Pyrrole

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas143.2kJ/molN/AZaheeruddin and Lodhi, 1991Value computed using ΔfHliquid° value of 98.0 kj/mol from Zaheeruddin and Lodhi, 1991 and ΔvapH° value of 45.2 kj/mol from Scott, Berg, et al., 1967.; DRB
Δfgas108.3 ± 0.50kJ/molCcbScott, Berg, et al., 1967ALS

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: 98.02 kJ/mol; ALS
Δfliquid63.1 ± 0.4kJ/molCcbScott, Berg, et al., 1967ALS
Quantity Value Units Method Reference Comment
Δcliquid  CcbZaheeruddin and Lodhi, 1991uncertain value: -2386.66 kJ/mol; ALS
Δcliquid-2351.7 ± 0.3kJ/molCcbScott, Berg, et al., 1967ALS
Δcliquid-2350.kJ/molCcbZimmerman and Geisenfelder, 1961ALS
Quantity Value Units Method Reference Comment
liquid156.44J/mol*KN/AScott, Berg, et al., 1967DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
127.74298.15Scott, Berg, et al., 1967T = 11 to 365 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil403. ± 1.KAVGN/AAverage of 15 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus250.15KN/ARosso and Carbonnel, 1973Uncertainty assigned by TRC = 0.6 K; TRC
Tfus254.7KN/ATimmermans and Hennaut-Roland, 1955Uncertainty assigned by TRC = 0.5 K; TRC
Tfus249.7KN/AAnonymous, 1942Uncertainty assigned by TRC = 0.2 K; TRC
Tfus238.8KN/AMilazzo, 1941Uncertainty assigned by TRC = 0.4 K; TRC
Quantity Value Units Method Reference Comment
Ttriple249.7300KN/AScott, Berg, et al., 1967, 2Uncertainty assigned by TRC = 0.07 K; by extrapolation of 1/f to zero; TRC
Ttriple249.74KN/AHelm, Lanum, et al., 1958Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at U.S. Bur. Mines, Bartlesville, OK; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from freezing curve; TRC
Ttriple249.74KN/AMcCullough and Waddington, 1957Uncertainty assigned by TRC = 0.06 K; IPTS-48, from heating curve; TRC
Quantity Value Units Method Reference Comment
Tc639.8KN/AMajer and Svoboda, 1985 
Tc639.7KN/ACheng, McCoubrey, et al., 1962Uncertainty assigned by TRC = 1.5 K; extrapolated to zero time to correct for decomposition cal. vs NPL thermometer.; TRC
Tc625.15KN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc56.742barN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0398 bar; TRC
Quantity Value Units Method Reference Comment
Δvap43. ± 6.kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
38.75403.N/AMajer and Svoboda, 1985 
42.5300.N/AKimizuka and Szydlowski, 1992Based on data from 285. to 329. K.; AC
42.5353.A,EB,IPStephenson and Malanowski, 1987Based on data from 338. to 440. K. See also Osborn and Douslin, 1968 and Scott, Berg, et al., 1967.; AC
41.9328.IEon, Pommier, et al., 1971Based on data from 313. to 373. K.; AC
41.9348.N/AStull, 1947Based on data from 333. to 373. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
362. to 403.62.70.2964639.8Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
333.4 to 373.55.320912074.447-9.186Eon, Pommier, et al., 1971Coefficents calculated by NIST from author's data.
338.82 to 439.264.427651506.877-62.155Osborn and Douslin, 1968 

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
7.9078249.74Scott, Berg, et al., 1967DH
7.91249.7Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
31.66249.74Scott, Berg, et al., 1967DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

pyrrolide anion + Hydrogen cation = Pyrrole

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr1504.3 ± 1.0kJ/molD-EAGianola, Ichino, et al., 2004gas phase; B
Δr1500. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1505. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1500. ± 21.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1468. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1472. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

CN- + Pyrrole = (CN- • Pyrrole)

By formula: CN- + C4H5N = (CN- • C4H5N)

Quantity Value Units Method Reference Comment
Δr97.9 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Δr82. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr64.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Δr51.5 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

Fluorine anion + Pyrrole = (Fluorine anion • Pyrrole)

