Butane
- Formula: C4H10
- Molecular weight: 58.1222
- IUPAC Standard InChIKey: IJDNQMDRQITEOD-UHFFFAOYSA-N
- CAS Registry Number: 106-97-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Butane; Diethyl; Freon 600; Liquefied petroleum gas; LPG; n-C4H10; Butanen; Butani; Methylethylmethane; UN 1011; A 21; HC 600; HC 600 (hydrocarbon); R 600; R 600 (alkane)
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -30.03 ± 0.16 | kcal/mol | Ccb | Pittam and Pilcher, 1972 | ALS |
ΔfH°gas | -30.37 ± 0.16 | kcal/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -687.75 ± 0.15 | kcal/mol | Ccb | Pittam and Pilcher, 1972 | Corresponding ΔfHºgas = -30.03 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -687.42 ± 0.15 | kcal/mol | Cm | Prosen, Maron, et al., 1951 | see Prosen and Rossini, 1945; Corresponding ΔfHºgas = -30.36 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -687.94 ± 0.15 | kcal/mol | Ccb | Rossini, 1934 | Corresponding ΔfHºgas = -29.84 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.099 | 50. | Chen S.S., 1975 | Recommended values are in good agreement with those calculated by [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT |
13.23 | 100. | ||
16.09 | 150. | ||
18.27 | 200. | ||
22.06 | 273.15 | ||
23.54 | 298.15 | ||
23.65 | 300. | ||
29.821 | 400. | ||
35.531 | 500. | ||
40.459 | 600. | ||
44.699 | 700. | ||
48.370 | 800. | ||
51.561 | 900. | ||
54.340 | 1000. | ||
56.759 | 1100. | ||
58.860 | 1200. | ||
60.691 | 1300. | ||
62.280 | 1400. | ||
63.671 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
26.429 | 344.9 | Dailey B.P., 1943 | Other experimental values of heat capacity [ Sage B.H., 1937] are believed to be less reliable, see [ Chen S.S., 1975].; GT |
27.469 | 359.6 | ||
29.099 | 387.5 | ||
32.980 | 451.6 | ||
36.809 | 521.0 | ||
38.781 | 561.3 | ||
40.710 | 600.8 | ||
44.419 | 692.6 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 55.21 | cal/mol*K | N/A | Aston and Messerly, 1940 | Using extrapolated values of Cp 273 to 298 K for the superheated liquid. |
S°liquid | 54.21 | cal/mol*K | N/A | Parks, Shomate, et al., 1937 | Calculated from heat capacity data reported by 31HUF/PAR. Extrapolation below 67 K, 41.34 J/mol*K. |
S°liquid | 54.90 | cal/mol*K | N/A | Huffman, Parks, et al., 1931 | Extrapolation below 90 K, 48.95 J/mol*K. Extrapolated above 262 K. |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
31.649 | 270. | Aston and Messerly, 1940 | T = 11 to 270 K. |
31.00 | 261.8 | Huffman, Parks, et al., 1931 | T = 69 to 262 K. Value is unsmoothed experimental datum. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 273. ± 1. | K | AVG | N/A | Average of 33 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 136. ± 3. | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 134.6 ± 0.7 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ptriple | 0.000007 | atm | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 8.×10-9 atm; TRC |
Ptriple | 0.000007 | atm | N/A | Haynes and Goodwin, 1982 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 425. ± 1. | K | AVG | N/A | Average of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 37.45 ± 0.09 | atm | AVG | N/A | Average of 15 out of 16 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.255 | l/mol | N/A | Ambrose and Tsonopoulos, 1995 | |
Vc | 0.263 | l/mol | N/A | Li and Kiran, 1988 | Uncertainty assigned by TRC = 0.01 l/mol; TRC |
Vc | 0.2551 | l/mol | N/A | Younglove and Ely, 1987 | Uncertainty assigned by TRC = 0.001 l/mol; TRC |
Vc | 0.258 | l/mol | N/A | Beattie, Simard, et al., 1939 | Uncertainty assigned by TRC = 0.003 l/mol; from graphical plot of isotherms; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 3.92 ± 0.03 | mol/l | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 5.35 | kcal/mol | N/A | Reid, 1972 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.3511 | 272.05 | N/A | Aston and Messerly, 1940 | P = 101.325 kPa; DH |
5.363 | 272.7 | N/A | Majer and Svoboda, 1985 | |
5.47 | 308. | N/A | Sako, Horiguchi, et al., 1997 | Based on data from 300. to 315. K.; AC |
5.59 | 277. | A | Stephenson and Malanowski, 1987 | Based on data from 195. to 292. K.; AC |
