3-Pentanone
- Formula: C5H10O
- Molecular weight: 86.1323
- IUPAC Standard InChIKey: FDPIMTJIUBPUKL-UHFFFAOYSA-N
- CAS Registry Number: 96-22-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Diethyl ketone; 1,3-Dimethylacetone; DEK; Ethyl ketone; Metacetone; Methacetone; Propione; (C2H5)2CO; Ethyl propionyl; Pentan-3-one; Diethylcetone; Pentanone-3; UN 1156; Dimethylacetone; NSC 8653
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -296.51 ± 0.83 | kJ/mol | Ccb | Harrop, Head, et al., 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3104.7 ± 0.9 | kJ/mol | Ccb | Gerasimov and Gubareva, 1985 | The hf_gas reanalyzed by ALS; Corresponding ΔfHºliquid = -292.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -3100.2 ± 1.0 | kJ/mol | Ccb | Harrop, Head, et al., 1970 | Corresponding ΔfHºliquid = -296.51 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 266.0 | J/mol*K | N/A | Andon, Counsell, et al., 1968 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
196.4 | 298.15 | Baglay, Gurariy, et al., 1988 | T = 270 to 340 K. Unsmoothed experimental datum.; DH |
195.7 | 298.15 | Baglai, Baev, et al., 1984 | T = 273 to 334 K. Cp(liq) = -1.85557 + 0.025782T - 4.0x10-5T2 kJ/kg*K (273 to 335 K).; DH |
190.30 | 298.15 | Grolier and Benson, 1984 | DH |
190.0 | 298.15 | Saluja, Peacock, et al., 1979 | DH |
200.7 | 298.15 | Harrop, Head, et al., 1970 | DH |
190.9 | 298.15 | Andon, Counsell, et al., 1968 | T = 10 to 320 K.; DH |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
References
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Harrop, Head, et al., 1970
Harrop, D.; Head, A.J.; Lewis, G.B.,
Thermodynamic properties of organic oxygen compounds. 22. Enthalpies of combustion of some aliphatic ketones,
J. Chem. Thermodyn., 1970, 2, 203-210. [all data]
Gerasimov and Gubareva, 1985
Gerasimov, P.A.; Gubareva, A.I.,
Physical chemical properties of vitamin A precursor ketones,
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1985, 28, 106-109. [all data]
Andon, Counsell, et al., 1968
Andon, R.J.L.; Counsell, J.F.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part XX. The low-temperature heat capacity and entropy of C4 and C5 ketones,
J. Chem. Soc. A, 1968, 1894-1897. [all data]
Baglay, Gurariy, et al., 1988
Baglay, A.K.; Gurariy, L.L.; Kuleshov, G.G.,
Physical properties of compounds used in vitamin synthesis,
J. Chem. Eng. Data, 1988, 33, 512-518. [all data]
Baglai, Baev, et al., 1984
Baglai, A.K.; Baev, A.A.; Belousov, V.P.; Beregovykh, V.V.; Grushenko, M.M.; Gurarii, L.L.; Konstantinov, S.G.; Kostyushko, Yu.L.; Kuleshov, G.G.; Pasechnik, N.I.; Petrashkevich, R.I.; Podkovyrov, A.I.; Sitnov, A.A.; Shishko, M.A.; Shulgin, I.L.,
Investigation of the physico-chemical characteristics of substances utilized in the synthesis of vitamins A and E,
Khim. Farm. Zhur., 1984, 18, 1013-1019. [all data]
Grolier and Benson, 1984
Grolier, J.-P.E.; Benson, G.C.,
Thermodynamic properties of binary mixtures containing ketones. VIII. Heat capacities and volumes of some n-alkanone + n-alkane mixtures at 298.15 K,
Can. J. Chem., 1984, 62, 949-953. [all data]
Saluja, Peacock, et al., 1979
Saluja, P.P.S.; Peacock, L.A.; Fuchs, R.,
Enthalpies of interaction of aliphatic ketones with polar and nonpolar solvents,
J. Am. Chem. Soc., 1979, 101, 1958-1962. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.