Ethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas12.54kcal/molReviewChase, 1998Data last reviewed in September, 1965
Δfgas12.5 ± 0.1kcal/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Quantity Value Units Method Reference Comment
Δcgas-337.285 ± 0.072kcal/molCmRossini and Knowlton, 1937Reanalyzed by Cox and Pilcher, 1970, Original value = -337.230 ± 0.072 kcal/mol; Corresponding Δfgas = 12.55 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas,1 bar52.419cal/mol*KReviewChase, 1998Data last reviewed in September, 1965

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
7.94950.Thermodynamics Research Center, 1997p=1 bar. Recommended entropies and heat capacities are in good agreement with those obtained from other statistical thermodynamics calculations [ Chao J., 1975, Gurvich, Veyts, et al., 1989] as well as with ab initio value of S(298.15 K)=219.14 J/mol*K [ East A.L.L., 1997].; GT
7.952100.
8.045150.
8.454200.
9.704273.15
10.25298.15
10.30300.
12.68400.
14.93500.
16.89600.
18.57700.
20.03800.
21.31900.
22.441000.
23.421100.
24.2851200.
25.0381300.
25.7001400.
26.2811500.
27.4401750.
28.2912000.
28.9272250.
29.4122500.
29.7852750.
30.0813000.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.284 ± 0.062178.15Burcik E.J., 1941Other experimental values of heat capacity [ Haas M.E., 1932] are less accurate, see [ Chao J., 1975]. Please also see Eucken A., 1933.; GT
8.437 ± 0.062192.35
8.674 ± 0.065210.40
8.975 ± 0.067230.90
9.326 ± 0.069250.60
9.739 ± 0.005270.7
9.804 ± 0.074271.80
10.24 ± 0.076293.45
10.39 ± 0.041300.0
10.99 ± 0.01320.7
11.89 ± 0.088367.7
14.16 ± 0.11463.6

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A -1.52674025.45660
B 44.073113.282171
C -27.00091-0.628222
D 6.8106910.041729
E 0.075416-6.248731
F 11.51370-8.451810
G 38.9954165.73671
H 12.5399012.53990
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1965 Data last reviewed in September, 1965

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid28.15cal/mol*KN/AChao, Hall, et al., 1983 

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
16.1170.Chao, Hall, et al., 1983T = 16 to 169 K.
16.07170.Egan and Kemp, 1937T = 15 to 170 K.

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil169. ± 1.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus103.8KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Tfus103.7KN/AKistiakowsky, Romeyn, et al., 1935Uncertainty assigned by TRC = 0.5 K; TRC
Tfus103.7KN/AParks and Huffman, 1931Uncertainty assigned by TRC = 1. K; TRC
Quantity Value Units Method Reference Comment
Ttriple104.0 ± 0.1KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple0.0012atmN/AJahangiri, Jacobsen, et al., 1986Uncertainty assigned by TRC = 0.00005 atm; TRC
Ptriple0.0012atmN/AJahangiri, 1984TRC
Quantity Value Units Method Reference Comment
Tc282.5 ± 0.5KAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Pc49.9 ± 0.5atmAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.1311l/molN/ATsonopoulos and Ambrose, 1996 
Vc0.13099l/molN/AJahangiri, 1984Uncertainty assigned by TRC = 0.00002 l/mol; TRC
Vc0.13098l/molN/ADouslin and Harrison, 1976Uncertainty assigned by TRC = 0.0001 l/mol; TRC
Vc0.12868l/molN/AAngus, Armstrong, et al., 1974Uncertainty assigned by TRC = 0.0001 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc7.63 ± 0.004mol/lN/ATsonopoulos and Ambrose, 1996 
ρc7.6334mol/lN/AJahangiri, Jacobsen, et al., 1986Uncertainty assigned by TRC = 0.004 mol/l; TRC
ρc7.6341mol/lN/AHastings, Levelt Sengers, et al., 1980Uncertainty assigned by TRC = 0.0007 mol/l; PVT, Burnett apparatus, Unct. value one standard deviation from fitting.; TRC
ρc18.894mol/lN/AAngus, Armstrong, et al., 1974Uncertainty assigned by TRC = 0.007 mol/l; TRC
ρc7.6986mol/lN/AMathias, Crommelin, et al., 1929Uncertainty assigned by TRC = 0.02 mol/l; TRC

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
3.2371169.40N/AEgan and Kemp, 1937DH
3.35267.AStephenson and Malanowski, 1987Based on data from 252. to 282. K.; AC
3.27258.AStephenson and Malanowski, 1987Based on data from 170. to 273. K.; AC
3.44155.AStephenson and Malanowski, 1987Based on data from 120. to 170. K.; AC
3.27196.AStephenson and Malanowski, 1987Based on data from 169. to 211. K.; AC
3.25239.AStephenson and Malanowski, 1987Based on data from 209. to 254. K.; AC
3.37167.AStephenson and Malanowski, 1987Based on data from 120. to 182. K. See also Dykyj, 1970.; AC
3.35175.N/AMichels and Wassenaar, 1950Based on data from 150. to 190. K.; AC
3.42161.N/ALamb and Roper, 1940Based on data from 148. to 174. K.; AC
3.44156.N/AEgan and Kemp, 1937Based on data from 124. to 171. K.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
19.11169.40Egan and Kemp, 1937DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
149.37 to 188.573.86690584.146-18.307Michels and Wassenaar, 1950Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
4.4091.5A,MSStephenson and Malanowski, 1987Based on data from 79. to 104. K. See also Tickner and Lossing, 1951.; AC
3.5977. to 103.N/AMenaucourt, 1982AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.8009103.97Chao, Hall, et al., 1983DH
0.8009103.95Egan and Kemp, 1937DH
0.801104.Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
7.703103.97Chao, Hall, et al., 1983DH
7.703103.95Egan and Kemp, 1937DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr407. ± 2.kcal/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr401.00 ± 0.50kcal/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr399.1 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr398.6 ± 4.9kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