5.54 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 321. K.; AC |
5.40 | 331. | A | Stephenson and Malanowski, 1987 | Based on data from 316. to 383. K.; AC |
5.45 | 390. | A | Stephenson and Malanowski, 1987 | Based on data from 375. to 425. K.; AC |
6.5 | 198. | A | Stephenson and Malanowski, 1987 | Based on data from 135. to 213. K. See also Carruth and Kobayashi, 1973.; AC |
5.52 | 264. | N/A | Wackher, Linn, et al., 1945 | Based on data from 206. to 279. K. See also Boublik, Fried, et al., 1984.; AC |
5.02 ± 0.02 | 272.66 | V | Aston and Messerly, 1940, 2 | Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 5.35 ± 0.15 kcal/mol; hfusion=1.11 kcal/mol; ALS |
5.71 | 258. | N/A | Aston and Messerly, 1940 | Based on data from 195. to 273. K. See also Boublik, Fried, et al., 1984.; AC |
Entropy of vaporization
ΔvapS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
19.67 | 272.05 | Aston and Messerly, 1940 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
135.42 to 212.89 | 4.70241 | 1200.475 | -13.013 | Carruth and Kobayashi, 1973 | Coefficents calculated by NIST from author's data. |
272.66 to 425. | 4.35005 | 1175.581 | -2.071 | Das, Reed, et al., 1973 | Coefficents calculated by NIST from author's data. |
195.11 to 272.81 | 3.84431 | 909.65 | -36.146 | Aston and Messerly, 1940 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.58 | 107. | B | Geiseler, Quitzsch, et al., 1966 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.11 | 134.9 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.555 | 107.6 | Domalski and Hearing, 1996 | CAL |
8.260 | 134.9 |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
0.4940 | 107.55 | crystaline, II | crystaline, I | Aston and Messerly, 1940 | DH |
1.114 | 134.86 | crystaline, I | liquid | Aston and Messerly, 1940 | DH |
0.5060 | 107.0 | crystaline, II | crystaline, I | Huffman, Parks, et al., 1931 | DH |
1.045 | 134.1 | crystaline, I | liquid | Huffman, Parks, et al., 1931 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
4.594 | 107.55 | crystaline, II | crystaline, I | Aston and Messerly, 1940 | DH |
8.260 | 134.86 | crystaline, I | liquid | Aston and Messerly, 1940 | DH |
4.73 | 107.0 | crystaline, II | crystaline, I | Huffman, Parks, et al., 1931 | DH |
7.79 | 134.1 | crystaline, I | liquid | Huffman, Parks, et al., 1931 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 415.7 ± 2.0 | kcal/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrH° | 417.1 ± 4.8 | kcal/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 407.1 ± 2.1 | kcal/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrG° | 408.5 ± 4.9 | kcal/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
C4H9Li (l) + (g) = (l) + (cr)
By formula: C4H9Li (l) + HBr (g) = C4H10 (l) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -89.39 ± 0.48 | kcal/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
(g) + C4H9Li (l) = (l) + (cr)
By formula: HBr (g) + C4H9Li (l) = C4H10 (l) + BrLi (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -84.30 ± 0.48 | kcal/mol | RSC | Holm, 1974 | Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS |
By formula: 2H2 + C4H6 = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.10 ± 0.30 | kcal/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -65.58 ± 0.13 kcal/mol; At 355 K; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -27.38 ± 0.10 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -27.621 ± 0.021 kcal/mol; At 355 °K; ALS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.33 ± 0.10 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -28.570 ± 0.019 kcal/mol; At 355 °K; ALS |
By formula: C4H6 + 2H2 = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -56.57 ± 0.10 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1936 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -57.1 ± 0.1 kcal/mol; At 355 °K; ALS |
C4H9Li (l) + (g) = (g) + HLiO (cr)
By formula: C4H9Li (l) + H2O (g) = C4H10 (g) + HLiO (cr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -57.41 ± 0.69 | kcal/mol | RSC | Fowell and Mortimer, 1961 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS |
C4H9ClMg (cr) + ( • 556) (solution) = (g) + (Cl2Mg • 900) (solution)