By formula: F- + C4H5N = (F- • C4H5N)

Quantity Value Units Method Reference Comment
Δr143. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr111. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Chlorine anion + Pyrrole = (Chlorine anion • Pyrrole)

By formula: Cl- + C4H5N = (Cl- • C4H5N)

Quantity Value Units Method Reference Comment
Δr78.7 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr49.4 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Δr58.58kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
48.5421.PHPMSFrench, Ikuta, et al., 1982gas phase; M

HS- + Pyrrole = (HS- • Pyrrole)

By formula: HS- + C4H5N = (HS- • C4H5N)

Quantity Value Units Method Reference Comment
Δr96.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

pyrrolide anion + Pyrrole = (pyrrolide anion • Pyrrole)

By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)

Quantity Value Units Method Reference Comment
Δr111. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.2 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

MeCO2 anion + Pyrrole = (MeCO2 anion • Pyrrole)

By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)

Quantity Value Units Method Reference Comment
Δr100. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(C4H5N+ • Pyrrole) + Pyrrole = (C4H5N+ • 2Pyrrole)

By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

C4H5N+ + Pyrrole = (C4H5N+ • Pyrrole)

By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr69.0kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H6N+ • Pyrrole) + Pyrrole = (C4H6N+ • 2Pyrrole)

By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr127.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(pyrrolide anion • Pyrrole) + Pyrrole = (pyrrolide anion • 2Pyrrole)

By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H6N+ + Pyrrole = (C4H6N+ • Pyrrole)

By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr70.3kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(MeCO2 anion • Pyrrole) + Pyrrole = (MeCO2 anion • 2Pyrrole)

By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr74.9kJ/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSMeot-ner, 1988gas phase; M

CH6N+ + Pyrrole = (CH6N+ • Pyrrole)

By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr77.8kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

CH3CONHCH(CH3)COOCH3 + Pyrrole = (CH3CONHCH(CH3)COOCH3 • Pyrrole)

By formula: C6H11NO3 + C4H5N = (C6H11NO3 • C4H5N)

Quantity Value Units Method Reference Comment
Δr100.kJ/molPHPMSMeot-Ner (Mautner), 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr134.J/mol*KPHPMSMeot-Ner (Mautner), 1988gas phase; M

(Iron ion (1+) • Pyrrole) + Pyrrole = (Iron ion (1+) • 2Pyrrole)

By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr174.kJ/molRAKGapeev and Yang, 2000RCD

(Chromium ion (1+) • Pyrrole) + Pyrrole = (Chromium ion (1+) • 2Pyrrole)

By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr146.kJ/molRAKGapeev and Yang, 2000RCD

(Manganese ion (1+) • Pyrrole) + Pyrrole = (Manganese ion (1+) • 2Pyrrole)

By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr113.kJ/molRAKGapeev and Yang, 2000RCD

(Nickel ion (1+) • Pyrrole) + Pyrrole = (Nickel ion (1+) • 2Pyrrole)

By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr197.kJ/molRAKGapeev and Yang, 2000RCD

(Cobalt ion (1+) • Pyrrole) + Pyrrole = (Cobalt ion (1+) • 2Pyrrole)

By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr194.kJ/molRAKGapeev and Yang, 2000RCD

(Copper ion (1+) • Pyrrole) + Pyrrole = (Copper ion (1+) • 2Pyrrole)

By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr177. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Sodium ion (1+) + Pyrrole = (Sodium ion (1+) • Pyrrole)

By formula: Na+ + C4H5N = (Na+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr102. ± 4.6kJ/molCIDTHuang and Rodgers, 2002RCD

Potassium ion (1+) + Pyrrole = (Potassium ion (1+) • Pyrrole)

By formula: K+ + C4H5N = (K+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr83.7 ± 4.2kJ/molCIDTHuang and Rodgers, 2002RCD

Vanadium ion (1+) + Pyrrole = (Vanadium ion (1+) • Pyrrole)

By formula: V+ + C4H5N = (V+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>170.kJ/molRAKGapeev and Yang, 2000RCD

Nickel ion (1+) + Pyrrole = (Nickel ion (1+) • Pyrrole)