C7H4CrO5 (g) = C5CrO5 (g) + Ethylene (g)

By formula: C7H4CrO5 (g) = C5CrO5 (g) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr25.1 ± 1.kcal/molKinGMcNamara, Becher, et al., 1994The reaction enthalpy was identified with the activation energy.; MS
Δr24.7 ± 2.4kcal/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.; MS

Silver ion (1+) + Ethylene = (Silver ion (1+) • Ethylene)

By formula: Ag+ + C2H4 = (Ag+ • C2H4)

Quantity Value Units Method Reference Comment
Δr33.7kcal/molHPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KN/AGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
17.1750.HPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

NH4+ + Ethylene = (NH4+ • Ethylene)

By formula: H4N+ + C2H4 = (H4N+ • C2H4)

Quantity Value Units Method Reference Comment
Δr10.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.7294.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Ethylene = (Cobalt ion (1+) • Ethylene)

By formula: Co+ + C2H4 = (Co+ • C2H4)

Quantity Value Units Method Reference Comment
Δr44.5 ± 2.2kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
42.8 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
6.5 (+3.0,-0.) CIDHaynes and Armentrout, 1994gas phase; ΔrH>=, guided ion beam CID; M

Ethyl Chloride = Ethylene + Hydrogen chloride

By formula: C2H5Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr22.0kcal/molEqkLevanova, Bushneva, et al., 1979liquid phase; ALS
Δr17.1kcal/molEqkLevanova, Bushneva, et al., 1979gas phase; ALS
Δr17.35 ± 0.50kcal/molEqkHowlett, 1955gas phase; ALS
Δr17.1kcal/molEqkLane, Linnett, et al., 1953gas phase; ALS

Chromium ion (1+) + Ethylene = (Chromium ion (1+) • Ethylene)

By formula: Cr+ + C2H4 = (Cr+ • C2H4)

Quantity Value Units Method Reference Comment
Δr22.9 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
29.9 (+4.5,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Nickel ion (1+) + Ethylene = (Nickel ion (1+) • Ethylene)

By formula: Ni+ + C2H4 = (Ni+ • C2H4)

Quantity Value Units Method Reference Comment
Δr43.5 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
32.9 (+4.5,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Copper ion (1+) + Ethylene = (Copper ion (1+) • Ethylene)

By formula: Cu+ + C2H4 = (Cu+ • C2H4)

Quantity Value Units Method Reference Comment
Δr42.1 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.7 (+2.6,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Scandium ion (1+) + Ethylene = (Scandium ion (1+) • Ethylene)

By formula: Sc+ + C2H4 = (Sc+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Lanthanum ion (1+) + Ethylene = (Lanthanum ion (1+) • Ethylene)

By formula: La+ + C2H4 = (La+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.5 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Yttrium ion (1+) + Ethylene = (Yttrium ion (1+) • Ethylene)

By formula: Y+ + C2H4 = (Y+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.1 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Titanium ion (1+) + Ethylene = (Titanium ion (1+) • Ethylene)

By formula: Ti+ + C2H4 = (Ti+ • C2H4)

Quantity Value Units Method Reference Comment
Δr34.9 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.4 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Vanadium ion (1+) + Ethylene = (Vanadium ion (1+) • Ethylene)

By formula: V+ + C2H4 = (V+ • C2H4)

Quantity Value Units Method Reference Comment
Δr29.9 ± 1.9kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.0 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Iron ion (1+) + Ethylene = (Iron ion (1+) • Ethylene)

By formula: Fe+ + C2H4 = (Fe+ • C2H4)

Quantity Value Units Method Reference Comment
Δr34.7 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.6 (+1.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Ethylene + Bromine = Ethane, 1,2-dibromo-

By formula: C2H4 + Br2 = C2H4Br2

Quantity Value Units Method Reference Comment
Δr-28.90 ± 0.30kcal/molCmConn, Kistiakowsky, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -29.06 ± 0.30 kcal/mol; At 355 °K; ALS

Ethylene + Iodine = Ethane, 1,2-diiodo-

By formula: C2H4 + I2 = C2H4I2

Quantity Value Units Method Reference Comment
Δr-11.5 ± 0.2kcal/molEqkAbrams and Davis, 1954gas phase; ALS
Δr-13.4 ± 0.5kcal/molEqkCutherbertson and Kistiakowsky, 1935gas phase; Heat of dissociation; ALS

(Silver ion (1+) • Ethylene) + Ethylene = (Silver ion (1+) • 2Ethylene)

By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr32.4kcal/molHPMSGuo and Castleman, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr30.2cal/mol*KHPMSGuo and Castleman, 1991gas phase; M

Hydrogen + Ethylene = Ethane

By formula: H2 + C2H4 = C2H6

Quantity Value Units Method Reference Comment
Δr-32.6 ± 0.5kcal/molChydKistiakowsky and Nickle, 1951gas phase; ALS
Δr-32.58 ± 0.06kcal/molChydKistiakowsky, Romeyn, et al., 1935, 2gas phase; ALS

Ethyl bromide = Hydrogen bromide + Ethylene

By formula: C2H5Br = HBr + C2H4

Quantity Value Units Method Reference Comment
Δr19.20 ± 0.50kcal/molEqkLane, Linnett, et al., 1953gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 19.1 kcal/mol; ALS

C3H9Si+ + Ethylene = (C3H9Si+ • Ethylene)

By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)

Quantity Value Units Method Reference Comment
Δr23.6kcal/molPHPMSLi and Stone, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr38.5cal/mol*KPHPMSLi and Stone, 1989gas phase; M

C2H4+ + Ethylene = (C2H4+ • Ethylene)

By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)

Quantity Value Units Method Reference Comment
Δr15.8kcal/molPIOno, Linn, et al., 1984gas phase; M
Δr18.2kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

