Naphthalene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas36. ± 2.kcal/molAVGN/AAverage of 7 values; Individual data points

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.64750.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) agree with those calculated by statistical thermodynamics method [ Dorofeeva O.V., 1986, Dorofeeva O.V., 1988] within 1.2 J/mol*K. Discrepancies with other calculations [ Barrow G.M., 1951, McClellan A.L., 1955, 79CHE/KUD, Lielmezs J., 1981] reach 2-3 J/mol*K.; GT
11.35100.
15.27150.
20.31200.
28.805273.15
31.793298.15
32.012300.
43.298400.
52.749500.
60.318600.
66.389700.
71.326800.
75.406900.
78.8171000.
81.691100.
84.131200.
86.231300.
88.001400.
89.561500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
48.18 ± 0.48451.0Barrow G.M., 1951GT
54.17 ± 0.54522.7

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
liquid52.005cal/mol*KN/AChirico, Knipmeyer, et al., 1993DH
Quantity Value Units Method Reference Comment
Δfsolid18. ± 2.kcal/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δcsolid-1232. ± 5.kcal/molAVGN/AAverage of 18 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar40.010cal/mol*KN/AMcCullough, Finke, et al., 1957DH
solid,1 bar38.920cal/mol*KN/ASouthard and Brickwedde, 1933DH
solid,1 bar39.880cal/mol*KN/APearce and Tanner, 1934Extrapolation below 90 K, 58.32 J/mol*K.; DH
solid,1 bar39.89cal/mol*KN/AHuffman, Parks, et al., 1930Extrapolation below 90 K, 53.09 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
46.859298.15Chirico, Knipmeyer, et al., 1993T = 260 to 700 K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
50.9330.David, 1964T = 298 to 353 K. Mean value. T = uncertain.; DH
45.03342.Rastogi and Bassi, 1964T = 342, 384 K.; DH
39.601298.15McCullough, Finke, et al., 1957T = 10 to 370 K.; DH
37.31298.15Ueberreiter and Orthmann, 1950T = 293 to 368 K. Equation only.; DH
46.80298.1Eibert, 1944T = 30 to 200°C, equations only in t°C. Cp(c) = 0.365 cal/g*K (30 to 80°C); Cp(liq) = 0.329 + 0.000824t cal/g*K (80 to 200°C).; DH
38.60298.1Schmidt, 1941T = 22 to 200°C, equations only, in t°C. Cp(c) = 0.2595 + 0.001672t cal/g*K (22 to 80°C); Cp(liq) = 0.3360 + 0.0008180t cal/g*K (80 to 200°C).; DH
40.179301.58Hicks, 1938T = 58 to 304 K. Value is unsmoothed experimental datum.; DH
40.170297.6Pearce and Tanner, 1934T = 94 to 298 K. Value is unsmoothed experimental datum.; DH
39.551294.68Southard and Brickwedde, 1933T = 15 to 295 K. Value is unsmoothed experimental datum.; DH
40.39303.Spaght, Thomas, et al., 1932T = 30 to 190°C.; DH
39.10295.1Huffman, Parks, et al., 1930T = 91 to 295 K.; DH
38.10298.Andrews, Lynn, et al., 1926T = 12 to 300°C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil490. ± 5.KAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus353.2 ± 0.7KAVGN/AAverage of 55 out of 57 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple353.39 ± 0.09KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Tc748. ± 6.KAVGN/AAverage of 13 out of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Pc40. ± 1.atmAVGN/AAverage of 10 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.407l/molN/ATsonopoulos and Ambrose, 1995 
Vc0.409l/molN/ACheng, 1963Uncertainty assigned by TRC = 0.06 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc2.46 ± 0.05mol/lN/ATsonopoulos and Ambrose, 1995 
ρc2.497mol/lN/AChirico, Knipmeyer, et al., 1993, 2Uncertainty assigned by TRC = 0.078 mol/l; TRC
ρc2.450mol/lN/ASchroeer, 1941Uncertainty assigned by TRC = 0.04 mol/l; TRC
ρc2.456mol/lN/AZhuravlev, 1937Uncertainty assigned by TRC = 0.04 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap13.0kcal/molCGCZhao, Unhannanant, et al., 2008AC
Δvap14.4 ± 0.26kcal/molGCHaftka, Parsons, et al., 2006Based on data from 333. to 403. K.; AC
Δvap12.8kcal/molCGCChickos, Hesse, et al., 1998AC
Δvap13.5kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 403. to 453. K.; AC
Quantity Value Units Method Reference Comment
Δsub17. ± 1.kcal/molAVGN/AAverage of 17 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
16.934323.N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
13.4398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC
11.4 ± 0.43491. to 747.DSCBoller and Wiedemann, 1998AC
10.9475.DSCBack, Grzyll, et al., 1996Based on data from 460. to 647. K.; AC
11.6 ± 0.07400.EBChirico, Knipmeyer, et al., 1993AC
11.1440.EBChirico, Knipmeyer, et al., 1993AC
10.5480.EBChirico, Knipmeyer, et al., 1993AC
9.92520.EBChirico, Knipmeyer, et al., 1993AC
10.6528.N/ALee and Holder, 1993Based on data from 513. to 613. K.; AC
11.4423.EBAmbrose, Ewing, et al., 1990Based on data from 418. to 613. K.; AC
12.1367.AStephenson and Malanowski, 1987Based on data from 352. to 500. K.; AC
10.7506.AStephenson and Malanowski, 1987Based on data from 491. to 565. K.; AC
10.3578.AStephenson and Malanowski, 1987Based on data from 563. to 663. K.; AC
10.3676.AStephenson and Malanowski, 1987Based on data from 661. to 750. K.; AC
12.0 ± 0.05370.N/Ade Kruif, Kuipers, et al., 1981Based on data from 353. to 388. K.; AC
10.7466.N/AWilson, Johnston, et al., 1981Based on data from 441. to 727. K.; AC
12.1369.N/AFowler, Trump, et al., 1968Based on data from 354. to 453. K.; AC
11.7414.N/ACamin and Rossini, 1955Based on data from 399. to 491. K.; AC
11.1441.CBarrow and McClellan, 1951AC
11.5379.ICramer, 1943AC
11.3423.IMortimer and Murphy, 1923Based on data from 373. to 473. K.; AC
11.4427.INELSON and SENSEMAN, 1922Based on data from 360. to 494. K.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
52.41323.Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
353.48 to 452.304.265461831.571-61.329Fowler, Trump, et al., 1968Coefficents calculated by NIST from author's data.
399.47 to 491.793.964961606.529-85.923Camin and Rossini, 1955 

