxide) + Carbon monoxide = (CO+ • 14Carbon monoxide)

By formula: (CO+ • 13CO) + CO = (CO+ • 14CO)

Quantity Value Units Method Reference Comment
Δr2.08kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr28.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 14Carbon monoxide) + Carbon monoxide = (CO+ • 15Carbon monoxide)

By formula: (CO+ • 14CO) + CO = (CO+ • 15CO)

Quantity Value Units Method Reference Comment
Δr1.92kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr26.8cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 15Carbon monoxide) + Carbon monoxide = (CO+ • 16Carbon monoxide)

By formula: (CO+ • 15CO) + CO = (CO+ • 16CO)

Quantity Value Units Method Reference Comment
Δr1.92kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

(CO+ • 16Carbon monoxide) + Carbon monoxide = (CO+ • 17Carbon monoxide)

By formula: (CO+ • 16CO) + CO = (CO+ • 17CO)

Quantity Value Units Method Reference Comment
Δr1.88kcal/molPHPMSHiraoka and Mori, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSHiraoka and Mori, 1991gas phase; M

COPt3- + Carbon monoxide = C2O2Pt3-

By formula: COPt3- + CO = C2O2Pt3-

Quantity Value Units Method Reference Comment
Δr53. ± 12.kcal/molN/AGrushow and Ervin, 1997gas phase; B

C2O2Pt3- + Carbon monoxide = C3O3Pt3-

By formula: C2O2Pt3- + CO = C3O3Pt3-

Quantity Value Units Method Reference Comment
Δr52.6 ± 5.3kcal/molN/AGrushow and Ervin, 1997gas phase; B
Δr49.2 ± 3.3kcal/molPDisShi, Spasov, et al., 2001gas phase; B

C3CrO3- + Carbon monoxide = (C3CrO3- • Carbon monoxide)

By formula: C3CrO3- + CO = (C3CrO3- • CO)

Quantity Value Units Method Reference Comment
Δr39.7 ± 3.9kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C3MnO3- + Carbon monoxide = C4MnO4-

By formula: C3MnO3- + CO = C4MnO4-

Quantity Value Units Method Reference Comment
Δr41.1 ± 3.0kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C3O3Pt3- + Carbon monoxide = C4O4Pt3-

By formula: C3O3Pt3- + CO = C4O4Pt3-

Quantity Value Units Method Reference Comment
Δr24.4 ± 3.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

C3O3V- + Carbon monoxide = C4O4V-

By formula: C3O3V- + CO = C4O4V-

Quantity Value Units Method Reference Comment
Δr40.4 ± 5.8kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C4O4Pt3- + Carbon monoxide = C5O5Pt3-

By formula: C4O4Pt3- + CO = C5O5Pt3-

Quantity Value Units Method Reference Comment
Δr26.1 ± 4.4kcal/molN/AGrushow and Ervin, 1997gas phase; B

C4O4V- + Carbon monoxide = C5O5V-

By formula: C4O4V- + CO = C5O5V-

Quantity Value Units Method Reference Comment
Δr31.1 ± 3.0kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C5O5Pt3- + Carbon monoxide = C6O6Pt3-

By formula: C5O5Pt3- + CO = C6O6Pt3-

Quantity Value Units Method Reference Comment
Δr41.5 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B
Δr39.7 ± 3.3kcal/molPDisShi, Spasov, et al., 2001gas phase; B

C5O5V- + Carbon monoxide = C6O6V-

By formula: C5O5V- + CO = C6O6V-

Quantity Value Units Method Reference Comment
Δr30.8 ± 3.5kcal/molCIDTSunderlin, Wang, et al., 1993gas phase; B

C6H5MnO- + Carbon monoxide = C6H5MnO-

By formula: C6H5MnO- + CO = C6H5MnO-

Quantity Value Units Method Reference Comment
Δr5.00 ± 0.50kcal/molN/ASunderlin and Squires, 1999gas phase; B