C6H4FeO4 (l) = 4Carbon monoxide (g) + iron (cr) + Ethylene (g)

By formula: C6H4FeO4 (l) = 4CO (g) + Fe (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr46.0 ± 2.0kcal/molHAL-HFCBrown, Connor, et al., 1976MS
Δr44.31kcal/molTD-HFCBrown, Connor, et al., 1976MS

Bicyclo[2.2.2]oct-2-ene = 1,3-Cyclohexadiene + Ethylene

By formula: C8H12 = C6H8 + C2H4

Quantity Value Units Method Reference Comment
Δr32.4kcal/molKinHuybrechts, Rigaux, et al., 1980gas phase; Diels-Alder addition at 560°K, see Van Mele, Boon, et al., 1986; ALS

Fluorine anion + Ethylene = (Fluorine anion • Ethylene)

By formula: F- + C2H4 = (F- • C2H4)

Quantity Value Units Method Reference Comment
Δr6.0 ± 3.0kcal/molIMRBSullivan and Beauchamp, 1976gas phase; Structure: Roy and McMahon, 1985; B

Rh+ + Ethylene = (Rh+ • Ethylene)

By formula: Rh+ + C2H4 = (Rh+ • C2H4)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
38.5 (+0.7,-0.) CIDChen and Armetrout, 1995gas phase; guided ion beam CID; M

C7H9Cl2NPd (solution) + 1,3-Diazine (l) = (PdCl2(C5H5N)2) (solution) + Ethylene (solution)

By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-13.8 ± 0.41kcal/molRSCPartenheimer and Durham, 1974solvent: Dichloromethane; MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (solution) + 1,5-Cyclooctadiene, (Z,Z)- (solution) = C13H19O2Rh (solution) + 2Ethylene (solution)

By formula: C9H15O2Rh (solution) + C8H12 (solution) = C13H19O2Rh (solution) + 2C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-2.2 ± 0.1kcal/molRSCJesse, Cordfunke, et al., 1979solvent: n-Heptane; MS

Hydrogen bromide (g) + C2H3BrMg (solution) = Ethylene (solution) + Br2Mg (solution)

By formula: HBr (g) + C2H3BrMg (solution) = C2H4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-70.29 ± 0.53kcal/molRSCHolm, 1981solvent: Tetrahydrofuran; MS

C6HCrO6+ + Ethylene = (C6HCrO6+ • Ethylene)

By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)

Quantity Value Units Method Reference Comment
Δr14.3 ± 1.2kcal/molICRCDHop and McMahon, 1991gas phase; Ar collision gas; M

Aluminum ion (1+) + Ethylene = (Aluminum ion (1+) • Ethylene)

By formula: Al+ + C2H4 = (Al+ • C2H4)

Quantity Value Units Method Reference Comment
Δr13.0 ± 2.0kcal/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

(CAS Reg. No. 25013-41-6 • 4294967295Ethylene) + Ethylene = CAS Reg. No. 25013-41-6

By formula: (CAS Reg. No. 25013-41-6 • 4294967295C2H4) + C2H4 = CAS Reg. No. 25013-41-6

Quantity Value Units Method Reference Comment
Δr12.9 ± 2.1kcal/molN/ADePuy, Gronert, et al., 1989gas phase; B

Hydrogen + Ethene, chloro- = Ethylene + Hydrogen chloride

By formula: H2 + C2H3Cl = C2H4 + HCl

Quantity Value Units Method Reference Comment
Δr-18.39kcal/molChydLacher, Kianpour, et al., 1956gas phase; At 298 K; ALS

Ethylene + Chlorine = Ethane, 1,2-dichloro-

By formula: C2H4 + Cl2 = C2H4Cl2

Quantity Value Units Method Reference Comment
Δr-43.65 ± 0.15kcal/molCmConn, Kistiakowsky, et al., 1938gas phase; At 355 °K; ALS

Ethane, 1-chloro-2-iodo- = Iodine atom + Chlorine atom + Ethylene

By formula: C2H4ClI = I + Cl + C2H4

Quantity Value Units Method Reference Comment
Δr76.5 ± 1.0kcal/molKinMinton, Felder, et al., 1984gas phase; ALS

(C2H4+ • Ethylene) + Ethylene = (C2H4+ • 2Ethylene)

By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr4.2kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

C12H14Mo (cr) + Iodine (cr) = C10H10I2Mo (cr) + Ethylene (g)

By formula: C12H14Mo (cr) + I2 (cr) = C10H10I2Mo (cr) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-38.96 ± 0.50kcal/molRSCCalhorda, Carrondo, et al., 1991MS

Rhodium, bis(η2-ethene)(2,4-pentanedionato-O,O')- (cr) + 2Carbon monoxide (g) = Rhodium, dicarbonyl(2,4-pentanedionato-O,O')-, (SP-4-2)- (cr) + 2Ethylene (g)

By formula: C9H15O2Rh (cr) + 2CO (g) = C7H7O4Rh (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-12.8 ± 0.41kcal/molDSCJesse, Baks, et al., 1978MS

C9H15IrO2 (cr) + 2Carbon monoxide (g) = C7H7IrO4 (cr) + 2Ethylene (g)

By formula: C9H15IrO2 (cr) + 2CO (g) = C7H7IrO4 (cr) + 2C2H4 (g)

Quantity Value Units Method Reference Comment
Δr-17.7 ± 1.1kcal/molDSCJesse, Baks, et al., 1978MS

(Iron ion (1+) • Ethylene) + Ethylene = (Iron ion (1+) • 2Ethylene)

By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr36.1 ± 3.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Chromium ion (1+) • Ethylene) + Ethylene = (Chromium ion (1+) • 2Ethylene)

By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr25.8 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Manganese ion (1+) • Ethylene) + Ethylene = (Manganese ion (1+) • 2Ethylene)

By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr21.0 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Vanadium ion (1+) • Ethylene) + Ethylene = (Vanadium ion (1+) • 2Ethylene)