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
17.285298.15N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
17.4327.GSGrayson and Fosbraey, 2006Based on data from 302. to 352. K.; AC
15. ± 0.1281. to 290.LEMcEachern and Sandoval, 2001AC
21.0 ± 0.60267. to 303.MEBoller and Wiedemann, 1998AC
17.1333.GSNass, Lenoir, et al., 1995Based on data from 313. to 353. K.; AC
17.6 ± 0.24258.GSWania, Shiu, et al., 1994Based on data from 243. to 273. K.; AC
18.7 ± 0.2337. to 352.GCKhudyakov, 1988AC
16.9 ± 1.323.DSCTorres-Gomez, Barreiro-Rodriguez, et al., 1988AC
17.5315.GSSATO, INOMATA, et al., 1986Based on data from 299. to 331. K.; AC
17.3 ± 0.2293. to 331.QRGlukhova, Arkhangelova, et al., 1985AC
16.7333. to 393.GSMatsubara and Kuwamoto, 1985AC
18.1 ± 0.26303.GSSonnefeld, Zoller, et al., 1983Based on data from 283. to 323. K.; AC
17.4 ± 0.07271. to 285.MEColomina, Jimenez, et al., 1982AC
17.3 ± 0.02274. to 353.DMde Kruif, Kuipers, et al., 1981AC
17.4 ± 0.1253. to 273.TEKruif, 1980AC
18.2 ± 0.48328. to 398.DSCMurray, Cavell, et al., 1980AC
17.0293.GSMacknick and Prausnitz, 1979Based on data from 280. to 305. K.; AC
17.87 ± 0.1253. to 273.TEDe Kruif and Van Ginkel, 1977AC
17.7 ± 0.05253. to 273.MEDe Kruif and Van Ginkel, 1977AC
17.3 ± 0.07263. to 343.DMAmbrose, Lawrenson, et al., 1975AC
16.2 ± 0.84280.HSAChickos, 1975AC
17.77 ± 0.41303. to 329.TSGCMcEachern, Sandoval, et al., 1975AC
17.38 ± 0.40283.VRadchenko and Kitaigorodskii, 1974ALS
17.4283. to 323.MERadchenko, 1971AC
15.90 ± 0.20283.VKaryakin, Rabinovich, et al., 1968ALS
17.4 ± 0.07230. to 260.KGMiller, 1963See also Cox and Pilcher, 1970.; AC
15.84 ± 0.54354.7VAihara, 1959crystal phase; ALS
15.8276. to 283.VAihara, 1959, 2AC
16.5268.N/AHoyer and Peperle, 1958Based on data from 253. to 283. K.; AC
15.7293.EffusionSklyarenko, Markin, et al., 1958Based on data from 283. to 303. K.; AC
17.2292.N/ASherwood and Bryant, 1957Based on data from 273. to 311. K.; AC
17.3279. to 294.N/ABradley and Cleasby, 1953See also Jones, 1960 and Sears and Hopke, 1954.; AC
17.300279.7VBradley and Cleasby, 1953, 2ALS
15.7297.EffusionZibberman-Granovskaya, 1940Based on data from 288. to 306. K.; AC
18.3237. to 276.N/AAndrews, 1925AC
19.6293.MESwan and Mack, 1925Based on data from 283. to 303. K.; AC

Entropy of sublimation

ΔsubS (cal/mol*K) Temperature (K) Reference Comment
57.98298.15Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.4959353.44N/AMastrangelo, 1957DH
4.3561353.43N/AMcCullough, Finke, et al., 1957DH
4.5889353.0N/ASpaght, Thomas, et al., 1932DH
4.57353.5DSCSharma, Gupta, et al., 2008AC
3.929353.8DSCHafsaoui and Mahmoud, 2007AC
4.673354.7DSCKhimeche and Dahmani, 2006AC
4.673354.7DSCKhimeche and Dahmani, 2006, 2AC
4.54353.4ACChirico, Knipmeyer, et al., 2002Based on data from 5. to 440. K.; AC
4.57353.4N/AAcree, 1991AC
4.5459354.1N/ASyunyaev, Tumanyan, et al., 1984Relative error in determination ± 5%.; DH
4.5650353.5N/ARastogi and Bassi, 1964DH
4.4897353.N/AUeberreiter and Orthmann, 1950DH
4.4909353.4N/AEibert, 1944DH
4.5507353.4N/ASchmidt, 1941DH
4.5411353.1N/AAndrews, Lynn, et al., 1926DH
4.6009353.N/ADavid, 1964Temperature not measured.; DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
12.33353.43McCullough, Finke, et al., 1957DH
13.0353.0Spaght, Thomas, et al., 1932DH
12.8354.1Syunyaev, Tumanyan, et al., 1984Relative; DH
12.9353.5Rastogi and Bassi, 1964DH
12.7353.Ueberreiter and Orthmann, 1950DH
12.7353.4Eibert, 1944DH
12.9353.4Schmidt, 1941DH
12.9353.1Andrews, Lynn, et al., 1926DH
13.353.David, 1964Temperature; DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
4.5521353.376crystaline, IliquidAndon and Connett, 1980DH
4.5411353.8crystaline, IliquidRadomska and Radomski, 1980DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
12.88353.376crystaline, IliquidAndon and Connett, 1980DH
12.83353.8crystaline, IliquidRadomska and Radomski, 1980DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr394.2 ± 1.2kcal/molBranReed and Kass, 2000gas phase; B
Δr394.2 ± 1.2kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr394.0 ± 5.0kcal/molCIDCLardin, Squires, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr385.6 ± 1.3kcal/molH-TSReed and Kass, 2000gas phase; B
Δr383.8 ± 1.2kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr385.4 ± 5.1kcal/molH-TSLardin, Squires, et al., 2001gas phase; B

C6H7N+ + Naphthalene = (C6H7N+ • Naphthalene)

By formula: C6H7N+ + C10H8 = (C6H7N+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr15.4kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.3324.PHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

C12H8+ + Naphthalene = (C12H8+ • Naphthalene)

By formula: C12H8+ + C10H8 = (C12H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr5.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H9+ + Naphthalene = (C12H9+ • Naphthalene)

By formula: C12H9+ + C10H8 = (C12H9+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.9kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

2Hydrogen + Naphthalene = Naphthalene, 1,2,3,4-tetrahydro-

By formula: 2H2 + C10H8 = C10H12

Quantity Value Units Method Reference Comment
Δr-29.8kcal/molEqkFrye and Weitkamp, 1969gas phase; ALS
Δr-28.8 ± 1.2kcal/molEqkWilson, Caflisch, et al., 1958gas phase; Reanalyzed by Cox and Pilcher, 1970, 2, Original value = -32.0 ± 1.2 kcal/mol; At 400 K; ALS