By formula: Ni+ + C4H5N = (Ni+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>280.kJ/molRAKGapeev and Yang, 2000RCD

Tungsten ion (1+) + Pyrrole = (Tungsten ion (1+) • Pyrrole)

By formula: W+ + C4H5N = (W+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>210.kJ/molRAKGapeev and Yang, 2000RCD

Cobalt ion (1+) + Pyrrole = (Cobalt ion (1+) • Pyrrole)

By formula: Co+ + C4H5N = (Co+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>280.kJ/molRAKGapeev and Yang, 2000RCD

Molybdenum ion (1+) + Pyrrole = (Molybdenum ion (1+) • Pyrrole)

By formula: Mo+ + C4H5N = (Mo+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>290.kJ/molRAKGapeev and Yang, 2000RCD

Iron ion (1+) + Pyrrole = (Iron ion (1+) • Pyrrole)

By formula: Fe+ + C4H5N = (Fe+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr226.kJ/molRAKGapeev and Yang, 2000RCD

Chromium ion (1+) + Pyrrole = (Chromium ion (1+) • Pyrrole)

By formula: Cr+ + C4H5N = (Cr+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr178.kJ/molRAKGapeev and Yang, 2000RCD

Manganese ion (1+) + Pyrrole = (Manganese ion (1+) • Pyrrole)

By formula: Mn+ + C4H5N = (Mn+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr177.kJ/molRAKGapeev and Yang, 2000RCD

Magnesium ion (1+) + Pyrrole = (Magnesium ion (1+) • Pyrrole)

By formula: Mg+ + C4H5N = (Mg+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

Aluminum ion (1+) + Pyrrole = (Aluminum ion (1+) • Pyrrole)

By formula: Al+ + C4H5N = (Al+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

Copper ion (1+) + Pyrrole = (Copper ion (1+) • Pyrrole)

By formula: Cu+ + C4H5N = (Cu+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr247.kJ/molRAKGapeev and Yang, 2000RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)8.207 ± 0.005eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)875.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity843.8kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
8.02PEKlasinc, Sabljic, et al., 1982LBLHLM
8.02PEGalasso, Klasinc, et al., 1981LLK
8.21PEWillett and Baer, 1980LLK
8.4 ± 0.1CEMSTedder and Vidaud, 1980LLK
8.207 ± 0.003PICooper, Williamson, et al., 1980LLK
8.208 ± 0.005PIWilliamson, Compton, et al., 1979LLK
~8.1EIVan Veen, 1976LLK
8.22 ± 0.05EIThorstad and Undheim, 1974LLK
8.40 ± 0.05EILinda, Marino, et al., 1971LLK
8.209PEDerrick, Asbrink, et al., 1971LLK
8.209SDerrick, Asbrink, et al., 1971LLK
8.20 ± 0.01PIPotapov and Yuzhakova, 1970RDSH
8.20 ± 0.01PIPotapov and Bazhenov, 1970RDSH
8.20 ± 0.01PIWatanabe, Nakayama, et al., 1962RDSH
8.23PECradock, Findlay, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH2N+12.40?PIWillett and Baer, 1980LLK
CH2N+12.1 ± 0.2C3H3CEMSTedder and Vidaud, 1980LLK
C2H3+13.60?PIWillett and Baer, 1980LLK
C2H3N+11.75C2H2EISakurai and Jennings, 1981LLK
C2H3N+11.75?PIWillett and Baer, 1980LLK
C3H2N+12.50?PIWillett and Baer, 1980LLK
C3H3+12.60?PIWillett and Baer, 1980LLK
C3H4+12.00?PIWillett and Baer, 1980LLK
C3H4+12.5 ± 0.2CHNCEMSTedder and Vidaud, 1980LLK
C4H4N+12.85HPIWillett and Baer, 1980LLK

De-protonation reactions

pyrrolide anion + Hydrogen cation = Pyrrole

By formula: C4H4N- + H+ = C4H5N

Quantity Value Units Method Reference Comment
Δr1504.3 ± 1.0kJ/molD-EAGianola, Ichino, et al., 2004gas phase; B
Δr1500. ± 9.2kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1505. ± 12.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1500. ± 21.kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1468. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1472. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Aluminum ion (1+) + Pyrrole = (Aluminum ion (1+) • Pyrrole)