By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr30.4 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Nickel ion (1+) • Ethylene) + Ethylene = (Nickel ion (1+) • 2Ethylene)

By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr41.3 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Cobalt ion (1+) • Ethylene) + Ethylene = (Cobalt ion (1+) • 2Ethylene)

By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr36.3 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Copper ion (1+) • Ethylene) + Ethylene = (Copper ion (1+) • 2Ethylene)

By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr41.6 ± 3.1kcal/molCIDTSievers, Jarvis, et al., 1998RCD

2-Norbornene = 1,3-Cyclopentadiene + Ethylene

By formula: C7H10 = C5H6 + C2H4

Quantity Value Units Method Reference Comment
Δr23.2 ± 0.60kcal/molEqkWalsh and Wells, 1976gas phase; ALS

2Ethylene = Cyclobutane

By formula: 2C2H4 = C4H8

Quantity Value Units Method Reference Comment
Δr-20.7 ± 1.0kcal/molEqkQuick, Knecht, et al., 1972gas phase; At 750 K; ALS

Ethane, 1,2-diiodo- = Ethylene + Iodine

By formula: C2H4I2 = C2H4 + I2

Quantity Value Units Method Reference Comment
Δr11.5 ± 0.2kcal/molEqkBenson and Amano, 1962gas phase; ALS

2-Butene, (E)- + Ethylene = cyclobutane, 1,2-dimethyl-, trans-

By formula: C4H8 + C2H4 = C6H12

Quantity Value Units Method Reference Comment
Δr-16.7kcal/molEqkScacchi and Back, 1977liquid phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H4+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.5138 ± 0.0006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)162.6kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity155.7kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion254.9 ± 0.2kcal/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K257.kcal/molN/AN/A 

Ionization energy determinations

IE (eV) Method Reference Comment
10.51CIOhno, Okamura, et al., 1995LL
10.5138 ± 0.0006LSWilliams and Cool, 1991LL
10.51 ± 0.015EIPlessis and Marmet, 1986LBLHLM
10.509 ± 0.005EVALPlessis and Marmet, 1986LBLHLM
10.51PEKimura, Katsumata, et al., 1981LLK
10.50 ± 0.02PIWood and Taylor, 1979LLK
10.514 ± 0.007PECarlier and Botter, 1979LLK
10.51PESell, Mintz, et al., 1978LLK
10.51 ± 0.02PEBieri, Burger, et al., 1977LLK
~10.5EIVan Veen, 1976LLK
10.517 ± 0.002TEStockbauer and Inghram, 1975LLK
10.517 ± 0.003TEStockbauer and Inghram, 1975, 2LLK
10.51PIRabalais, Debies, et al., 1974LLK
10.5EIMaeda, Suzuki, et al., 1974LLK
10.507 ± 0.004PIKnowles and Nicholson, 1974LLK
10.51 ± 0.01EIGordon, Krige, et al., 1974LLK
10.515 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
10.51PEBeez, Bieri, et al., 1973LLK
10.51PEMason, Kuppermann, et al., 1972LLK
10.51PEBrundle, Robin, et al., 1972LLK
10.56PEFrost and Sandhu, 1971LLK
10.51 ± 0.02PEBranton, Frost, et al., 1970RDSH
10.51 ± 0.05PEEland, 1969RDSH
10.50 ± 0.05EIWilliams and Hamill, 1968RDSH
10.51PEBaker, Baker, et al., 1968RDSH
10.511 ± 0.005PIBrehm, 1966RDSH
10.50 ± 0.01PIBotter, Dibeler, et al., 1966RDSH
10.507 ± 0.004PINicholson, 1965RDSH
10.50 ± 0.02PIMomigny, 1963RDSH
10.52 ± 0.01PIWatanabe, 1954RDSH
10.51 ± 0.03SPrice and Tutte, 1940RDSH
10.80 ± 0.05EIKusch, Hustrulid, et al., 1937RDSH
10.68PEBieri and Asbrink, 1980Vertical value; LLK
10.50 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.5PEKobayashi, 1978Vertical value; LLK
10.5PEWhite, Carlson, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+≤18.30 ± 0.16CH4EIPlessis and Marmet, 1986LBLHLM
C+24.4?EIMaeda, Suzuki, et al., 1974LLK
C+24.6 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH+17.68 ± 0.16CH3EIPlessis and Marmet, 1986LBLHLM
CH+22.1?EIMaeda, Suzuki, et al., 1974LLK
CH+22.9 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH2+17.82 ± 0.06CH2EIPlessis and Marmet, 1986LBLHLM
CH2+18.04 ± 0.04CH2TEStockbauer and Inghram, 1975, 2LLK
CH2+18.4CH2EIMaeda, Suzuki, et al., 1974LLK
CH2+18.05CH2PIChupka, Berkowitz, et al., 1969RDSH
CH2+19.2 ± 0.3?EIKusch, Hustrulid, et al., 1937RDSH
CH3+15.60 ± 0.20CH-EIPlessis and Marmet, 1986LBLHLM
CH3+16.95 ± 0.15CHEIPlessis and Marmet, 1986LBLHLM
CH3+19.3?EIMaeda, Suzuki, et al., 1974LLK
CH4+18.66C-EIPlessis and Marmet, 1986LBLHLM
C2+24.5?EIMaeda, Suzuki, et al., 1974LLK
C2+26.4 ± 1.02H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H+18.7H+H2EIMaeda, Suzuki, et al., 1974LLK
C2H+19.2 ± 1.0H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H2+13.14 ± 0.03H2EIPlessis and Marmet, 1986LBLHLM
C2H2+13.2 ± 0.1H2PIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H2+13.55H2PIWood and Taylor, 1979LLK
C2H2+13.13 ± 0.04H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.0 ± 0.1H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.14 ± 0.01H2TEStockbauer and Inghram, 1975, 2LLK
C2H2+13.1H2EIMaeda, Suzuki, et al., 1974LLK
C2H2+13.11 ± 0.02H2EIGordon, Krige, et al., 1974LLK
C2H2+13.13 ± 0.02H2PIChupka, Berkowitz, et al., 1969RDSH
C2H2+12.96 ± 0.02H2PIBrehm, 1966RDSH
C2H2+13.12 ± 0.03H2PIBotter, Dibeler, et al., 1966RDSH
C2H2+13.4 ± 0.2H2EIKusch, Hustrulid, et al., 1937RDSH
C2H3+12.35 ± 0.10H-EIPlessis and Marmet, 1986LBLHLM
C2H3+13.10 ± 0.08HEIPlessis and Marmet, 1986LBLHLM
C2H3+13.3 ± 0.1HPIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H3+13.55HPIWood and Taylor, 1979LLK
C2H3+13.22 ± 0.02HTEStockbauer and Inghram, 1975, 2LLK
C2H3+13.6HEIMaeda, Suzuki, et al., 1974LLK
C2H3+13.31 ± 0.03HEIGordon, Krige, et al., 1974LLK
C2H3+13.52 ± 0.04HEIFinney and Harrison, 1972LLK
C2H3+13.25 ± 0.05HPIChupka, Berkowitz, et al., 1969RDSH
C2H3+13.37 ± 0.03HPIBrehm, 1966RDSH
C2H3+14.1 ± 0.1HEIKusch, Hustrulid, et al., 1937RDSH
H+18.66 ± 0.05C2H3C2H3Shiromaru, Achiba, et al., 1987LBLHLM
H+26.2 ± 1.5C2H3EIKusch, Hustrulid, et al., 1937RDSH
H2+22.4 ± 1.5?EIKusch, Hustrulid, et al., 1937RDSH

