Cyclopentane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-18.26 ± 0.19kcal/molCcbMcCullough, Pennington, et al., 1959ALS
Δfgas-18.4kcal/molN/ASpitzer and Huffman, 1947Value computed using ΔfHliquid° value of -105.6±1.8 kj/mol from Spitzer and Huffman, 1947 and ΔvapH° value of 28.7 kj/mol from Prosen, Johnson, et al., 1946.; DRB
Δfgas-18.46 ± 0.18kcal/molCcbProsen, Johnson, et al., 1946ALS

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
8.98250.Dorofeeva O.V., 1986Recommended values are in good agreement with those calculated by [ Kilpatrick J.E., 1947, McCullough J.P., 1959] at low temperatures. The discrepancies increase at higher temperatures and amount to 1.8 J/mol*K for S(1500 K) and 2.1 J/mol*K for Cp(1500 K) obtained by [ McCullough J.P., 1959]. Calculation [ Sundaram S., 1963] seems to be incorrect because discrepancies with these data reach 23 and 7 J/mol*K for S(T) and Cp(T), respectively.; GT
9.603100.
10.83150.
12.95200.
17.80273.15
19.78 ± 0.48298.15
19.93300.
28.239400.
35.863500.
42.321600.
47.729700.
52.294800.
56.171900.
59.4841000.
62.3231100.
64.7611200.
66.8621300.
68.6761400.
70.2491500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
22.46 ± 0.045329.05McCullough J.P., 1959Please also see Spitzer R., 1946.; GT
24.38 ± 0.20353.
25.85 ± 0.20372.
28.03 ± 0.30395.
27.985 ± 0.055395.05
30.19 ± 0.30424.
33.16 ± 0.30463.
33.334 ± 0.067463.10
36.02 ± 0.40503.
38.26 ± 0.40539.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-25.23 ± 0.42kcal/molCcbSpitzer and Huffman, 1947ALS
Δfliquid-25.31 ± 0.18kcal/molCcbProsen, Johnson, et al., 1946ALS
Quantity Value Units Method Reference Comment
Δcliquid-786.7 ± 0.1kcal/molCcbKaarsemaker and Coops, 1952Corresponding Δfliquid = -25.17 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-786.62 ± 0.30kcal/molCcbSpitzer and Huffman, 1947Corresponding Δfliquid = -25.21 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-786.54 ± 0.17kcal/molCcbProsen, Johnson, et al., 1946Corresponding Δfliquid = -25.29 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid48.791cal/mol*KN/ADouslin and Huffman, 1946DH
liquid48.870cal/mol*KN/AAston, Fink, et al., 1943DH
liquid49.40cal/mol*KN/AJacobs and Parks, 1934Extrapolation below 90 K, 53.09 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
30.292298.15Tanaka, 1985DH
30.155293.15Siddiqi, Svejda, et al., 1983DH
30.3234298.15Fortier, D'Arcy, et al., 1979DH
30.421298.15Jolicoeur, Boileau, et al., 1975DH
30.459300.Szasz, Morrison, et al., 1947T = 14 to 300 K.; DH
30.301298.15Douslin and Huffman, 1946T = 12 to 300 K.; DH
30.791298.15Aston, Fink, et al., 1943T = 15 to 300 K.; DH
30.091293.7Jacobs and Parks, 1934T = 93 to 294 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil322.4 ± 0.3KAVGN/AAverage of 34 out of 39 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus179.2 ± 0.8KAVGN/AAverage of 26 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple179.71KN/ADouslin and Huffman, 1946, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; To = 273.16 K; TRC
Ttriple179.71KN/ADouslin and Huffman, 1946, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.007 K; To = 273.16 K; TRC
Ttriple179.69KN/AAston, Finke, et al., 1943Uncertainty assigned by TRC = 0.08 K; TRC
Ttriple179.0KN/AJacobs and Parks, 1934, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc511.7 ± 0.2KN/ADaubert, 1996 
Tc511.6KN/AMajer and Svoboda, 1985 
Tc511.7KN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.2 K; TRC
Tc511.6KN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 0.15 K; TRC
Tc511.75KN/AKay, 1947Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Pc44.5 ± 0.4atmN/ADaubert, 1996 
Pc44.49atmN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.4000 atm; TRC
Pc43.72atmN/AAmbrose and Grant, 1957Uncertainty assigned by TRC = 0.5000 atm; TRC
Pc44.5500atmN/AKay, 1947Uncertainty assigned by TRC = 0.0499 atm; TRC
Quantity Value Units Method Reference Comment
Vc0.259l/molN/ADaubert, 1996 
Quantity Value Units Method Reference Comment
ρc3.85 ± 0.04mol/lN/ADaubert, 1996 
ρc3.850mol/lN/AKudchadker, Alani, et al., 1968Uncertainty assigned by TRC = 0.06 mol/l; TRC
ρc3.85mol/lN/AKay, 1947Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap6.9 ± 0.1kcal/molAVGN/AAverage of 8 values; Individual data points