By formula: Al+ + C4H5N = (Al+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

CH6N+ + Pyrrole = (CH6N+ • Pyrrole)

By formula: CH6N+ + C4H5N = (CH6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr77.8kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; M

CN- + Pyrrole = (CN- • Pyrrole)

By formula: CN- + C4H5N = (CN- • C4H5N)

Quantity Value Units Method Reference Comment
Δr97.9 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Δr82. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr113.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Δr99.6J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr64.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B
Δr51.5 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

MeCO2 anion + Pyrrole = (MeCO2 anion • Pyrrole)

By formula: C2H3O2- + C4H5N = (C2H3O2- • C4H5N)

Quantity Value Units Method Reference Comment
Δr100. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(MeCO2 anion • Pyrrole) + Pyrrole = (MeCO2 anion • 2Pyrrole)

By formula: (C2H3O2- • C4H5N) + C4H5N = (C2H3O2- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr74.9kJ/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KPHPMSMeot-ner, 1988gas phase; M

pyrrolide anion + Pyrrole = (pyrrolide anion • Pyrrole)

By formula: C4H4N- + C4H5N = (C4H4N- • C4H5N)

Quantity Value Units Method Reference Comment
Δr111. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr147.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.2 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

(pyrrolide anion • Pyrrole) + Pyrrole = (pyrrolide anion • 2Pyrrole)

By formula: (C4H4N- • C4H5N) + C4H5N = (C4H4N- • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr71.5kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H5N+ + Pyrrole = (C4H5N+ • Pyrrole)

By formula: C4H5N+ + C4H5N = (C4H5N+ • C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr69.0kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H5N+ • Pyrrole) + Pyrrole = (C4H5N+ • 2Pyrrole)

By formula: (C4H5N+ • C4H5N) + C4H5N = (C4H5N+ • 2C4H5N)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr57.7kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

C4H6N+ + Pyrrole = (C4H6N+ • Pyrrole)

By formula: C4H6N+ + C4H5N = (C4H6N+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr70.3kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

(C4H6N+ • Pyrrole) + Pyrrole = (C4H6N+ • 2Pyrrole)

By formula: (C4H6N+ • C4H5N) + C4H5N = (C4H6N+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr51.5kJ/molPHPMSHiraoka, Takimoto, et al., 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr127.J/mol*KPHPMSHiraoka, Takimoto, et al., 1987gas phase; M

Chlorine anion + Pyrrole = (Chlorine anion • Pyrrole)

By formula: Cl- + C4H5N = (Cl- • C4H5N)

Quantity Value Units Method Reference Comment
Δr78.7 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Quantity Value Units Method Reference Comment
Δr49.4 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B
Δr58.58kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
48.5421.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Cobalt ion (1+) + Pyrrole = (Cobalt ion (1+) • Pyrrole)

By formula: Co+ + C4H5N = (Co+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>280.kJ/molRAKGapeev and Yang, 2000RCD

(Cobalt ion (1+) • Pyrrole) + Pyrrole = (Cobalt ion (1+) • 2Pyrrole)

By formula: (Co+ • C4H5N) + C4H5N = (Co+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr194.kJ/molRAKGapeev and Yang, 2000RCD

Chromium ion (1+) + Pyrrole = (Chromium ion (1+) • Pyrrole)

By formula: Cr+ + C4H5N = (Cr+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr178.kJ/molRAKGapeev and Yang, 2000RCD

(Chromium ion (1+) • Pyrrole) + Pyrrole = (Chromium ion (1+) • 2Pyrrole)

By formula: (Cr+ • C4H5N) + C4H5N = (Cr+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr146.kJ/molRAKGapeev and Yang, 2000RCD

Copper ion (1+) + Pyrrole = (Copper ion (1+) • Pyrrole)

By formula: Cu+ + C4H5N = (Cu+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr247.kJ/molRAKGapeev and Yang, 2000RCD

(Copper ion (1+) • Pyrrole) + Pyrrole = (Copper ion (1+) • 2Pyrrole)