De-protonation reactions

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr407. ± 2.kcal/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr401.00 ± 0.50kcal/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr399.1 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr398.6 ± 4.9kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>397.00kcal/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Ethylene = (Silver ion (1+) • Ethylene)

By formula: Ag+ + C2H4 = (Ag+ • C2H4)

Quantity Value Units Method Reference Comment
Δr33.7kcal/molHPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr22.1cal/mol*KN/AGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
17.1750.HPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

(Silver ion (1+) • Ethylene) + Ethylene = (Silver ion (1+) • 2Ethylene)

By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr32.4kcal/molHPMSGuo and Castleman, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr30.2cal/mol*KHPMSGuo and Castleman, 1991gas phase; M

Aluminum ion (1+) + Ethylene = (Aluminum ion (1+) • Ethylene)

By formula: Al+ + C2H4 = (Al+ • C2H4)

Quantity Value Units Method Reference Comment
Δr13.0 ± 2.0kcal/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

C2H4+ + Ethylene = (C2H4+ • Ethylene)

By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)

Quantity Value Units Method Reference Comment
Δr15.8kcal/molPIOno, Linn, et al., 1984gas phase; M
Δr18.2kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

(C2H4+ • Ethylene) + Ethylene = (C2H4+ • 2Ethylene)

By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr4.2kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

C3H5+ + Ethylene = (C3H5+ • Ethylene)

By formula: C3H5+ + C2H4 = (C3H5+ • C2H4)

Quantity Value Units Method Reference Comment
Δr16.7kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

C3H9Si+ + Ethylene = (C3H9Si+ • Ethylene)

By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)

Quantity Value Units Method Reference Comment
Δr23.6kcal/molPHPMSLi and Stone, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr38.5cal/mol*KPHPMSLi and Stone, 1989gas phase; M

C4H7+ + Ethylene = (C4H7+ • Ethylene)

By formula: C4H7+ + C2H4 = (C4H7+ • C2H4)

Quantity Value Units Method Reference Comment
Δr8.7kcal/molPICeyer, Tiedemann, et al., 1979gas phase; M

C6HCrO6+ + Ethylene = (C6HCrO6+ • Ethylene)

By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)

Quantity Value Units Method Reference Comment
Δr14.3 ± 1.2kcal/molICRCDHop and McMahon, 1991gas phase; Ar collision gas; M

Cobalt ion (1+) + Ethylene = (Cobalt ion (1+) • Ethylene)

By formula: Co+ + C2H4 = (Co+ • C2H4)

Quantity Value Units Method Reference Comment
Δr44.5 ± 2.2kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
42.8 (+1.7,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
6.5 (+3.0,-0.) CIDHaynes and Armentrout, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Cobalt ion (1+) • Ethylene) + Ethylene = (Cobalt ion (1+) • 2Ethylene)

By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr36.3 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Chromium ion (1+) + Ethylene = (Chromium ion (1+) • Ethylene)

By formula: Cr+ + C2H4 = (Cr+ • C2H4)

Quantity Value Units Method Reference Comment
Δr22.9 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
29.9 (+4.5,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Chromium ion (1+) • Ethylene) + Ethylene = (Chromium ion (1+) • 2Ethylene)

By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr25.8 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Copper ion (1+) + Ethylene = (Copper ion (1+) • Ethylene)

By formula: Cu+ + C2H4 = (Cu+ • C2H4)

Quantity Value Units Method Reference Comment
Δr42.1 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.7 (+2.6,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Copper ion (1+) • Ethylene) + Ethylene = (Copper ion (1+) • 2Ethylene)

By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr41.6 ± 3.1kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Fluorine anion + Ethylene = (Fluorine anion • Ethylene)

By formula: F- + C2H4 = (F- • C2H4)

Quantity Value Units Method Reference Comment
Δr6.0 ± 3.0kcal/molIMRBSullivan and Beauchamp, 1976gas phase; Structure: Roy and McMahon, 1985; B

Iron ion (1+) + Ethylene = (Iron ion (1+) • Ethylene)

By formula: Fe+ + C2H4 = (Fe+ • C2H4)