C6H5MnO- + Carbon monoxide = C7H5MnO2-

By formula: C6H5MnO- + CO = C7H5MnO2-

Quantity Value Units Method Reference Comment
Δr7.80 ± 0.60kcal/molN/ASunderlin and Squires, 1999gas phase; B

C6O6Pt4- + Carbon monoxide = C8O8Pt4-

By formula: C6O6Pt4- + CO = C8O8Pt4-

Quantity Value Units Method Reference Comment
Δr18.4 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B

C7H5CrO2- + Carbon monoxide = C8H5CrO3-

By formula: C7H5CrO2- + CO = C8H5CrO3-

Quantity Value Units Method Reference Comment
Δr8.70 ± 0.80kcal/molN/ASunderlin and Squires, 1999gas phase; B

C7H5O2V- + Carbon monoxide = C7H5O2V-

By formula: C7H5O2V- + CO = C7H5O2V-

Quantity Value Units Method Reference Comment
Δr7.90 ± 0.70kcal/molN/ASunderlin and Squires, 1999gas phase; B

C7H5O2V- + Carbon monoxide = C8H5O3V-

By formula: C7H5O2V- + CO = C8H5O3V-

Quantity Value Units Method Reference Comment
Δr7.60 ± 0.60kcal/molN/ASunderlin and Squires, 1999gas phase; B

Cobalt ion (1+) + Carbon monoxide = (Cobalt ion (1+) • Carbon monoxide)

By formula: Co+ + CO = (Co+ • CO)

Quantity Value Units Method Reference Comment
Δr41.6 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.5 (+1.6,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
39.0 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Cobalt ion (1+) • Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 2Carbon monoxide)

By formula: (Co+ • CO) + CO = (Co+ • 2CO)

Quantity Value Units Method Reference Comment
Δr36.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.4 (+2.1,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M
32.9 (+4.8,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 3Carbon monoxide)

By formula: (Co+ • 2CO) + CO = (Co+ • 3CO)

Quantity Value Units Method Reference Comment
Δr19.6 ± 2.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
19.6 (+2.8,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 4Carbon monoxide)

By formula: (Co+ • 3CO) + CO = (Co+ • 4CO)

Quantity Value Units Method Reference Comment
Δr17.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+1.4,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

(Cobalt ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Cobalt ion (1+) • 5Carbon monoxide)

By formula: (Co+ • 4CO) + CO = (Co+ • 5CO)

Quantity Value Units Method Reference Comment
Δr17.9 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+1.2,-0.) CIDGoebel, Haynes, et al., 1995gas phase; guided ion beam CID; M

Chromium ion (1+) + Carbon monoxide = (Chromium ion (1+) • Carbon monoxide)

By formula: Cr+ + CO = (Cr+ • CO)

Quantity Value Units Method Reference Comment
Δr21.4 ± 0.9kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.5 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 2Carbon monoxide)

By formula: (Cr+ • CO) + CO = (Cr+ • 2CO)

Quantity Value Units Method Reference Comment
Δr22.6 ± 0.7kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.7 (+0.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 3Carbon monoxide)

By formula: (Cr+ • 2CO) + CO = (Cr+ • 3CO)

Quantity Value Units Method Reference Comment
Δr12.9 ± 1.4kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.9 (+1.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 4Carbon monoxide)

By formula: (Cr+ • 3CO) + CO = (Cr+ • 4CO)

Quantity Value Units Method Reference Comment
Δr12.2 ± 1.8kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.2 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 5Carbon monoxide)

By formula: (Cr+ • 4CO) + CO = (Cr+ • 5CO)

Quantity Value Units Method Reference Comment
Δr14.8 ± 0.7kcal/molCIDTKhan, Clemmer, et al., 1993RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
14.8 (+0.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Chromium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Chromium ion (1+) • 6Carbon monoxide)