By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

Fluorine anion + Pyrrole = (Fluorine anion • Pyrrole)

By formula: F- + C4H5N = (F- • C4H5N)

Quantity Value Units Method Reference Comment
Δr143. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr107.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr111. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Iron ion (1+) + Pyrrole = (Iron ion (1+) • Pyrrole)

By formula: Fe+ + C4H5N = (Fe+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr226.kJ/molRAKGapeev and Yang, 2000RCD

(Iron ion (1+) • Pyrrole) + Pyrrole = (Iron ion (1+) • 2Pyrrole)

By formula: (Fe+ • C4H5N) + C4H5N = (Fe+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr174.kJ/molRAKGapeev and Yang, 2000RCD

HS- + Pyrrole = (HS- • Pyrrole)

By formula: HS- + C4H5N = (HS- • C4H5N)

Quantity Value Units Method Reference Comment
Δr96.2 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

Potassium ion (1+) + Pyrrole = (Potassium ion (1+) • Pyrrole)

By formula: K+ + C4H5N = (K+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr83.7 ± 4.2kJ/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr177. ± 17.kJ/molCIDTHuang and Rodgers, 2002RCD

Magnesium ion (1+) + Pyrrole = (Magnesium ion (1+) • Pyrrole)

By formula: Mg+ + C4H5N = (Mg+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr184.kJ/molRAKGapeev and Yang, 2000RCD

Manganese ion (1+) + Pyrrole = (Manganese ion (1+) • Pyrrole)

By formula: Mn+ + C4H5N = (Mn+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr177.kJ/molRAKGapeev and Yang, 2000RCD

(Manganese ion (1+) • Pyrrole) + Pyrrole = (Manganese ion (1+) • 2Pyrrole)

By formula: (Mn+ • C4H5N) + C4H5N = (Mn+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr113.kJ/molRAKGapeev and Yang, 2000RCD

Molybdenum ion (1+) + Pyrrole = (Molybdenum ion (1+) • Pyrrole)

By formula: Mo+ + C4H5N = (Mo+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>290.kJ/molRAKGapeev and Yang, 2000RCD

Sodium ion (1+) + Pyrrole = (Sodium ion (1+) • Pyrrole)

By formula: Na+ + C4H5N = (Na+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr102. ± 4.6kJ/molCIDTHuang and Rodgers, 2002RCD

Nickel ion (1+) + Pyrrole = (Nickel ion (1+) • Pyrrole)

By formula: Ni+ + C4H5N = (Ni+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>280.kJ/molRAKGapeev and Yang, 2000RCD

(Nickel ion (1+) • Pyrrole) + Pyrrole = (Nickel ion (1+) • 2Pyrrole)

By formula: (Ni+ • C4H5N) + C4H5N = (Ni+ • 2C4H5N)

Quantity Value Units Method Reference Comment
Δr197.kJ/molRAKGapeev and Yang, 2000RCD

Vanadium ion (1+) + Pyrrole = (Vanadium ion (1+) • Pyrrole)

By formula: V+ + C4H5N = (V+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>170.kJ/molRAKGapeev and Yang, 2000RCD

Tungsten ion (1+) + Pyrrole = (Tungsten ion (1+) • Pyrrole)

By formula: W+ + C4H5N = (W+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr>210.kJ/molRAKGapeev and Yang, 2000RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin U.S. BUREAU OF MINES, LARAMIE, WYO, USA
NIST MS number 34529

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source missing citation
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 17
Instrument Beckman DU
Melting point -23.4
Boiling point 129.7

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Zaheeruddin and Lodhi, 1991
Zaheeruddin, M.; Lodhi, Z.H., Enthalpies of formation of some cyclic compounds, Phys. Chem. (Peshawar Pak.), 1991, 10, 111-118. [all data]

Scott, Berg, et al., 1967
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical thermodynamic properties, J. Phys. Chem., 1967, 71, 2263-2270. [all data]

Zimmerman and Geisenfelder, 1961
Zimmerman, H.; Geisenfelder, H., Uber die Mesomerieenergie von Azolen, Z. Electrochem., 1961, 65, 368-371. [all data]