Quantity Value Units Method Reference Comment
Δr34.7 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
34.6 (+1.4,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • Ethylene) + Ethylene = (Iron ion (1+) • 2Ethylene)

By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr36.1 ± 3.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

NH4+ + Ethylene = (NH4+ • Ethylene)

By formula: H4N+ + C2H4 = (H4N+ • C2H4)

Quantity Value Units Method Reference Comment
Δr10.kcal/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.7294.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Lanthanum ion (1+) + Ethylene = (Lanthanum ion (1+) • Ethylene)

By formula: La+ + C2H4 = (La+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
21.5 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Manganese ion (1+) + Ethylene = (Manganese ion (1+) • Ethylene)

By formula: Mn+ + C2H4 = (Mn+ • C2H4)

Quantity Value Units Method Reference Comment
Δr21.7 ± 2.9kcal/molCIDTSievers, Jarvis, et al., 1998RCD

(Manganese ion (1+) • Ethylene) + Ethylene = (Manganese ion (1+) • 2Ethylene)

By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr21.0 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Sodium ion (1+) + Ethylene = (Sodium ion (1+) • Ethylene)

By formula: Na+ + C2H4 = (Na+ • C2H4)

Quantity Value Units Method Reference Comment
Δr10.3 ± 1.1kcal/molCIDTArmentrout and Rodgers, 2000RCD

Nickel ion (1+) + Ethylene = (Nickel ion (1+) • Ethylene)

By formula: Ni+ + C2H4 = (Ni+ • C2H4)

Quantity Value Units Method Reference Comment
Δr43.5 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
32.9 (+4.5,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Nickel ion (1+) • Ethylene) + Ethylene = (Nickel ion (1+) • 2Ethylene)

By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr41.3 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Rh+ + Ethylene = (Rh+ • Ethylene)

By formula: Rh+ + C2H4 = (Rh+ • C2H4)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
38.5 (+0.7,-0.) CIDChen and Armetrout, 1995gas phase; guided ion beam CID; M

Scandium ion (1+) + Ethylene = (Scandium ion (1+) • Ethylene)

By formula: Sc+ + C2H4 = (Sc+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.3 CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Titanium ion (1+) + Ethylene = (Titanium ion (1+) • Ethylene)

By formula: Ti+ + C2H4 = (Ti+ • C2H4)

Quantity Value Units Method Reference Comment
Δr34.9 ± 2.6kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.4 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Vanadium ion (1+) + Ethylene = (Vanadium ion (1+) • Ethylene)

By formula: V+ + C2H4 = (V+ • C2H4)

Quantity Value Units Method Reference Comment
Δr29.9 ± 1.9kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28.0 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Vanadium ion (1+) • Ethylene) + Ethylene = (Vanadium ion (1+) • 2Ethylene)

By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr30.4 ± 3.3kcal/molCIDTSievers, Jarvis, et al., 1998RCD

Yttrium ion (1+) + Ethylene = (Yttrium ion (1+) • Ethylene)

By formula: Y+ + C2H4 = (Y+ • C2H4)

Quantity Value Units Method Reference Comment
Δr52. ± 3.kcal/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.1 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Rossini and Knowlton, 1937
Rossini, F.d.; Knowlton, J.W., Calorimetric determination of the heats of combustion of ethylene and propylene, J. Res. NBS, 1937, 19, 249-262. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Chao J., 1975
Chao J., Ideal gas thermodynamic properties of ethylene and propylene, J. Phys. Chem. Ref. Data, 1975, 4, 251-261. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Burcik E.J., 1941
Burcik E.J., The vibrational energy levels and specific heat of ethylene, J. Chem. Phys., 1941, 9, 118-119. [all data]

Haas M.E., 1932
Haas M.E., The heat capacity and free energy of formation of ethylene gas, J. Phys. Chem., 1932, 36, 2127-2132. [all data]

Eucken A., 1933
Eucken A., Molar heats and normal frequencies of ethane and ethylene, Z. Phys. Chem., 1933, B20, 184-194. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Egan and Kemp, 1937
Egan, C.J.; Kemp, J.D., Ethylene. The heat capacity from 15°K to the boiling point. The heats of fusion and vaporization. The vapor pressure of the liquid. The entropy from thermal measurements compared with the entropy from spectroscopic data, J. Am. Chem. Soc., 1937, 59, 1264-1268. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Kistiakowsky, Romeyn, et al., 1935
Kistiakowsky, G.B.; Romeyn, H.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of Organic Reactions. I. The Apparatus and the Heat of Hydrogenation of Ethylene, J. Am. Chem. Soc., 1935, 57, 65. [all data]

Parks and Huffman, 1931
Parks, G.S.; Huffman, H.M., Some fusion and transition data for hydrocarbons, Ind. Eng. Chem., 1931, 23, 1138-9. [all data]

Jahangiri, Jacobsen, et al., 1986
Jahangiri, M.; Jacobsen, R.T.; Stewart, R.B.; McCarty, R.D., Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa, J. Phys. Chem. Ref. Data, 1986, 15, 593. [all data]

Jahangiri, 1984
Jahangiri, M., A thermodynamic property formulation for ethylene from the freezing line to 450 K at pressures to 260 MPa, Ph.D. Thesis, Univ. Idaho, Moscow, 1984. [all data]

Tsonopoulos and Ambrose, 1996
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 6. Unsaturated Aliphatic Hydrocarbons, J. Chem. Eng. Data, 1996, 41, 645-656. [all data]

Douslin and Harrison, 1976
Douslin, D.R.; Harrison, R.H., Pressure, Volume, Temperature Relations of Ethylene, J. Chem. Thermodyn., 1976, 8, 301-330. [all data]

Angus, Armstrong, et al., 1974
Angus, S.; Armstrong, B.; de Reuck, K.M., International Thermodynamic Tables of the Fluid State - 2 Ethylene, Butterworths, London, 1974. [all data]