By formula: C4H9ClMg (cr) + (HCl • 556H2O) (solution) = C4H10 (g) + (Cl2Mg • 900H2O) (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.09 ± 0.43 | kcal/mol | RSC | Genchel, Evstigneeva, et al., 1976 | MS |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.91 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
C4H9BrMg (solution) + (g) = (solution) + Br2Mg (solution)
By formula: C4H9BrMg (solution) + HBr (g) = C4H10 (solution) + Br2Mg (solution)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -73.11 ± 0.53 | kcal/mol | RSC | Holm, 1981 | solvent: Diethyl ether; MS |
C5O5W (g) + (g) = C9H10O5W (g)
By formula: C5O5W (g) + C4H10 (g) = C9H10O5W (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -9.1 ± 3.0 | kcal/mol | EqG | Brown, Ishikawa, et al., 1990 | Temperature range: ca. 300-350 K; MS |
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -30.10 ± 0.10 | kcal/mol | Chyd | Kistiakowsky, Ruhoff, et al., 1935 | gas phase; At 355 °K; ALS |
By formula: C4H10 = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -2.318 | kcal/mol | Eqk | Pines, Kvetinskas, et al., 1945 | gas phase; Heat of isomerization; ALS |
By formula: 3H2 + C4H4 = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -100.8 ± 0.5 | kcal/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase; ALS |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.0011 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.0011 | L | N/A | ||
0.0012 | 3100. | L | N/A | |
0.0011 | V | N/A | ||
0.0049 | V | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.53 ± 0.02 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.57 | EST | Luo and Pacey, 1992 | LL |
10.53 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
10.35 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
10.6 ± 0.1 | PE | Bieri, Burger, et al., 1977 | LLK |
10.61 | EQ | Lias, Ausloos, et al., 1976 | LLK |
10.87 ± 0.05 | EI | Flesch and Svec, 1973 | LLK |
10.89 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
10.67 | PI | Dewar and Worley, 1969 | RDSH |
10.55 ± 0.05 | PI | Chupka and Berkowitz, 1967 | RDSH |
10.50 | PI | Al-Joboury and Turner, 1964 | RDSH |
10.55 ± 0.05 | PI | Steiner, Giese, et al., 1961 | RDSH |
10.63 ± 0.03 | PI | Watanabe, 1957 | RDSH |
11.09 | PE | Kimura, Katsumata, et al., 1981 | Vertical value; LLK |
11.2 | PE | Bieri and Asbrink, 1980 | Vertical value; LLK |
11.2 ± 0.1 | PE | Bieri, Burger, et al., 1977 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CH3+ | 29.7 ± 0.2 | ? | EI | Olmsted, Street, et al., 1964 | RDSH |
C2H4+ | ~11.65 | C2H6 | PI | Chupka and Berkowitz, 1967 | RDSH |
C2H5+ | 12.55 | C2H5 | EI | Omura, 1961 | RDSH |
C3H5+ | 13.40 | ? | EI | Omura, 1961 | RDSH |
C3H6+ | 11.15 | CH4 | EI | Wolkoff and Holmes, 1978 | LLK |
C3H6+ | 11.06 | CH4 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
C3H6+ | 11.18 | CH4 | PI | Chupka and Berkowitz, 1967 | RDSH |
C3H6+ | 11.16 ± 0.03 | CH4 | PI | Steiner, Giese, et al., 1961 | RDSH |
C3H7+ | 11.2 | CH3 | EI | Wolkoff and Holmes, 1978 | LLK |
C3H7+ | 11.09 | CH3 | EI | Matsumoto, Taniguchi, et al., 1970 | RDSH |
C3H7+ | 11.10 ± 0.05 | CH3 | EI | Williams and Hamill, 1968 | RDSH |
C3H7+ | 11.18 | CH3 | PI | Chupka and Berkowitz, 1967 | RDSH |
C3H7+ | 11.19 ± 0.02 | CH3 | PI | Steiner, Giese, et al., 1961 | RDSH |
C4H9+ | 10.9 ± 0.1 | H- | PI | Chupka and Berkowitz, 1967 | RDSH |
C4H9+ | 11.7 ± 0.1 | H | PI | Chupka and Berkowitz, 1967 | RDSH |
H3+ | 31. ± 1. | ? | EI | Fuchs, 1972 | LLK |
De-protonation reactions
C4H9- + =
By formula: C4H9- + H+ = C4H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 415.7 ± 2.0 | kcal/mol | Bran | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrH° | 417.1 ± 4.8 | kcal/mol | Bran | Peerboom, Rademaker, et al., 1992 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 407.1 ± 2.1 | kcal/mol | H-TS | DePuy, Gronert, et al., 1989 | gas phase; The HOF(Et(Me)N.) in Seetula, Russell, et al., 1990 gives BDE(N-H) = 99 kcal/mol, ca. 5 kcal/mol too strong; B |
ΔrG° | 408.5 ± 4.9 | kcal/mol | H-TS | Peerboom, Rademaker, et al., 1992 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 18940 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane,