By formula: (Cr+ • 5CO) + CO = (Cr+ • 6CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.0 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Copper ion (1+) + Carbon monoxide = (Copper ion (1+) • Carbon monoxide)

By formula: Cu+ + CO = (Cu+ • CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
35.5 (+1.6,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 2Carbon monoxide)

By formula: (Cu+ • CO) + CO = (Cu+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.1 (+0.7,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 3Carbon monoxide)

By formula: (Cu+ • 2CO) + CO = (Cu+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
18.0 (+0.9,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

(Copper ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Copper ion (1+) • 4Carbon monoxide)

By formula: (Cu+ • 3CO) + CO = (Cu+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.6 (+0.7,-0.) CIDMeyer, Chen, et al., 1995gas phase; guided ion beam CID; M

Iron ion (1+) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide)

By formula: Fe+ + CO = (Fe+ • CO)

Quantity Value Units Method Reference Comment
Δr30.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr32. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 2Carbon monoxide)

By formula: (Fe+ • CO) + CO = (Fe+ • 2CO)

Quantity Value Units Method Reference Comment
Δr35.4 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
36.1 (+3.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 3Carbon monoxide)

By formula: (Fe+ • 2CO) + CO = (Fe+ • 3CO)

Quantity Value Units Method Reference Comment
Δr16.5 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.8 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 4Carbon monoxide)

By formula: (Fe+ • 3CO) + CO = (Fe+ • 4CO)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
24.6 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Iron ion (1+) • 5Carbon monoxide)

By formula: (Fe+ • 4CO) + CO = (Fe+ • 5CO)

Quantity Value Units Method Reference Comment
Δr23.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.8 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • 3Carbon monoxide • 2iron) + Carbon monoxide = (Iron ion (1+) • 4Carbon monoxide • 2iron)

By formula: (Fe+ • 3CO • 2Fe) + CO = (Fe+ • 4CO • 2Fe)

Quantity Value Units Method Reference Comment
Δr56.9kcal/molPDissTecklenberg, Bricker, et al., 1988gas phase; ΔrH<; M

(Iron ion (1+) • iron) + Carbon monoxide = (Iron ion (1+) • Carbon monoxide • iron)

By formula: (Fe+ • Fe) + CO = (Fe+ • CO • Fe)

Quantity Value Units Method Reference Comment
Δr58.6kcal/molPDissTecklenberg, Bricker, et al., 1988gas phase; ΔrH<; M

Potassium ion (1+) + Carbon monoxide = (Potassium ion (1+) • Carbon monoxide)

By formula: K+ + CO = (K+ • CO)

Quantity Value Units Method Reference Comment
Δr4.3 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Kr+ + Carbon monoxide = (Kr+ • Carbon monoxide)

By formula: Kr+ + CO = (Kr+ • CO)

Quantity Value Units Method Reference Comment
Δr24.7 ± 1.8kcal/molSIFTPraxmarer, Jordan, et al., 1993gas phase; switching reaction(Kr+)Kr; Wadt, 1978, Radzig and Smirnov, 1985; M

Lithium ion (1+) + Carbon monoxide = (Lithium ion (1+) • Carbon monoxide)

By formula: Li+ + CO = (Li+ • CO)

Quantity Value Units Method Reference Comment
Δr13.1 ± 3.1kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr13.1 ± 2.9kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 2Carbon monoxide)

By formula: (Li+ • CO) + CO = (Li+ • 2CO)

Quantity Value Units Method Reference Comment
Δr8.6 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.6 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 3Carbon monoxide)

By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)

Quantity Value Units Method Reference Comment
Δr8.4 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.4 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

Magnesium ion (1+) + Carbon monoxide = (Magnesium ion (1+) • Carbon monoxide)

By formula: Mg+ + CO = (Mg+ • CO)

Quantity Value Units Method Reference Comment
Δr9.9 ± 1.4kcal/molCIDTAndersen, Muntean, et al., 2000RCD