Benzobicyclo[2.2.0]hexa-2,5-diene = Naphthalene

By formula: C10H8 = C10H8

Quantity Value Units Method Reference Comment
Δr-59.4 ± 1.9kcal/molEqkDreeskamp, Kapahnke, et al., 1988liquid phase; solvent: Heptane; Isomerization; ALS
Δr-59.6 ± 1.9kcal/molCisoGrimme and Heinze, 1978liquid phase; solvent: Heptane; ALS

C10H8+ + Naphthalene = (C10H8+ • Naphthalene)

By formula: C10H8+ + C10H8 = (C10H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.8kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr395.5 ± 1.3kcal/molBranReed and Kass, 2000gas phase; B
Quantity Value Units Method Reference Comment
Δr386.9 ± 1.4kcal/molH-TSReed and Kass, 2000gas phase; B

H4O4- + Naphthalene + 2Water = C10H12O4-

By formula: H4O4- + C10H8 + 2H2O = C10H12O4-

Quantity Value Units Method Reference Comment
Δr52.3 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

H2O3- + Naphthalene + Water = C10H10O3-

By formula: H2O3- + C10H8 + H2O = C10H10O3-

Quantity Value Units Method Reference Comment
Δr37.8 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C10H9+ + Naphthalene = (C10H9+ • Naphthalene)

By formula: C10H9+ + C10H8 = (C10H9+ • C10H8)

Quantity Value Units Method Reference Comment
Δr14.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

Oxygen anion + Naphthalene = C10H8O2-

By formula: O2- + C10H8 = C10H8O2-

Quantity Value Units Method Reference Comment
Δr22.1 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Naphthalene = C10H8NO-

By formula: NO- + C10H8 = C10H8NO-

Quantity Value Units Method Reference Comment
Δr14.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C10H8NO- + 2Naphthalene = C20H16NO-

By formula: C10H8NO- + 2C10H8 = C20H16NO-

Quantity Value Units Method Reference Comment
Δr23.8 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

5Hydrogen + Naphthalene = Naphthalene, decahydro-, cis-

By formula: 5H2 + C10H8 = C10H18

Quantity Value Units Method Reference Comment
Δr-76.0kcal/molEqkFrye and Weitkamp, 1969gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C10H8+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.144 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)191.9kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity186.3kcal/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
-0.2LPESLyapustina, Xu, et al., 2000Extrapolated from EAs of solvation series naphthalene-...(H2O)n; B
-0.18N/ASong, Han, et al., 2002Extrapolated from LPES EAs of (naphthalene)n; B
-0.200 ± 0.050LPESSchiedt, Knott, et al., 2000Extrapolated from EAs of (H2O)n..naphthalene-. series; B
-0.1908ETSBurrow, Michejda, et al., 1987The question of whether the naphthalene radical anion is bound or not has not been settled; B
0.140 ± 0.050ECDZlatkis, Lee, et al., 1983However, see Heinis, Chowdhury, et al., 1993 for a discussion; it may not be bound.; B
<0.134 ± 0.043ECDWojnarovits and Foldiak, 1981EA is an upper limit: Chen and Wentworth, 1989. G3MP2B3 calculations indicate an EA of ca. -0.3 eV, anion unbound.; B
0.1480 ± 0.0060ECDBecker and Chen, 1966B

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
191.2Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
185.1Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
8.12 ± 0.02TRPIGotkis, Oleinikova, et al., 1993LL
8.1442 ± 0.0009TECockett, Ozeki, et al., 1993LL
8.12 ± 0.01PIJochims, Rasekh, et al., 1992LL
8.14EIStahl and Maquin, 1984LBLHLM
8.141 ± 0.001LSDuncan, Dietz, et al., 1981LLK
8.08 ± 0.05EQMautner(Meot-Ner), 1980LLK
8.15PESchafer, Schweig, et al., 1975LLK
8.15PESchafer, Schweig, et al., 1973LLK
8.12CTSPitt, 1973LLK
8.15PEClark, Brogli, et al., 1972LLK
8.13PEBrundle, Robin, et al., 1972LLK
8.15PEBrogli, Heilbronner, et al., 1972LLK
8.16 ± 0.03EIJohnstone, Mellon, et al., 1970RDSH
8.11 ± 0.01PEDewar and Worley, 1969RDSH
8.15 ± 0.01PIYencha and El-Sayed, 1968RDSH
8.133SKitagawa, 1968RDSH
8.14PIKitagawa, 1968RDSH
8.12 ± 0.05PEEland and Danby, 1968RDSH
8.136 ± 0.005SAngus, Christ, et al., 1968RDSH
8.25 ± 0.01EIBonnier, Gelus, et al., 1965RDSH
8.15CTSKuroda, 1964RDSH
8.16CTSBriegleb, 1964RDSH
8.08CTSKinoshita, 1962RDSH
8.1PITerenin, 1961RDSH
8.10CTSBirks and Stifkin, 1961RDSH
8.12 ± 0.01PIWatanabe, 1957RDSH
8.14 ± 0.02PIVilesov and Terenin, 1957RDSH
8.09PEKlasinc, Kovac, et al., 1983Vertical value; LBLHLM
8.15PEKaim, Tesmann, et al., 1980Vertical value; LLK
8.15 ± 0.02PESchmidt, 1977Vertical value; LLK
8.18 ± 0.03PEHeilbronner, Hoshi, et al., 1976Vertical value; LLK
8.15PEClar and Schmidt, 1976Vertical value; LLK
8.31 ± 0.03PEMarschner and Goetz, 1974Vertical value; LLK
8.15PEBock, Wagner, et al., 1972Vertical value; LLK
8.15PEBock and Wagner, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H3+19.35?PIJochims, Rasekh, et al., 1993LL
C3H3+19.2 ± 0.1C3H3+C4H2PIJochims, Rasekh, et al., 1992LL
C4H2+20.7 ± 0.13C2H2PIJochims, Rasekh, et al., 1992LL
C4H3+22.3 ± 0.12C2H2+C2HPIJochims, Rasekh, et al., 1992LL
C4H4+19.4 ± 0.1C4H2+C2H2PIJochims, Rasekh, et al., 1992LL
C4H4+19.6 ± 0.20?EIVanBrunt and Wacks, 1964RDSH
C5H3+19.74?PIJochims, Rasekh, et al., 1993LL
C5H3+19.7 ± 0.1C2H2+C3H3PIJochims, Rasekh, et al., 1992LL
C6H3+20.77 ± 0.01?EIVanBrunt and Wacks, 1964RDSH
C6H4+18.7 ± 0.12C2H2PIJochims, Rasekh, et al., 1992LL
C6H4+18.2 ± 0.15?EIVanBrunt and Wacks, 1964RDSH
C6H5+18.72?PIJochims, Rasekh, et al., 1993LL
C6H5+18.6 ± 0.1C2H2+C2HPIJochims, Rasekh, et al., 1992LL
C6H5+18.45 ± 0.05?EIVanBrunt and Wacks, 1964RDSH
C6H6+15.64C4H2PIJochims, Rasekh, et al., 1993LL
C6H6+15.7 ± 0.1C4H2PIJochims, Rasekh, et al., 1992LL
C6H6+15.20 ± 0.05?EIVanBrunt and Wacks, 1964RDSH
C7H3+20.66 ± 0.15C3H3+H2PIJochims, Rasekh, et al., 1992LL
C7H5+15.90C3H3PIJochims, Rasekh, et al., 1993LL
C7H5+16.1 ± 0.1C3H3PIJochims, Rasekh, et al., 1992LL
C8H5+19.00 ± 0.05C2H2+HPIJochims, Rasekh, et al., 1992LL
C8H5+18.07 ± 0.05?EIVanBrunt and Wacks, 1964RDSH
C8H6+15.50C2H2PIJochims, Rasekh, et al., 1993LL
C8H6+12.74C2H2EVALGotkis, Oleinikova, et al., 1993T = 0K; LL
C8H6+14.43C2H2TRPIGotkis, Oleinikova, et al., 1993LL
C8H6+15.4 ± 0.1C2H2PIJochims, Rasekh, et al., 1992LL
C8H6+15.4 ± 0.10C2H2EIVanBrunt and Wacks, 1964RDSH
C10H6+15.60 ± 0.05H2PIJochims, Rasekh, et al., 1992LL
C10H6+16.2 ± 0.15H2EIVanBrunt and Wacks, 1964RDSH
C10H7+15.41HPIJochims, Rasekh, et al., 1993LL
C10H7+12.37HEVALGotkis, Oleinikova, et al., 1993T = 0K; LL
C10H7+14.24HTRPIGotkis, Oleinikova, et al., 1993LL
C10H7+15.4 ± 0.1HPIJochims, Rasekh, et al., 1992LL
C10H7+15.4 ± 0.10HEIVanBrunt and Wacks, 1964RDSH