J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]
Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D.,
Heats of combustion, formation, and insomerization of ten C4 hydrocarbons,
J. Res. NBS, 1951, 46, 106-112. [all data]
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of formation and combustion of 1,3-butadiene and styrene,
J. Res. NBS, 1945, 34, 59-63. [all data]
Rossini, 1934
Rossini, F.D.,
Calorimetric determination of the heats of combustion of ethane, propane, normal butane, and normal pentane,
J. Res. NBS, 1934, 12, 735-750. [all data]
Chen S.S., 1975
Chen S.S.,
Ideal gas thermodynamic properties and isomerization of n-butane and isobutane,
J. Phys. Chem. Ref. Data, 1975, 4, 859-869. [all data]
Pitzer K.S., 1944
Pitzer K.S.,
Thermodynamics of gaseous paraffins. Specific heat and related properties,
Ind. Eng. Chem., 1944, 36, 829-831. [all data]
Pitzer K.S., 1946
Pitzer K.S.,
The entropies and related properties of branched paraffin hydrocarbons,
Chem. Rev., 1946, 39, 435-447. [all data]
Dailey B.P., 1943
Dailey B.P.,
Heat capacities and hindered rotation in n-butane and isobutane,
J. Am. Chem. Soc., 1943, 65, 44-46. [all data]
Sage B.H., 1937
Sage B.H.,
Phase equilibria in hydrocarbon systems. XX. Isobaric heat capacity of gaseous propane, n-butane, isobutane, and n-pentane,
Ind. Eng. Chem., 1937, 29, 1309-1314. [all data]
Aston and Messerly, 1940
Aston, J.G.; Messerly, G.H.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane,
J. Am. Chem. Soc., 1940, 62, 1917-1923. [all data]
Parks, Shomate, et al., 1937
Parks, G.S.; Shomate, C.H.; Kennedy, W.D.; Crawford, B.L., Jr.,
The entropies of n-butane and isobutane, with some heat capacity data for isobutane,
J. Chem. Phys., 1937, 5, 359-363. [all data]
Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M.,
Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons,
J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]
Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F.,
Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane,
J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]
Haynes and Goodwin, 1982
Haynes, W.M.; Goodwin, R.D.,
Thermopnhysical properties of normal butane from 135 to 700K at pressures to 70 MPa,
NBS Monogr. (U. S.), 1982, 1982, 197 pp.. [all data]
Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C.,
Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes,
J. Chem. Eng. Data, 1995, 40, 531-546. [all data]
Li and Kiran, 1988
Li, L.; Kiran, E.,
Gas-Liquid Critical Properties of Methylamine + Nitrous Oxide and Methylamine + Ethylene Binary Mixtures,
J. Chem. Eng. Data, 1988, 33, 342. [all data]
Beattie, Simard, et al., 1939
Beattie, J.A.; Simard, G.L.; Su, G.-J.,
The Vapor Pressure of Critical Constants of Normal Butane,
J. Am. Chem. Soc., 1939, 61, 24. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Sako, Horiguchi, et al., 1997
Sako, Takeshi; Horiguchi, Sadashige; Ichimaru, Hiroshi; Nakagawa, Shinsuke,
Vapor Pressure of Chlorine Trifluoride from 300 K to 317 K,
J. Chem. Eng. Data, 1997, 42, 1, 169-171, https://doi.org/10.1021/je960286g
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki,
Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury,
J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009
. [all data]
Wackher, Linn, et al., 1945
Wackher, Richard C.; Linn, Carl B.; Grosse, Aristid V.,
Physical Properties of Butanes and Butenes.,
Ind. Eng. Chem., 1945, 37, 5, 464-468, https://doi.org/10.1021/ie50425a023
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Aston and Messerly, 1940, 2
Aston, J.G.; Messerly, G.H.,
The heat capacity and entropy, heats of fusion and vaporization and the vapor pressure of n-butane,
J. Am. Chem. Soc., 1940, 62, 1917-19. [all data]
Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P.,
Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]
Das, Reed, et al., 1973
Das, T.R.; Reed, C.O., Jr.; Eubank, P.T.,
PVT Surface and Thermodynamic Properties of n-Butane,
J. Chem. Eng. Data, 1973, 18, 3, 244-253, https://doi.org/10.1021/je60058a002
. [all data]
Geiseler, Quitzsch, et al., 1966
Geiseler, V.G.; Quitzsch, K.; Rauh, H.J.; Schaffernicht, H.; Walther, H.J.,