(Magnesium ion (1+) • Carbon monoxide) + Carbon monoxide = (Magnesium ion (1+) • 2Carbon monoxide)

By formula: (Mg+ • CO) + CO = (Mg+ • 2CO)

Quantity Value Units Method Reference Comment
Δr9.2 ± 0.7kcal/molCIDTAndersen, Muntean, et al., 2000RCD

Manganese ion (1+) + Carbon monoxide = (Manganese ion (1+) • Carbon monoxide)

By formula: Mn+ + CO = (Mn+ • CO)

Quantity Value Units Method Reference Comment
Δr7.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH>; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
6.0 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 2Carbon monoxide)

By formula: (Mn+ • CO) + CO = (Mn+ • 2CO)

Quantity Value Units Method Reference Comment
Δr25.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; ΔrH<; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.1 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 3Carbon monoxide)

By formula: (Mn+ • 2CO) + CO = (Mn+ • 3CO)

Quantity Value Units Method Reference Comment
Δr31. ± 6.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.7 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 4Carbon monoxide)

By formula: (Mn+ • 3CO) + CO = (Mn+ • 4CO)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
15.5 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 5Carbon monoxide)

By formula: (Mn+ • 4CO) + CO = (Mn+ • 5CO)

Quantity Value Units Method Reference Comment
Δr16. ± 3.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.9 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Manganese ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Manganese ion (1+) • 6Carbon monoxide)

By formula: (Mn+ • 5CO) + CO = (Mn+ • 6CO)

Quantity Value Units Method Reference Comment
Δr32. ± 5.kcal/molKERDSDearden, Hayashibara, et al., 1989gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.0 (+2.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Sodium ion (1+) + Carbon monoxide = (Sodium ion (1+) • Carbon monoxide)

By formula: Na+ + CO = (Na+ • CO)

Quantity Value Units Method Reference Comment
Δr7.6 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr7.6 ± 1.9kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr12.6kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr20.4cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

(Sodium ion (1+) • Carbon monoxide) + Carbon monoxide = (Sodium ion (1+) • 2Carbon monoxide)

By formula: (Na+ • CO) + CO = (Na+ • 2CO)

Quantity Value Units Method Reference Comment
Δr5.7 ± 0.7kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr5.7 ± 0.7kcal/molCIDTWalter, Sievers, et al., 1998RCD
Δr7.5kcal/molHPMSCastleman, Peterson, et al., 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr15.1cal/mol*KHPMSCastleman, Peterson, et al., 1983gas phase; M

Nickel ion (1+) + Carbon monoxide = (Nickel ion (1+) • Carbon monoxide)

By formula: Ni+ + CO = (Ni+ • CO)

Quantity Value Units Method Reference Comment
Δr39. ± 3.kcal/molMKERCarpenter, van Koppen, et al., 1995gas phase; determined from MKER and theory; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
41.7 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
42.5 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 2Carbon monoxide)

By formula: (Ni+ • CO) + CO = (Ni+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
40.1 (+2.5,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion bema CID; M
40.4 (+2.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 3Carbon monoxide)

By formula: (Ni+ • 2CO) + CO = (Ni+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.9 (+1.4,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
22.7 (+1.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Nickel ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Nickel ion (1+) • 4Carbon monoxide)

By formula: (Ni+ • 3CO) + CO = (Ni+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
17.3 (+0.7,-0.) CIDKhan, Steele, et al., 1995gas phase; guided ion beam CID; M
17.2 (+1.2,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Oxygen anion + Carbon monoxide = (Oxygen anion • Carbon monoxide)

By formula: O2- + CO = (O2- • CO)

Quantity Value Units Method Reference Comment
Δr<13.60kcal/molIMRBAdams and Bohme, 1970gas phase; CO..O2- + O2 -> O4- + CO. G3MP2B3 calculations indicate a HOF(A-) ca. -38 kcal/mol; B