De-protonation reactions

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr394.2 ± 1.2kcal/molBranReed and Kass, 2000gas phase; B
Δr394.2 ± 1.2kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr394.0 ± 5.0kcal/molCIDCLardin, Squires, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr385.6 ± 1.3kcal/molH-TSReed and Kass, 2000gas phase; B
Δr383.8 ± 1.2kcal/molTDEqMeot-ner, Liebman, et al., 1988gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B
Δr385.4 ± 5.1kcal/molH-TSLardin, Squires, et al., 2001gas phase; B

C10H7- + Hydrogen cation = Naphthalene

By formula: C10H7- + H+ = C10H8

Quantity Value Units Method Reference Comment
Δr395.5 ± 1.3kcal/molBranReed and Kass, 2000gas phase; B
Quantity Value Units Method Reference Comment
Δr386.9 ± 1.4kcal/molH-TSReed and Kass, 2000gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C6H7N+ + Naphthalene = (C6H7N+ • Naphthalene)

By formula: C6H7N+ + C10H8 = (C6H7N+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr15.4kcal/molPHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.3324.PHPMSEl-Shall and Meot-Ner (Mautner), 1987gas phase; Entropy change calculated or estimated; M

C10H8+ + Naphthalene = (C10H8+ • Naphthalene)

By formula: C10H8+ + C10H8 = (C10H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.8kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr29.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

C10H8NO- + 2Naphthalene = C20H16NO-

By formula: C10H8NO- + 2C10H8 = C20H16NO-

Quantity Value Units Method Reference Comment
Δr23.8 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C10H9+ + Naphthalene = (C10H9+ • Naphthalene)

By formula: C10H9+ + C10H8 = (C10H9+ • C10H8)

Quantity Value Units Method Reference Comment
Δr14.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr30.cal/mol*KPHPMSMeot-Ner (Mautner), 1980gas phase; M

C12H8+ + Naphthalene = (C12H8+ • Naphthalene)

By formula: C12H8+ + C10H8 = (C12H8+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr12.6kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr5.1kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H9+ + Naphthalene = (C12H9+ • Naphthalene)

By formula: C12H9+ + C10H8 = (C12H9+ • C10H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.9kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr6.4kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

H2O3- + Naphthalene + Water = C10H10O3-

By formula: H2O3- + C10H8 + H2O = C10H10O3-

Quantity Value Units Method Reference Comment
Δr37.8 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

H4O4- + Naphthalene + 2Water = C10H12O4-

By formula: H4O4- + C10H8 + 2H2O = C10H12O4-

Quantity Value Units Method Reference Comment
Δr52.3 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Nitric oxide anion + Naphthalene = C10H8NO-

By formula: NO- + C10H8 = C10H8NO-

Quantity Value Units Method Reference Comment
Δr14.5 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

Oxygen anion + Naphthalene = C10H8O2-

By formula: O2- + C10H8 = C10H8O2-

Quantity Value Units Method Reference Comment
Δr22.1 ± 2.3kcal/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1434
NIST MS number 228342

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Ferguson, Reeves, et al., 1957
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 1174
Instrument Beckman DU
Melting point 80.2
Boiling point 217.9

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons, Thermochim. Acta, 1986, 102, 59-66. [all data]

Dorofeeva O.V., 1988
Dorofeeva O.V., Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]

Barrow G.M., 1951
Barrow G.M., The thermodynamic properties of naphthalene, J. Am. Chem. Soc., 1951, 73, 573-575. [all data]

McClellan A.L., 1955
McClellan A.L., Vibrational assignment and thermodynamic properties of naphthalene, J. Chem. Phys., 1955, 23, 245-248. [all data]

Lielmezs J., 1981
Lielmezs J., Jr., Thermodynamic functions for naphthalene, Thermochim. Acta, 1981, 47, 287-308. [all data]

Chirico, Knipmeyer, et al., 1993
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene, J. Chem. Thermodyn., 1993, 25, 1461-1494. [all data]