Rosso and Carbonnel, 1973
Rosso, M.J.-C.; Carbonnel, L., Hydrates + cubic clathrates generated by the nitrogenous meterocycles: the binary systems water + propylene imine and water + pyrrole, C. R. Seances Acad. Sci., Ser. C, 1973, 277, 259. [all data]

Timmermans and Hennaut-Roland, 1955
Timmermans, J.; Hennaut-Roland, M., Work of the International Bureau of Physical-Chemical Standards. IX. The Physical Constants of Twenty Organic Compounds, J. Chim. Phys. Phys.-Chim. Biol., 1955, 52, 223. [all data]

Anonymous, 1942
Anonymous, R., , Am. Pet. Inst. Res. Proj. 6, Natl. Bur. Stand., 1942. [all data]

Milazzo, 1941
Milazzo, G., Boll. Sci. Facolta Chim. Ind. Bologna, 1941, 94. [all data]

Scott, Berg, et al., 1967, 2
Scott, D.W.; Berg, W.T.; Hossenlopp, I.A.; Hubbard, W.N.; Messerly, J.F.; Todd, S.S.; Douslin, D.R.; McCullough, J.P.; Waddington, G., Pyrrole: Chemical Thermodynamic Properties, J. Phys. Chem., 1967, 71, 2263. [all data]

Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S., Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine, J. Phys. Chem., 1958, 62, 858. [all data]

McCullough and Waddington, 1957
McCullough, J.P.; Waddington, G., Melting-point purity determinations: limitations as evidenced by calorimetric studies in the melting region, Anal. Chim. Acta, 1957, 17, 80. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Cheng, McCoubrey, et al., 1962
Cheng, D.C.H.; McCoubrey, J.C.; Phillips, D.G., Critical Temperatures of Some Organic Cyclic Compounds, Trans. Faraday Soc., 1962, 58, 224. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Kimizuka and Szydlowski, 1992
Kimizuka, Wieslawa; Szydlowski, Jerzy, Vapor pressure isotope effect of n-deuterated pyrrole, Fluid Phase Equilibria, 1992, 77, 261-267, https://doi.org/10.1016/0378-3812(92)85107-J . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Osborn and Douslin, 1968
Osborn, Ann G.; Douslin, Donald R., Vapor pressure relations of 13 nitrogen compounds related to petroleum, J. Chem. Eng. Data, 1968, 13, 4, 534-537, https://doi.org/10.1021/je60039a024 . [all data]

Eon, Pommier, et al., 1971
Eon, C.; Pommier, C.; Guiochon, G., Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives, J. Chem. Eng. Data, 1971, 16, 4, 408-410, https://doi.org/10.1021/je60051a008 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Gianola, Ichino, et al., 2004
Gianola, A.J.; Ichino, T.; Hoenigman, R.L.; Kato, S.; Bierbaum, V.M.; Lineberger, W.C., Thermochemistry and electronic structure of the pyrrolyl radical, J. Phys. Chem. A, 2004, 108, 46, 10326-10335, https://doi.org/10.1021/jp047790+ . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Khatymov, R.V.; Mazunov, V.A.; Takhistov, V.V.; Travkin, O.V.; Yakovleva, E.V., Thermochemistry of negatively charged ions. II. Energetics of formation of negative ions from acridanone and some of its derivatives, Rapid Commun. Mass Spectrom., 1999, 13, 10, 912-923, https://doi.org/10.1002/(SICI)1097-0231(19990530)13:10<912::AID-RCM585>3.0.CO;2-W . [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Hiraoka, Takimoto, et al., 1987
Hiraoka, K.; Takimoto, H.; Yamabe, S., Stabilities and Structures in Cluster Ions of Five-Membered Heterocyclic Compounds Containing O, N and S Atoms, J. Am. Chem. Soc., 1987, 109, 24, 7346, https://doi.org/10.1021/ja00258a018 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Meot-Ner (Mautner), 1988
Meot-Ner (Mautner), M., Models for Strong Interactions in Proteins and Enzymes. 2. Interactions of Ions with the Peptide Link and Imidazole, J. Am. Chem. Soc., 1988, 110, 10, 3075, https://doi.org/10.1021/ja00218a014 . [all data]