Platinum ion (1+) + Carbon monoxide = (Platinum ion (1+) • Carbon monoxide)

By formula: Pt+ + CO = (Pt+ • CO)

Quantity Value Units Method Reference Comment
Δr50.7 ± 2.4kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 2Carbon monoxide)

By formula: (Pt+ • CO) + CO = (Pt+ • 2CO)

Quantity Value Units Method Reference Comment
Δr46.1 ± 2.4kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 3Carbon monoxide)

By formula: (Pt+ • 2CO) + CO = (Pt+ • 3CO)

Quantity Value Units Method Reference Comment
Δr23.4 ± 1.2kcal/molCIDTZhang and Armentrout, 2001RCD

(Platinum ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Platinum ion (1+) • 4Carbon monoxide)

By formula: (Pt+ • 3CO) + CO = (Pt+ • 4CO)

Quantity Value Units Method Reference Comment
Δr12.7 ± 1.2kcal/molCIDTZhang and Armentrout, 2001RCD

Pt3- + Carbon monoxide = COPt3-

By formula: Pt3- + CO = COPt3-

Quantity Value Units Method Reference Comment
Δr53.0 ± 6.9kcal/molN/AGrushow and Ervin, 1997gas phase; B

Pt4- + Carbon monoxide = (Pt4- • Carbon monoxide)

By formula: Pt4- + CO = (Pt4- • CO)

Quantity Value Units Method Reference Comment
Δr60.0 ± 9.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

Pt5- + Carbon monoxide = (Pt5- • Carbon monoxide)

By formula: Pt5- + CO = (Pt5- • CO)

Quantity Value Units Method Reference Comment
Δr57.7 ± 9.2kcal/molN/AGrushow and Ervin, 1997gas phase; B

Titanium ion (1+) + Carbon monoxide = (Titanium ion (1+) • Carbon monoxide)

By formula: Ti+ + CO = (Ti+ • CO)

Quantity Value Units Method Reference Comment
Δr28.2 ± 1.4kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 2Carbon monoxide)

By formula: (Ti+ • CO) + CO = (Ti+ • 2CO)

Quantity Value Units Method Reference Comment
Δr27.0 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 3Carbon monoxide)

By formula: (Ti+ • 2CO) + CO = (Ti+ • 3CO)

Quantity Value Units Method Reference Comment
Δr23.9 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 4Carbon monoxide)

By formula: (Ti+ • 3CO) + CO = (Ti+ • 4CO)

Quantity Value Units Method Reference Comment
Δr20.8 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 5Carbon monoxide)

By formula: (Ti+ • 4CO) + CO = (Ti+ • 5CO)

Quantity Value Units Method Reference Comment
Δr16.7 ± 1.0kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 6Carbon monoxide)

By formula: (Ti+ • 5CO) + CO = (Ti+ • 6CO)

Quantity Value Units Method Reference Comment
Δr17.7 ± 0.7kcal/molCIDTMeyer and Armentrout, 1996RCD

(Titanium ion (1+) • 6Carbon monoxide) + Carbon monoxide = (Titanium ion (1+) • 7Carbon monoxide)

By formula: (Ti+ • 6CO) + CO = (Ti+ • 7CO)

Quantity Value Units Method Reference Comment
Δr12.4 ± 1.7kcal/molCIDTMeyer and Armentrout, 1996RCD

Vanadium ion (1+) + Carbon monoxide = (Vanadium ion (1+) • Carbon monoxide)

By formula: V+ + CO = (V+ • CO)

Quantity Value Units Method Reference Comment
Δr28.7 ± 3.3kcal/molCIDArmentrout and Kickel, 1994gas phase; ΔrH(0 K0, guided ion beam CID; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
27.0 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

(Vanadium ion (1+) • Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 2Carbon monoxide)

By formula: (V+ • CO) + CO = (V+ • 2CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.7 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
25.3 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 3Carbon monoxide)