McCullough, Finke, et al., 1957
McCullough, J.P.; Finke, H.L.; Messerly, J.F.; Kincheloe, T.C.; Waddington, G., The low temperature thermodynamic properties of naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 1,2,3,4-tetrahydronaphthalene, trans-decahydronaphthalene and cis-decahydronaphthalene, J. Phys. Chem., 1957, 61, 1105-1116. [all data]

Southard and Brickwedde, 1933
Southard, J.C.; Brickwedde, F.G., Low temperature specific heats. I. An improved calorimeter for use from 14 to 300 K. The heat capacity and entropy of naphthalene. J. Am. Chem. Soc., 1933, 4378-4384. [all data]

Pearce and Tanner, 1934
Pearce, J.N.; Tanner, W.B., The heat capacity and the free energy of formation of naphthalene, Proc. Iowa Acad. Sci., 1934, 41, 123-126. [all data]

Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Daniels, A.C., Thermal data on organic compounds. VII. The heat capacities, entropies and free energies of twelve aromatic hydrocarbons, J. Am. Chem. Soc., 1930, 52, 1547-1558. [all data]

David, 1964
David, D.J., Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters, Anal. Chem., 1964, 36, 2162-2166. [all data]

Rastogi and Bassi, 1964
Rastogi, R.P.; Bassi, P.S., Mechanism of eutectic crystallization, J. Phys. Chem., 1964, 68, 2398-2406. [all data]

Ueberreiter and Orthmann, 1950
Ueberreiter, K.; Orthmann, H.-J., Specifische Wärme, spezifisches Volumen, Temperatur- und Wärme-leittähigkeit einiger disubstituierter Benzole und polycyclischer Systeme, Z. Natursforsch. 5a, 1950, 101-108. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]

Schmidt, 1941
Schmidt, W.R., Thesis Washington University (St. Louis), 1941. [all data]

Hicks, 1938
Hicks, J.F.G., Jr., A low temperature calorimeter. The heat capacity and entropy of thallium from 14 to 300°K. Low temperature studies. No. 3, J. Am. Chem. Soc., 1938, 60, 1000-1004. [all data]

Spaght, Thomas, et al., 1932
Spaght, M.E.; Thomas, S.B.; Parks, G.S., Some heat capacity data on organic compounds obtained with a radiation calorimeter, J. Phys. Chem., 1932, 36, 882-888. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Cheng, 1963
Cheng, D.C.H., Critical temperatures and volumes of some binary systems, Chem. Eng. Sci., 1963, 18, 715. [all data]

Chirico, Knipmeyer, et al., 1993, 2
Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Steele, W.V., The thermodynamic properties to the temperature 700 K of naphthalene and of 2,7-dimethylnaphthalene, J. Chem. Thermodyn., 1993, 25, 1461-94. [all data]

Schroeer, 1941
Schroeer, E., Critical State VI. Vapor-pressure Curve of Naphthalene Up To the Critical Point, Z. Phys. Chem., Abt. B, 1941, 49, 271-8. [all data]

Zhuravlev, 1937
Zhuravlev, D.I., Crit. Temp. and Orthobaric Density of Diphenyl Ether and Napphthalene naphthalene, Zh. Fiz. Khim., 1937, 9, 875. [all data]

Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S., Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects, J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s . [all data]

Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J., Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography, Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050 . [all data]

Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul, Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2 . [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A., A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry, Thermochim. Acta, 1988, 124, 229-233. [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Boller and Wiedemann, 1998
Boller, A.; Wiedemann, H.G., Journal of Thermal Analysis and Calorimetry, 1998, 53, 2, 431-439, https://doi.org/10.1023/A:1010133106907 . [all data]

Back, Grzyll, et al., 1996
Back, Dwight D.; Grzyll, Lawrence R.; Corrigan, Mary, DSC enthalpy of vaporization measurements of high temperature two-phase working fluids, Thermochimica Acta, 1996, 272, 53-63, https://doi.org/10.1016/0040-6031(95)02615-0 . [all data]

Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D., Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene, J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034 . [all data]

Ambrose, Ewing, et al., 1990
Ambrose, D.; Ewing, M.B.; Ghiassee, N.B.; Sanchez Ochoa, J.C., The ebulliometric method of vapour-pressure measurement: vapour pressures of benzene, hexafluorobenzene, and naphthalene, The Journal of Chemical Thermodynamics, 1990, 22, 6, 589-605, https://doi.org/10.1016/0021-9614(90)90151-F . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

de Kruif, Kuipers, et al., 1981
de Kruif, C.G.; Kuipers, T.; van Miltenburg, J.C.; Schaake, R.C.F.; Stevens, G., The vapour pressure of solid and liquid naphthalene, The Journal of Chemical Thermodynamics, 1981, 13, 11, 1081-1086, https://doi.org/10.1016/0021-9614(81)90006-9 . [all data]

Wilson, Johnston, et al., 1981
Wilson, Grant M.; Johnston, Robert H.; Hwang, Shuen-Cheng.; Tsonopoulos, Constantine., Volatility of coal liquids at high temperatures and pressures, Ind. Eng. Chem. Proc. Des. Dev., 1981, 20, 1, 94-104, https://doi.org/10.1021/i200012a015 . [all data]

Fowler, Trump, et al., 1968
Fowler, Lewis.; Trump, Walter N.; Vogler, Carl E., Vapor pressure of naphthalene. Measurements between 40.deg. and 180.deg., J. Chem. Eng. Data, 1968, 13, 2, 209-210, https://doi.org/10.1021/je60037a020 . [all data]

Camin and Rossini, 1955
Camin, David L.; Rossini, Frederick D., Physical Properties of Fourteen API Research Hydrocarbons, C 9 to C 15, J. Phys. Chem., 1955, 59, 11, 1173-1179, https://doi.org/10.1021/j150533a014 . [all data]

Barrow and McClellan, 1951
Barrow, Gordon M.; McClellan, A.L., The Thermodynamic Properties of Naphthalene, J. Am. Chem. Soc., 1951, 73, 2, 573-575, https://doi.org/10.1021/ja01146a020 . [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v., The Vapor Pressures of Some Substances Found in Coal Tar., Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012 . [all data]

NELSON and SENSEMAN, 1922
NELSON, O.A.; SENSEMAN, C.E., Vapor Pressure Determinations on Naphthalene, Anthracene, Phecanthrene, and Anthraquinone between Their Melting and Boiling Points, J. Ind. Eng. Chem., 1922, 14, 1, 58-62, https://doi.org/10.1021/ie50145a028 . [all data]

Grayson and Fosbraey, 2006
Grayson, B. Terence; Fosbraey, Lynda A., Determination of the vapour pressure of pesticides, Pestic. Sci., 2006, 13, 3, 269-278, https://doi.org/10.1002/ps.2780130308 . [all data]