Bildungsenthalpien und Mesomerieenergien von π-Bindungssystemen 1. Mitteilung: Bildungsenthalpien und Mesomerieenergien einiger mehrkerniger Aromaten und verschiedener Pseudoazulene,
Ber. Bunsen-Ges. Phys. Chem., 1966, 70, 551-556. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R.,
The Gas Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003
. [all data]
Seetula, Russell, et al., 1990
Seetula, J.A.; Russell, J.J.; Gutman, D.,
Kinetics and Thermochemistry of the Reactions of Alkyl Radicals with HI: A Reconciliation of the Alkyl Radical Heats of Formation,
J. Am. Chem. Soc., 1990, 112, 4, 1347, https://doi.org/10.1021/ja00160a009
. [all data]
Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M.,
Stabilization of Cycloalkyl Carbanions in the Gas Phase,
Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608
. [all data]
Holm, 1974
Holm, T.,
J. Organometal. Chem., 1974, 77, 27. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W.,
In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]
Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes,
J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons,
J. Am. Chem. Soc., 1935, 57, 876-882. [all data]
Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E.,
Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene,
J. Am. Chem. Soc., 1936, 58, 146-153. [all data]
Fowell and Mortimer, 1961
Fowell, P.A.; Mortimer, C.T.,
J. Chem. Soc., 1961, 3793.. [all data]
Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Genchel, Evstigneeva, et al., 1976
Genchel, V.G.; Evstigneeva, E.V.; Petrova, N.V.,
Zh. Fiz. Khim., 1976, 50, 1909. [all data]
Holm, 1981
Holm, T.,
J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]
Brown, Ishikawa, et al., 1990
Brown, C.E.; Ishikawa, Y.; Hackett, P.A.; Rayner, D.M.,
J. Am. Chem. Soc., 1990, 112, 2530. [all data]
Pines, Kvetinskas, et al., 1945
Pines, H.; Kvetinskas, B.; Kassel, L.S.; Ipatieff, V.N.,
Determination of equilibrium constants for butanes and pentanes,
J. Am. Chem. Soc., 1945, 67, 631-637. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P.,
Valence ionization enrgies of hydrocarbons,
Helv. Chim. Acta, 1977, 60, 2213. [all data]
Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z.,
Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials,
Int. J. Chem. Kinet., 1976, 8, 725. [all data]
Flesch and Svec, 1973
Flesch, G.D.; Svec, H.J.,
Fragmentation reactions in the mass spectrometer for C2-C5 alkanes,
J. Chem. Soc. Faraday Trans. 2, 1973, 69, 1187. [all data]
Matsumoto, Taniguchi, et al., 1970
Matsumoto, A.; Taniguchi, S.; Hayakawa, T.,
Studies of dissociation of hydrogen and n-butane metastable ions by a pulsed ion source
in Recent Developments in Mass Spectrometry, ed. K. Ogata and T. Hayakawa, Univ. Park Press, Baltimore, MD, 1970, 820. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Chupka and Berkowitz, 1967
Chupka, W.A.; Berkowitz, J.,
Photoionization of ethane, propane, and n-butane with mass analysis,
J. Chem. Phys., 1967, 47, 2921. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G.,
Photoionization of alkanes. Dissociation of excited molecular ions,
J. Chem. Phys., 1961, 34, 189. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]
Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S.,
Excess-kinetic-energy ions in organic mass spectra,
J. Chem. Phys., 1964, 40, 2114. [all data]
Omura, 1961
Omura, I.,
Mass spectra at low ionizing voltage and bond dissociation energies of molecular ions from hydrocarbons,
Bull. Chem. Soc. Japan, 1961, 34, 1227. [all data]
Wolkoff and Holmes, 1978
Wolkoff, P.; Holmes, J.L.,
Fragmentations of alkane molecular ions,
J. Am. Chem. Soc., 1978, 100, 7346. [all data]
Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H.,
Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer,
J. Chem. Phys., 1968, 49, 4467. [all data]
Fuchs, 1972
Fuchs, R.,
Die kinetische energie ionisierter molekulfragmente VII. H3 ALS fragmention bei der elektronenstrossionisierung von kohlenwasserstoffen,
Int. J. Mass Spectrom. Ion Processes, 1972, 8, 193. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure Ptriple Triple point pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.