By formula: (V+ • 2CO) + CO = (V+ • 3CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
16.6 (+0.9,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
14.6 (+2.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 3Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 4Carbon monoxide)

By formula: (V+ • 3CO) + CO = (V+ • 4CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
20.5 (+2.3,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
22.7 (+3.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 4Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 5Carbon monoxide)

By formula: (V+ • 4CO) + CO = (V+ • 5CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.7 (+0.7,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
22.2 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 5Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 6Carbon monoxide)

By formula: (V+ • 5CO) + CO = (V+ • 6CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
23.8 (+1.6,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M
29.6 (+1.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Vanadium ion (1+) • 6Carbon monoxide) + Carbon monoxide = (Vanadium ion (1+) • 7Carbon monoxide)

By formula: (V+ • 6CO) + CO = (V+ • 7CO)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
12.0 (+2.1,-0.) CIDSievers and Armentrout, 1995gas phase; guided ion beam CID; M

References

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Mullins, Kirk, et al., 1963
Mullins, J.C.; Kirk, B.S.; Ziegler, W.T., , U. S. A. E. C. NP-13862, 1963. [all data]

Clayton and Giauque, 1932
Clayton, J.O.; Giauque, W.F., The Heat Capacity and Entropy of Carbon Monoxide. Heat of Vaporization Vapor Pressure of Solid and Liquid. Free Energy to 5000 K from Spectroscopic Data, J. Am. Chem. Soc., 1932, 54, 2610. [all data]

Gill and Morrison, 1966
Gill, E.K.; Morrison, J.A., Thermodynamic Properties of Condensed CO, J. Chem. Phys., 1966, 45, 1585. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Clayton and Giauque, 1932, 2
Clayton, J.O.; Giauque, W.F., The heat capacity and entropy of carbon monoxide. Heat of vaporization. Vapor pressures of solid and liquid. Free energy to 5000°K. From spectroscopic data, J. Am. Chem. Soc., 1932, 54, 2610-2626. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Crommelin, Bijleveld, et al., 1931
Crommelin, C.A.; Bijleveld, W.J.; Brown, E.G., Proc. R. Acad. Sci. Amsterdam, 1931, 34, 1314. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L., Endoergic ion-molecule-collision processes of negative ions. III. Collisions of I- on O2, CO and CO2, Int. J. Mass Spectrom. Ion Phys., 1976, 20, 19. [all data]

Erman, Karawajczyk, et al., 1993
Erman, P.; Karawajczyk, A.; Rachlew-Kallne, E.; Stromholm, C.; Larsson, J.; Persson, A.; Zerne, R., Direct determination of the ionization potential of CO by resonantly enhanced multiphoton ionization mass spectrometry, Chem. Phys. Lett., 1993, 215, 173. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Fock, Gurtler, et al., 1980
Fock, J.-H.; Gurtler, P.; Koch, E.E., Molecular Rydberg transitions in carbon monoxide: term value/ionization energy correlation of BF, CO and N2., Chem. Phys., 1980, 47, 87. [all data]

Hille and Mark, 1978
Hille, E.; Mark, T.D., Cross section for single and double ionization of carbon monoxide by electron impact from threshold up to 180 eV, J. Chem. Phys., 1978, 69, 4600. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Ogawa and Ogawa, 1972
Ogawa, M.; Ogawa, S., Absorption spectrum of CO in the Hopfield helium continuum region, 600-1020 A, J. Mol. Spectrosc., 1972, 41, 393. [all data]

Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A., Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]

Collin and Natalis, 1969
Collin, J.E.; Natalis, P., Ionic states and photon impact-enhanced vibrational excitation in diatomic molecules by photoelectron spectroscopy. Photoelectron spectra of N2, CO and O2, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 231. [all data]

Turner and May, 1966
Turner, D.W.; May, D.P., Franck-Condon factors in ionization: experimental measurement using molecular photoelectron spectroscopy, J. Chem. Phys., 1966, 45, 471. [all data]