McEachern and Sandoval, 2001
McEachern, D.M.; Sandoval, O., A molecular flow evaporation apparatus for measuring vapour pressures and heats of sublimation of organic compounds, J. Phys. E: Sci. Instrum., 2001, 6, 2, 155-161, https://doi.org/10.1088/0022-3735/6/2/026 . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

Wania, Shiu, et al., 1994
Wania, Frank; Shiu, Wan-Ying; Mackay, Donald, Measurement of the Vapor Pressure of Several Low-Volatility Organochlorine Chemicals at Low Temperatures with a Gas Saturation Method, J. Chem. Eng. Data, 1994, 39, 3, 572-577, https://doi.org/10.1021/je00015a039 . [all data]

Khudyakov, 1988
Khudyakov, V.L., Russ. J. Phys. Chem., 1988, 62, 1743. [all data]

SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO, Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method., J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145 . [all data]

Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron, The low-temperature quartz resonator method for determination of the enthalpy of sublimation, Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1 . [all data]

Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru, Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique, Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9 . [all data]

Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E., Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons, Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022 . [all data]

Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C., Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid, J. Chem. Thermodyn., 1982, 14, 779-784. [all data]

Kruif, 1980
Kruif, C.G., Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons, J. Chem. Thermodyn., 1980, 12, 243-248. [all data]

Murray, Cavell, et al., 1980
Murray, J.P.; Cavell, K.J.; Hill, J.O., A DSC study of benzoic acid: a suggested calibrant compound, Thermochimica Acta, 1980, 36, 1, 97-101, https://doi.org/10.1016/0040-6031(80)80114-6 . [all data]

Macknick and Prausnitz, 1979
Macknick, A. Brian; Prausnitz, John M., Vapor pressures of high-molecular-weight hydrocarbons, J. Chem. Eng. Data, 1979, 24, 3, 175-178, https://doi.org/10.1021/je60082a012 . [all data]

De Kruif and Van Ginkel, 1977
De Kruif, C.G.; Van Ginkel, C.H.D., Torsion-weighing effusion vapour-pressure measurements on organic compounds, The Journal of Chemical Thermodynamics, 1977, 9, 8, 725-730, https://doi.org/10.1016/0021-9614(77)90015-5 . [all data]

Ambrose, Lawrenson, et al., 1975
Ambrose, D.; Lawrenson, I.J.; Sprake, C.H.S., The vapour pressure of naphthalene, The Journal of Chemical Thermodynamics, 1975, 7, 12, 1173-1176, https://doi.org/10.1016/0021-9614(75)90038-5 . [all data]

Chickos, 1975
Chickos, James Speros, A simple equilibrium method for determining heats of sublimation, J. Chem. Educ., 1975, 52, 2, 134-39, https://doi.org/10.1021/ed052p134 . [all data]

McEachern, Sandoval, et al., 1975
McEachern, D.M.; Sandoval, O.; Iniguez, J.C., Vapor pressures, derived enthalpies of sublimation, enthalpies of fusion, and resonance energies of acridine and phenazine, J. Chem. Thermodyn., 1975, 7, 299-306. [all data]

Radchenko and Kitaigorodskii, 1974
Radchenko, L.G.; Kitaigorodskii, A.I., The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, decafluorobiphenyl, acenaphthene and α-nitronaphthalene, Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1595. [all data]

Radchenko, 1971
Radchenko, L.G., Zh. Fiz. Khim., 1971, 45, 5, 1310. [all data]

Karyakin, Rabinovich, et al., 1968
Karyakin, N.V.; Rabinovich, I.B.; Pakhomov, L.G., Heats of sublimation of naphthalene and its monosubstituted β-derivatives, Russ. J. Phys. Chem. (Engl. Transl.), 1968, 42, 954. [all data]

Miller, 1963
Miller, George A., Vapor Pressure of Naphthalene. Thermodynamic Consistency with Proposed Frequency Assignments., J. Chem. Eng. Data, 1963, 8, 1, 69-72, https://doi.org/10.1021/je60016a019 . [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Aihara, 1959, 2
Aihara, Ariyuki, Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy, Bull. Chem. Soc. Jpn., 1959, 32, 11, 1242-1248, https://doi.org/10.1246/bcsj.32.1242 . [all data]

Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W., Z. Elektrochem., 1958, 62, 61. [all data]

Sklyarenko, Markin, et al., 1958
Sklyarenko, S.I.; Markin, B.I.; Belyaeva, L.B., Zh. Fiz. Khim., 1958, 32, 1916. [all data]

Sherwood and Bryant, 1957
Sherwood, T.K.; Bryant, J.H., Jr., Can. J. Chem. Eng., 1957, 35, 51. [all data]

Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G., 346. The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanic acid, J. Chem. Soc., 1953, 1681, https://doi.org/10.1039/jr9530001681 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Sears and Hopke, 1954
Sears, G.W.; Hopke, E.R., The Vapor Pressure of Naphthalene, J. Am. Chem. Soc., 1954, 76, 7, 2026-2026, https://doi.org/10.1021/ja01636a099 . [all data]

Bradley and Cleasby, 1953, 2
Bradley, R.S.; Cleasby, T.G., The vapour pressure and lattice energy of some aromatic ring compounds, J. Am. Chem. Soc., 1953, 1690-16. [all data]

Zibberman-Granovskaya, 1940
Zibberman-Granovskaya, A.A., Russ. J. Phys. Chem., 1940, 14, 759. [all data]

Andrews, 1925
Andrews, Mary R., Vapor Pressure of Naphthalene at Low Temperatures, J. Phys. Chem., 1925, 30, 11, 1497-1500, https://doi.org/10.1021/j150269a005 . [all data]

Swan and Mack, 1925
Swan, Thomas H.; Mack, Edward, VAPOR PRESSURES OF ORGANIC CRYSTALS BY AN EFFUSION METHOD, J. Am. Chem. Soc., 1925, 47, 8, 2112-2116, https://doi.org/10.1021/ja01685a005 . [all data]

Mastrangelo, 1957
Mastrangelo, S.V.R., Adiabatic calorimeter for determination of cryoscopic data, Anal. Chem., 1957, 29(5), 841-845. [all data]

Sharma, Gupta, et al., 2008
Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R., Physico-mechanical properties of naphthalene--acenaphthene eutectic system by different modes of solidification, Materials Chemistry and Physics, 2008, 111, 2-3, 423-430, https://doi.org/10.1016/j.matchemphys.2008.04.049 . [all data]