Hastings, Levelt Sengers, et al., 1980
Hastings, J.R.; Levelt Sengers, J.M.H.; Balfour, F.W., The critical=region equation of state of ethene and the effect of small impurities, J. Chem. Thermodyn., 1980, 12, 1009-45. [all data]

Mathias, Crommelin, et al., 1929
Mathias, E.; Crommelin, C.-A.; Watts, H.G., Actes Veme Congress International Du Froid 2, 66, 1929. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Dykyj, 1970
Dykyj, J., Petrochemica, 1970, 10, 2, 51. [all data]

Michels and Wassenaar, 1950
Michels, A.; Wassenaar, T., The vapour pressure of ethylene, Physica, 1950, 16, 3, 221-224, https://doi.org/10.1016/0031-8914(50)90018-8 . [all data]

Lamb and Roper, 1940
Lamb, Arthur B.; Roper, Edwin E., The Vapor Pressures of Certain Unsaturated Hydrocarbons, J. Am. Chem. Soc., 1940, 62, 4, 806-814, https://doi.org/10.1021/ja01861a032 . [all data]

Tickner and Lossing, 1951
Tickner, A.W.; Lossing, F.P., The Measurement of Low Vapor Pressures by Means of a Mass Spectrometer., J. Phys. Chem., 1951, 55, 5, 733-740, https://doi.org/10.1021/j150488a013 . [all data]

Menaucourt, 1982
Menaucourt, J., Saturated vapor pressure of ethylene from 77 to 119 K, J. Chim. Phys. Phys.-Chim. Biol., 1982, 79, 6, 531. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

McNamara, Becher, et al., 1994
McNamara, B.; Becher, D.M.; Towns, M.H.; Grant, E.R., J. Phys. Chem., 1994, 98, 4622. [all data]

Wells, House, et al., 1994
Wells, J.R.; House, P.G.; Weitz, E., J. Phys. Chem., 1994, 98, 8343. [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes, Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B., Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes, J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Levanova, Bushneva, et al., 1979
Levanova, s.V.; Bushneva, I.I.; Rodova, R.M.; Rozhnov, A.M.; Treger, Yu.A.; Aprelkin, A.S., Thermodynamic stability of chloroethanes in dehydrochlorination reactions, J. Appl. Chem. USSR, 1979, 52, 1439-1442. [all data]

Howlett, 1955
Howlett, K.E., The use of equilibrium constants to calculate thermodynamic quantities. Part II, J. Chem. Soc., 1955, 1784-17. [all data]

Lane, Linnett, et al., 1953
Lane, M.R.; Linnett, J.W.; Oswin, H.G., A study of the C2H4+HCl=C2H5Cl and C2H4+Hbr=C2H5Br equilibria, Proc. Roy. Soc. London A, 1953, 216, 361-374. [all data]

Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S., Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2), Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W . [all data]

Conn, Kistiakowsky, et al., 1938
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VII. Addition of halogens to olefins, J. Am. Chem. Soc., 1938, 60, 2764-2771. [all data]

Abrams and Davis, 1954
Abrams, A.; Davis, T.W., Use of radioactive iodine to determine equilibrium constants in ethylene-iodine-1,2-diiodoethane systems, J. Am. Chem. Soc., 1954, 76, 5993-59. [all data]

Cutherbertson and Kistiakowsky, 1935
Cutherbertson, G.R.; Kistiakowsky, G.B., The thermal equilibrium between ethylene iodide, ethylene and iodine, J. Chem. Phys., 1935, 3, 631-634. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Romeyn, et al., 1935, 2
Kistiakowsky, G.B.; Romeyn, H., Jr.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. I. The apparatus and the heat of hydrogenation of ethylene, J. Am. Chem. Soc., 1935, 57, 65-75. [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex, J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897 . [all data]

Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Photoionization of Ethylene Clusters, J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758 . [all data]

Brown, Connor, et al., 1976
Brown, D.L.S.; Connor, J.A.; Leung, M.L.; Paz-Andrade, M.I.; Skinner, H.A., J. Organometal. Chem., 1976, 110, 79. [all data]

Huybrechts, Rigaux, et al., 1980
Huybrechts, G.; Rigaux, D.; Vankeerberghen, J.; Van Mele, B., Kinetics of the Diels-Alder addition of ethene to cyclohexa-1,3-diene and its reverse reaction in the gas phase, Int. J. Chem. Kinet., 1980, 12, 253-259. [all data]

Van Mele, Boon, et al., 1986
Van Mele, B.; Boon, G.; Huybrechts, G., Gas-phase kinetic and thermochemical data for endo- and exo-5-monosubstituted bicyclo[2.2.2]oct-2-enes, Int. J. Chem. Kinet., 1986, 18, 537-545. [all data]

Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L., Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity, J. Am. Chem. Soc., 1976, 98, 1160. [all data]

Roy and McMahon, 1985
Roy, M.; McMahon, T.B., The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds., Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117 . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B., J. Am. Chem. Soc., 1974, 96, 3800. [all data]

Jesse, Cordfunke, et al., 1979
Jesse, A.C.; Cordfunke, E.H.P.; Ouweltjes, W., Thermochim. Acta, 1979, 30, 293. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B., High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure, Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025 . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Lacher, Kianpour, et al., 1956
Lacher, J.R.; Kianpour, A.; Oetting, F.; Park, J.D., Reaction calorimetry. The hydrogenation of organic fluorides and chlorides, Trans. Faraday Soc., 1956, 52, 1500-1508. [all data]

Minton, Felder, et al., 1984
Minton, T.K.; Felder, P.; Brudzynski, R.J.; Lee, Y.T., Photodissociation of 1,2-chloroiodoethane at 248 and 266 nm: The enthalpy of formation of CH2ClCH2I, J. Chem. Phys., 1984, 81, 1759-1769. [all data]