Krupenie, 1966
Krupenie, P.H., The band spectrum of carbon monoxide, Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. NSRDS-NBS, 1966, 5. [all data]

Cook, Metzger, et al., 1965
Cook, G.R.; Metzger, P.H.; Ogawa, M., Photoionization and absorption coefficients of CO in the 600 to 1000 A region, Can. J. Phys., 1965, 43, 1706. [all data]

Potts and Williams, 1974
Potts, A.W.; Williams, T.A., The observation of "forbidden" transitions in He II photoelectron spectra, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]

Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W., The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra, Chem. Phys. Lett., 1973, 22, 196. [all data]

Thomas, 1970
Thomas, T.D., X-ray photoelectron spectroscopy of carbon monoxide, J. Chem. Phys., 1970, 53, 1744. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Smyth, Schiavone, et al., 1974
Smyth, K.C.; Schiavone, J.A.; Freund, R.S., Dissociative excitation of CO by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms, J. Chem. Phys., 1974, 60, 1358. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L., Appearance potentials and kinetic energies of ions from N2, CO, and NO, J. Chem. Phys., 1967, 47, 3154. [all data]

Fineman and Petrocelli, 1961
Fineman, M.A.; Petrocelli, A.W., Molecular studies with a Lozier electron impact apparatus, Planetary Space Sci., 1961, 3, 187. [all data]

Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R., Photoionization analysis by mass spectroscopy, J. Opt. Soc. Am., 1959, 49, 338. [all data]

Meyer, Chen, et al., 1995
Meyer, F.; Chen, Y.M.; Armentrout, P.B., Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4), J. Am. Chem. Soc., 1995, 117, 14, 4071, https://doi.org/10.1021/ja00119a023 . [all data]

Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method, Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0 . [all data]

Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S., Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n, J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010 . [all data]

Villalta and Leopold, 1993
Villalta, P.W.; Leopold, D.G., A Study of FeCO- and the 3-Sigma(-) and 5-Sigma(-) States of FeCO by Negative Ion Photoelectron Spectroscopy, J. Chem. Phys., 1993, 98, 10, 7730, https://doi.org/10.1063/1.464580 . [all data]

Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R., Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-, J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004 . [all data]

Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S., The Temperature Dependence of Ion - Molecule Association Reactions, Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H., Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K, J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C., Laser photoelectron spectroscopy of the Formylf anion, J. Chem. Phys., 1986, 84, 2520. [all data]

Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C., Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3, J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004 . [all data]

Norwood, Guo, et al., 1988
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Photoion - Photoelectron Coincidence Study of (CO)2, J. Chem. Phys., 1988, 88, 6, 4098, https://doi.org/10.1063/1.453814 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters, J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486 . [all data]

Munson and Franlin, 1962
Munson, M.S.B. Field; Franlin, J.L., High-Pressure Mass Spectrometric Study of Reactions of Rare Gases with N2 and CO, J. Chem. Phys., 1962, 37, 8, 1790, https://doi.org/10.1063/1.1733370 . [all data]

Chong and Franklin, 1971
Chong, S.L.; Franklin, J.L., High-Pressure Ion-Molecule Reactions in Carbon Monoxide and Carbon Monoxide - Methane Mixtures, J. Chem. Phys., 1971, 54, 4, 1487, https://doi.org/10.1063/1.1675043 . [all data]

Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T., On the formation of the Isomeric Cluster Ions (CO)n+, J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844 . [all data]

Grushow and Ervin, 1997
Grushow, A.; Ervin, K.M., Ligand and Metal Binding Energies in Platinum Carbonyl Cluster Anions: Collision Induced Dissociation of PtM- and Ptm(CO)n-, J. Chem. Phys., 1997, 106, 23, 9580, https://doi.org/10.1063/1.474116 . [all data]