Gapeev and Yang, 2000
Gapeev, A.; Yang, C.-N., Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results, J. Phys. Chem. A, 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d . [all data]

Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T., Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies, J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Klasinc, Sabljic, et al., 1982
Klasinc, L.; Sabljic, A.; Kluge, G.; Rieger, J.; Scholz, M., Chemistry of excited states. Part 13. Assignment of lowest .PI.-ionizations in photoelectron spectra of thiophen, furan, and pyrrole, J. Chem. Soc. Perkin Trans. 2, 1982, 539. [all data]

Galasso, Klasinc, et al., 1981
Galasso, V.; Klasinc, L.; Sabluic, A.; Trinajstic, N.; Pappalardo, G.C.; Steglich, W., Conformation and photoelectron spectra of 2-(2-Furyl)pyrrole and 2-(2-tThienyl)pyrrole, J. Chem. Soc. Perkin Trans. 2, 1981, 127. [all data]

Willett and Baer, 1980
Willett, G.D.; Baer, T., Thermochemistry and dissociation dynamics of state-selected C4H4X ions. 3. C4H5N+, J. Am. Chem. Soc., 1980, 102, 6774. [all data]

Tedder and Vidaud, 1980
Tedder, J.M.; Vidaud, P.H., Charge exchange mass spectra of thiophene, pyrrole and furan, J. Chem. Soc. Faraday Trans. 2, 1980, 76, 1516. [all data]

Cooper, Williamson, et al., 1980
Cooper, C.D.; Williamson, A.D.; Miller, J.C.; Compton, R.N., Resonantly enhanced multiphoton ionization of pyrrole, N-methyl pyrrole, and furan, J. Chem. Phys., 1980, 73, 1527. [all data]

Williamson, Compton, et al., 1979
Williamson, A.D.; Compton, R.N.; Eland, J.H.D., Accurate photoionization thresholds by multiphoton ionization: Pyrrole, J. Chem. Phys., 1979, 70, 590. [all data]

Van Veen, 1976
Van Veen, E.H., Triplet π-π* transitions in thiophene, furan and pyrrole by low-energy electron-impact spectroscopy, Chem. Phys. Lett., 1976, 41, 535. [all data]

Thorstad and Undheim, 1974
Thorstad, O.; Undheim, K., Mass spectrometry of onium compounds. XXIV. Ionisation potential in structure analysis of pyridodiazo-oxides, Chem. Scr., 1974, 6, 222. [all data]

Linda, Marino, et al., 1971
Linda, P.; Marino, G.; Pignataro, S., A comparison of sensitivities to substituent effects of five- membered heteroaromatic rings in gas phase ionization, J. Chem. Soc. B, 1971, 1585. [all data]

Derrick, Asbrink, et al., 1971
Derrick, P.J.; Asbrink, L.; Edqvist, O.; Jonsson, B.-O.; Lindholm, E., Rydberg series in small molecules. XII. Photoelectron spectroscopy and electronic structure of pyrrole, Intern. J. Mass Spectrom. Ion Phys., 1971, 6, 191. [all data]

Potapov and Yuzhakova, 1970
Potapov, V.K.; Yuzhakova, O.A., Photoionization and electronic structure of pyrrole and its methyl derivatives, Dokl. Akad. Nauk SSSR, 1970, 192, 131, In original 365. [all data]

Potapov and Bazhenov, 1970
Potapov, V.K.; Bazhenov, B.A., The photionization of pyrrole, furan, and thiophene, High Energy Chem., 1970, 505, In original 553. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Cradock, Findlay, et al., 1973
Cradock, S.; Findlay, R.H.; Palmer, M.H., The molecular energy levels of the azoles: A study by photoelectron spectroscopy and ab initio molecular orbital calculations, Tetrahedron, 1973, 29, 2173. [all data]

Sakurai and Jennings, 1981
Sakurai, H.; Jennings, K.R., A study of the structures of decomposing and non-decomposing [C4H5N]+ ions formed from different neutral species, Org. Mass Spectrom., 1981, 16, 393. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References