Calhorda, Carrondo, et al., 1991
Calhorda, M.J.; Carrondo, M.A.A.F.C.T.; Dias, A.R.; Galvão, A.M.; Garcia, M.H.; Martins, A.M.; Minas da Piedade, M.E.; Pinheiro, C.I.; Romão, C.C.; Martinho Simões, J.A.; Veiros, L.F., Organometallics, 1991, 10, 483. [all data]

Jesse, Baks, et al., 1978
Jesse, A.C.; Baks, A.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1978, 29, 177. [all data]

Walsh and Wells, 1976
Walsh, R.; Wells, J.M., The enthalpy of formation and thermodynamic functions of bicyclo[2,2,1]hept-2-ene, J. Chem. Thermodyn., 1976, 8, 55-60. [all data]

Quick, Knecht, et al., 1972
Quick, L.M.; Knecht, D.A.; Back, M.H., Kinetics of the formation of cyclobutane from ethylene, Int. J. Chem. Kinet., 1972, 4, 61-68. [all data]

Benson and Amano, 1962
Benson, S.W.; Amano, A., Thermodynamics of iodine addition to ethylene, propylene, and cyclopropane, J. Chem. Phys., 1962, 36, 3464-3471. [all data]

Scacchi and Back, 1977
Scacchi, G.; Back, M.H., The cycloaddition of ethylene to butene-2. II. Energy relations, Int. J. Chem. Kinet., 1977, 9, 525-534. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ohno, Okamura, et al., 1995
Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.; Yamauchi, M., Penning ionization of HCHO, CH2CH2, and CH2CHCHO by collision with He*(2 3S) metastable atoms, J. Phys. Chem., 1995, 99, 14247. [all data]

Williams and Cool, 1991
Williams, B.A.; Cool, T.A., Two-photon spectroscopy of Rydberg states of jet-cooled C2H4 and C2D4, J. Am. Chem. Soc., 1991, 94, 6358. [all data]

Plessis and Marmet, 1986
Plessis, P.; Marmet, P., Electroionization study of ethylene: Ionization and appearance energies, ion-pair formations, and negative ions, Can. J. Phys., 1986, 65, 165. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Carlier and Botter, 1979
Carlier, J.; Botter, R., Photoelectron spectra of ethylene of the six deuterated derivatives, J. Electron Spectrosc. Relat. Phenom., 1979, 17, 91. [all data]

Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A., Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives, Chem. Phys. Lett., 1978, 58, 601. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Van Veen, 1976
Van Veen, E.H., Low-energy electron-impact spectroscopy on ethylene, Chem. Phys. Lett., 1976, 41, 540. [all data]

Stockbauer and Inghram, 1975
Stockbauer, R.; Inghram, M.G., Vibrational structure in the ground state of ethylene ethylene-d4 molecular ions investigated by threshold photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 492. [all data]

Stockbauer and Inghram, 1975, 2
Stockbauer, R.; Inghram, M.G., Threshold photoelectron-photoion coincidence mass spectrometric study of ethylene and ethylene-d4, J. Chem. Phys., 1975, 62, 4862. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Maeda, Suzuki, et al., 1974
Maeda, K.; Suzuki, I.H.; Koyama, Y., Ionization efficiency curves of ethylene by electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 273. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Gordon, Krige, et al., 1974
Gordon, S.M.; Krige, G.J.; Reid, N.W., Isotope effects in the unimolecular decomposition of ethylene by low-energy electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 109. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Beez, Bieri, et al., 1973
Beez, M.; Bieri, G.; Bock, H.; Heilbronner, E., The ionization potentials of butadiene, hexatriene, andtheir methyl derivatives: evidence for through space interaction between double bond π-orbitals and non-bonded pseudo-π orbitals of methyl groups?, Helv. Chim. Acta, 1973, 56, 1028. [all data]

Mason, Kuppermann, et al., 1972
Mason, D.C.; Kuppermann, A.; Mintz, D.M., Angular distribution of electrons from the photoionization of ethylene in Electron Spectroscopy, ed. D.A. Shirley (North Holland, Amsterdam), 1972, 269. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Branton, Frost, et al., 1970
Branton, G.R.; Frost, D.C.; Makita, T.; McDowell, C.A.; Stenhouse, I.A., Photoelectron spectra of ethylene and ethylene-d4, J. Chem. Phys., 1970, 52, 802. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Botter, Dibeler, et al., 1966
Botter, R.; Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Mass-spectrometric study of photoionization. IV.Ethylene and 1,2-dideuteroethylene, J. Chem. Phys., 1966, 45, 1298. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Momigny, 1963
Momigny, J., Ionization potentials and the structures of the photo-ionization yield curves of ethylene and its halogeno derivatives, Nature, 1963, 199, 1179. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Tutte, 1940
Price, W.C.; Tutte, W.T., The absorption spectra of ethylene, deutero-ethylene and some alkyl-substituted ethylenes in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1940, A174, 207. [all data]

Kusch, Hustrulid, et al., 1937
Kusch, P.; Hustrulid, A.; Tate, J.T., The dissociation of HCN, C2H2, C2N2 and C2H4 by electron impact, Phys. Rev., 1937, 52, 843. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Chupka, Berkowitz, et al., 1969
Chupka, W.A.; Berkowitz, J.; Refaey, K.M.A., Photoionization of ethylene with mass analysis, J. Chem. Phys., 1969, 50, 1938. [all data]

Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]

Gordon, Harvey, et al., 1977
Gordon, S.M.; Harvey, G.A.; Jackson, J.R.; Tresling, J.D.; Van Niekerk, J.M., Computer-assisted retarding potential difference system for ionization efficiency measurements, Int. J. Mass Spectrom. Ion Phys., 1977, 23, 259. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Shiromaru, Achiba, et al., 1987
Shiromaru, H.; Achiba, Y.; Kimura, K.; Lee, Y.T., Determination of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation, J. Phys. Chem., 1987, 91, 17. [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References