Hafsaoui and Mahmoud, 2007
Hafsaoui, S.L.; Mahmoud, R., Solid-liquid equilibria of binary systems containing n-tetracosane with naphthalene or dibenzofuran, J Therm Anal Calorim, 2007, 88, 2, 565-570, https://doi.org/10.1007/s10973-006-8084-2 . [all data]

Khimeche and Dahmani, 2006
Khimeche, Kamel; Dahmani, Abdallah, Solid-Liquid Equilibria of Naphthalene + Alkanediamine Mixtures, J. Chem. Eng. Data, 2006, 51, 2, 382-385, https://doi.org/10.1021/je0502851 . [all data]

Khimeche and Dahmani, 2006, 2
Khimeche, K.; Dahmani, A., Determination by DSC of solid--liquid diagrams for polyaromatic -- 4,4'diaminodiphenylmethane binary systems, J Therm Anal Calorim, 2006, 84, 1, 47-52, https://doi.org/10.1007/s10973-005-7167-9 . [all data]

Chirico, Knipmeyer, et al., 2002
Chirico, R.D.; Knipmeyer, S.E.; Steele, W.V., Heat capacities, enthalpy increments, and derived thermodynamic functions for naphthalene between the temperatures 5K and 440K, The Journal of Chemical Thermodynamics, 2002, 34, 11, 1873-1884, https://doi.org/10.1016/S0021-9614(02)00262-8 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Syunyaev, Tumanyan, et al., 1984
Syunyaev, Z.I.; Tumanyan, B.P.; Kolesnikov, S.I.; Zhokhova, N.I., Some anomalies in melting points of binary mixtures of solid hydrocarbons, Zhur. Prikl. Khim. (Leningrad), 1984, 57, 666-669. [all data]

Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry, Thermochim. Acta, 1980, 42, 241-247. [all data]

Radomska and Radomski, 1980
Radomska, M.; Radomski, R., Calorimetric studies of binary systems of 1,3,5-trinitrobenzene with naphthalene, anthracene, and carbazole. I. Phase transitions and heat capacities of the pure components and charge-transfer complexes, Thermochim. Acta, 1980, 40, 405-414. [all data]

Reed and Kass, 2000
Reed, D.R.; Kass, S.R., Experimental determination of the alpha and beta C-H bond dissociation energies in naphthalene, J. Mass Spectrom., 2000, 35, 4, 534-539, https://doi.org/10.1002/(SICI)1096-9888(200004)35:4<534::AID-JMS964>3.0.CO;2-T . [all data]

Meot-ner, Liebman, et al., 1988
Meot-ner, M.; Liebman, J.F.; Kafafi, S.A., Ionic Probes of Aromaticity in Annelated Rings, J. Am. Chem. Soc., 1988, 110, 18, 5937, https://doi.org/10.1021/ja00226a001 . [all data]

Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B., Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine, J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z . [all data]

Lardin, Squires, et al., 2001
Lardin, H.A.; Squires, R.R.; Wenthold, P.G., Determination of the electron affinities of alpha- and beta- naphthyl radicals using the kinetic method with full entropy analysis. The C-H bond dissociation energies of naphthalene, J. Mass Spectrom., 2001, 36, 6, 607-615, https://doi.org/10.1002/jms.159 . [all data]

El-Shall and Meot-Ner (Mautner), 1987
El-Shall, M.S.; Meot-Ner (Mautner), M., Ionic Charge Transfer Complexes. 3. Delocalised pi Systems as Electron Acceptors and Donors, J. Phys. Chem., 1987, 91, 5, 1088, https://doi.org/10.1021/j100289a017 . [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]

Wilson, Caflisch, et al., 1958
Wilson, T.P.; Caflisch, E.G.; Hurley, G.F., The naphthalene-tetralin-hydrogen equilibrium at elevated temperature and pressure, J. Phys. Chem., 1958, 62, 1059. [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Dreeskamp, Kapahnke, et al., 1988
Dreeskamp, H.; Kapahnke, P.; Tochtermann, W., Photo valence isomerization of sterically strained aromatic hydrocarbons: 8,9-dicarbethoxy[6]paracyclophane, Radiat. Phys. Chem., 1988, 32, 537-539. [all data]

Grimme and Heinze, 1978
Grimme, W.; Heinze, U., Kinetics and enthalpy of isomerization of benzobicyclo[2.2.0]hexa-2,5-diene, Chem. Ber., 1978, 111, 2563-2570. [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Lyapustina, Xu, et al., 2000
Lyapustina, S.A.; Xu, S.K.; Nilles, J.M.; Bowen, K.H., Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study, J. Chem. Phys., 2000, 112, 15, 6643-6648, https://doi.org/10.1063/1.481237 . [all data]

Song, Han, et al., 2002
Song, J.K.; Han, S.Y.; Chu, I.H.; Kim, J.H.; Kim, S.K.; Lyapustina, S.A.; Xu, S.J.; Nilles, J.M.; Bowen, K.H., Photoelectron spectroscopy of naphthalene cluster anions, J. Chem. Phys., 2002, 116, 11, 4477-4481, https://doi.org/10.1063/1.1449869 . [all data]

Schiedt, Knott, et al., 2000
Schiedt, J.; Knott, W.J.; Le Barbu, K.; Schlag, E.W.; Weinkauf, R., Microsolvation of similar-sized aromatic molecules: Photoelectron spectroscopy of bithiophene-, azulene-, and naphthalene-water anion clusters, J. Chem. Phys., 2000, 113, 21, 9470-9478, https://doi.org/10.1063/1.1319874 . [all data]

Burrow, Michejda, et al., 1987
Burrow, P.D.; Michejda, J.A.; Jordan, K.D., Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons., J. Chem. Phys., 1987, 86, 1, 9, https://doi.org/10.1063/1.452598 . [all data]

Zlatkis, Lee, et al., 1983
Zlatkis, A.; Lee, C.K.; Wentworth, W.E.; Chen, E.C.M., Constant current linearization for determination of electron capture mechanisms, Anal. Chem., 1983, 55, 1596. [all data]

Heinis, Chowdhury, et al., 1993
Heinis, T.; Chowdhury, S.; Kebarle, P., Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes, Org. Mass Spectrom., 1993, 28, 4, 358, https://doi.org/10.1002/oms.1210280416 . [all data]

Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G., Electron capture detection of aromatic hydrocarbons, J. Chromatogr. Sci., 1981, 206, 511. [all data]

Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E., Experimental Determination of Electron Affinities of Organic Molecules, Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]