Shi, Spasov, et al., 2001
Shi, Y.; Spasov, V.A.; Ervin, K.M., Photodesorption of carbonyl from Pt-3(CO)(n)(-) (n=1-6), Int. J. Mass Spectrom., 2001, 204, 1-3, 197-208, https://doi.org/10.1016/S1387-3806(00)00364-X . [all data]

Sunderlin, Wang, et al., 1993
Sunderlin, L.S.; Wang, D.N.; Squires, R.R., Bond Strengths in 1st-Row-Metal Carbonyl Anions, J. Am. Chem. Soc., 1993, 115, 25, 12060, https://doi.org/10.1021/ja00078a051 . [all data]

Sunderlin and Squires, 1999
Sunderlin, L.S.; Squires, R.R., Bond strengths in cyclopentadienyl metal carbonyl anions, Int. J. Mass Spectrom., 1999, 183, 149-161, https://doi.org/10.1016/S1387-3806(98)14230-6 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T., Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone, J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021 . [all data]

Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B., Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4, J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Khan, Clemmer, et al., 1993
Khan, F.A.; Clemmer, D.E.; Schultz, R.H.; Armentrout, P.B., Sequential Bond Energies of Cr(CO)x+, x=1-6, J. Phys. Chem., 1993, 97, 30, 7978, https://doi.org/10.1021/j100132a029 . [all data]

Tecklenberg, Bricker, et al., 1988
Tecklenberg, R.E.; Bricker, D.L.; Russel, D.H., Laser - Ion Beam Photodissociation Studies of Ionic Cluster Fragments of Iron Carbonyls: Fe(x)(CO)y+ (x = 1 - 3; y = 0 - 6), Organometallics, 1988, 7, 12, 2506, https://doi.org/10.1021/om00102a013 . [all data]

Praxmarer, Jordan, et al., 1993
Praxmarer, C. Hansel; Jordan, A.; Kraus, H.; Lindinger, W., Reactions of Kr2+ with Various Neutrals, Int.J. Mass Spectrom. Ion. Proc., 1993, 129, 121, https://doi.org/10.1016/0168-1176(93)87036-R . [all data]

Wadt, 1978
Wadt, W.R., The Electronic States of Ar2+, Kr2+, Xe2+. I. Potential Curves with and without Spin-Orbit Coupling, J. Chem. Phys., 1978, 68, 2, 402, https://doi.org/10.1063/1.435773 . [all data]

Radzig and Smirnov, 1985
Radzig, R.; Smirnov, B.M., Reference Data on Atoms in Molecules and Ions, Springer, Berlin, 1985. [all data]

Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B., Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO), Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8 . [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Dearden, Hayashibara, et al., 1989
Dearden, D.V.; Hayashibara, K.; Beauchamp, J.L.; Kirschner, N.J.; Van Koppen, P.A.M.; Bowers, M.T., Fundamental Studies of the Energetics and Dynamics of Ligand Dissociation and Exchange Processes at Transition - Metal Centers in the Gas Phase: Mn(COx)+, x = 1 - 6, J. Am. Chem. Soc., 1989, 111, 7, 2401, https://doi.org/10.1021/ja00189a005 . [all data]

Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J., Energetics and Structure of Na+ Cluster Ions, Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X . [all data]

Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B., Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]], J. Phys. Chem., 1995, 99, 7819. [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Zhang and Armentrout, 2001
Zhang, X.-G.; Armentrout, P.B., Sequential Bond Energies of Pt(CO)x, (x=1-4) Determined by Collision-Induced Dissociation, Organometallics, 2001, 20, 20, 4266, https://doi.org/10.1021/om010390d . [all data]

Meyer and Armentrout, 1996
Meyer, F.; Armentrout, P.B., Sequential Bond Energies of Ti(CO)x+, x=1-7, Molec. Phys., 1996, 88, 187. [all data]

Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B., Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6, J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041 . [all data]


Notes

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References