Becker and Chen, 1966
Becker, R.S.; Chen, E., Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons, J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Gotkis, Oleinikova, et al., 1993
Gotkis, Y.; Oleinikova, M.; Naor, M.; Lifshitz, C., Time-independent mass spectra and breakdown graphs. 17. Naphthalene and phenanthrene, J. Phys. Chem., 1993, 97, 12282. [all data]

Cockett, Ozeki, et al., 1993
Cockett, M.C.R.; Ozeki, H.; Okuyama, K.; Kimura, K., Vibronic coupling in the ground cationic state of naphthalene: A laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study, J. Chem. Phys., 1993, 98, 7763. [all data]

Jochims, Rasekh, et al., 1992
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S., The photofragmentation of naphthalene and azulene monocations in the energy range 7-22 eV, Chem. Phys., 1992, 168, 159. [all data]

Stahl and Maquin, 1984
Stahl, D.; Maquin, F., Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory, Chem. Phys. Lett., 1984, 108, 613. [all data]

Duncan, Dietz, et al., 1981
Duncan, M.A.; Dietz, T.G.; Smalley, R.E., Two-color photoionization of naphthalene and benzene at threshold, J. Chem. Phys., 1981, 75, 2118. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Schafer, Schweig, et al., 1975
Schafer, W.; Schweig, A.; Vermeer, H.; Bickel-haupt, F.; De Graaf, H., On the nature of the "free electron pair" on phosphorus in aromatic phosphorus compounds: the photoelectron spectrum of 2-phosphanaphthalene, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 91. [all data]

Schafer, Schweig, et al., 1973
Schafer, W.; Schweig, A.; Markl, G.; Heier, K.-H., Zur elektronenstruktur der lambda3- und lambda5-phosphanaphthaline--ungewohnlich grosse MO destabilisierungen, Tetrahedron Lett., 1973, 3743. [all data]

Pitt, 1973
Pitt, C.G., Hyperconjugation and its role in group IV chemistry, J. Organomet. Chem., 1973, 61, 49. [all data]

Clark, Brogli, et al., 1972
Clark, P.A.; Brogli, F.; Heilbronner, E., The π-orbital energies of the acenes, Helv. Chim. Acta, 1972, 55, 1415. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A., Perfluoro effect in photoelectron spectroscopy. II. Aromatic molecules, J. Am. Chem. Soc., 1972, 94, 1466. [all data]

Brogli, Heilbronner, et al., 1972
Brogli, F.; Heilbronner, E.; Kobayashi, T., Photoelectron spectra of azabenzenes and azanaphthalenes: II. A reinvestigation of azanaphthalenes by high-resolution photoelectron spectroscopy, Helv. Chim. Acta, 1972, 55, 274. [all data]

Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., Online acquisition of ionization efficiency data, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A., Lowest ionization potentials of some nitrogen heterocyclics, J. Chem. Phys., 1968, 48, 3469. [all data]

Kitagawa, 1968
Kitagawa, T., Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region, J. Mol. Spectry., 1968, 26, 1. [all data]

Eland and Danby, 1968
Eland, J.H.D.; Danby, C.J., Inner ionization potentials of aromatic compounds, Z. Naturforsch., 1968, 23a, 355. [all data]

Angus, Christ, et al., 1968
Angus, J.G.; Christ, B.J.; Morris, G.C., Absorption spectra in the vacuum ultraviolet and the ionization potentials of naphthalene and naphthalene-d, molecules, Australian J. Chem., 1968, 21, 2153. [all data]

Bonnier, Gelus, et al., 1965
Bonnier, J.-M.; Gelus, M.; Nounou, P., Contribution a l'etude de l'effet inductif et de l'effet d'hyperconjugaison dans quelques methylaromatiques, J. Chim. Phys., 1965, 10, 1191. [all data]

Kuroda, 1964
Kuroda, H., Ionization potentials of polycyclic aromatic hydrocarbons, Nature, 1964, 201, 1214. [all data]

Briegleb, 1964
Briegleb, G., Electron affinity of organic molecules, Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Terenin, 1961
Terenin, A., Charge transfer in organic solids, induced by light, Proc. Chem. Soc., London, 1961, 321. [all data]

Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A., π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons, Nature, 1961, 191, 761. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Kaim, Tesmann, et al., 1980
Kaim, W.; Tesmann, H.; Bock, H., Me3C-, Me3Si-, Me3Ge-, Me3Sn- und Me3Pb-substituierte benzol- und naphthalin-derivate und ihre radikalanionen, Chem. Ber., 1980, 113, 3221. [all data]

Schmidt, 1977
Schmidt, W., Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series, J. Chem. Phys., 1977, 66, 828. [all data]

Heilbronner, Hoshi, et al., 1976
Heilbronner, E.; Hoshi, T.; von Rosenberg, J.L.; Hafner, K., Alkyl-induced, natural hypsochromic shifts of the 2A←2X and 2B←2X transitions of azulene and naphthalene radical cations, Nouv. J. Chim., 1976, 1, 105. [all data]

Clar and Schmidt, 1976
Clar, E.; Schmidt, W., Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons, Tetrahedron, 1976, 32, 2563. [all data]

Marschner and Goetz, 1974
Marschner, F.; Goetz, H., Korrelation zwischen photoelektronen- und elektronen-spektren. II. Untersuchung aromatischer π-systeme mit modifizierten PPP-SCF-CI-parametern, Tetrahedron, 1974, 30, 3159. [all data]

Bock, Wagner, et al., 1972
Bock, H.; Wagner, G.; Kroner, J., Photoelektronenspektren und molekuleigenschaften, XIV. Die delokalisation des schwefel-elektronenpaar in CH3S-substituierten aromaten, Chem. Ber., 1972, 105, 3850. [all data]

Bock and Wagner, 1972
Bock, H.; Wagner, G., Electron lone pairs in organic sulfides and disulfides, Angew. Chem. Int. Ed. Engl., 1972, 11, 119. [all data]

Jochims, Rasekh, et al., 1993
Jochims, H.-W.; Rasekh, H.; Ruhl, E.; Baumgartel, H.; Leach, S., Deuterium isotope effects in the photofragmentation of naphthalene monocations, J. Phys. Chem., 1993, 97, 1312. [all data]

VanBrunt and Wacks, 1964
VanBrunt, R.J.; Wacks, M.E., Electron-impact studies of aromatic hydrocarbons. III. Azulene and naphthalene, J. Chem. Phys., 1964, 41, 3195. [all data]

Ferguson, Reeves, et al., 1957
Ferguson, J.; Reeves, L.W.; Schneider, W.G., Vapor absorption spectra and oscillator strengths of naphthalene, anthracene, and pyrene, Can. J. Chem., 1957, 35, 1117-1123. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References