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
6.52322.4N/AMajer and Svoboda, 1985 
6.9821298.15N/AAston, Fink, et al., 1943P = 41.10 kPa; DH
6.98295.AStephenson and Malanowski, 1987Based on data from 280. to 331. K.; AC
6.69337.AStephenson and Malanowski, 1987Based on data from 322. to 384. K.; AC
6.50396.AStephenson and Malanowski, 1987Based on data from 381. to 455. K.; AC
6.57467.AStephenson and Malanowski, 1987Based on data from 452. to 511. K.; AC
6.67 ± 0.02310.CMcCullough, Pennington, et al., 1959AC
6.52 ± 0.02322.CMcCullough, Pennington, et al., 1959AC
6.55323.N/ASpitzer and Pitzer, 1946AC
6.93304.MMWillingham, Taylor, et al., 1945Based on data from 289. to 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kcal/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kcal/mol) β Tc (K) Reference Comment
298. to 323.9.9520.2597511.6Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
23.42298.15Aston, Fink, et al., 1943P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
288.86 to 323.183.997171119.208-42.412Williamham, Taylor, et al., 1945 
225.90 to 287.394.241431235.305-30.666Aston, Fink, et al., 1943Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
10.2122.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Reference Comment
0.1179.7Domalski and Hearing, 1996AC

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
1.242121.95crystaline, IIIcrystaline, IIRahm and Gmelin, 1992DH
0.0863138.22crystaline, IIcrystaline, IRahm and Gmelin, 1992DH
0.147179.21crystaline, IliquidRahm and Gmelin, 1992DH
1.1674122.36crystaline, IIIcrystaline, IISzasz, Morrison, et al., 1947DH
0.08191138.07crystaline, IIcrystaline, ISzasz, Morrison, et al., 1947Temperature from 43AST/FIN.; DH
0.1443179.69crystaline, IliquidSzasz, Morrison, et al., 1947Temperature from 43AST/FIN.; DH
1.1673122.39crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
0.082321138.09crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
0.14554179.71crystaline, IliquidDouslin and Huffman, 1946DH
1.165122.39crystaline, IIIcrystaline, IIAston, Fink, et al., 1943DH
0.08279138.07crystaline, IIcrystaline, IAston, Fink, et al., 1943DH
0.144179.69crystaline, IliquidAston, Fink, et al., 1943DH
1.134121.6crystaline, IIIcrystaline, IIJacobs and Parks, 1934DH
0.08561137.1crystaline, IIcrystaline, IJacobs and Parks, 1934DH
0.1445179.0crystaline, IliquidJacobs and Parks, 1934DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
9.541122.36crystaline, IIIcrystaline, IISzasz, Morrison, et al., 1947DH
0.593138.07crystaline, IIcrystaline, ISzasz, Morrison, et al., 1947Temperature; DH
0.803179.69crystaline, IliquidSzasz, Morrison, et al., 1947Temperature; DH
9.539122.39crystaline, IIIcrystaline, IIDouslin and Huffman, 1946DH
0.595138.09crystaline, IIcrystaline, IDouslin and Huffman, 1946DH
0.808179.71crystaline, IliquidDouslin and Huffman, 1946DH
9.517122.39crystaline, IIIcrystaline, IIAston, Fink, et al., 1943DH
0.600138.07crystaline, IIcrystaline, IAston, Fink, et al., 1943DH
0.801179.69crystaline, IliquidAston, Fink, et al., 1943DH
9.326121.6crystaline, IIIcrystaline, IIJacobs and Parks, 1934DH
0.624137.1crystaline, IIcrystaline, IJacobs and Parks, 1934DH
0.808179.0crystaline, IliquidJacobs and Parks, 1934DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Cyclopentene = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-26.94 ± 0.13kcal/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-26.8 ± 0.2kcal/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-26.04 ± 0.44kcal/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-26.2 ± 0.2kcal/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-26.67 ± 0.06kcal/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -26.92 ± 0.06 kcal/mol; At 355 °K; ALS

C5H9- + Hydrogen cation = Cyclopentane

By formula: C5H9- + H+ = C5H10

Quantity Value Units Method Reference Comment
Δr416.1 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr418.3 ± 2.0kcal/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr407.4 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr409.6 ± 2.1kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

Hydrogen + Bicyclo[2.1.0]pentane = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-56.1 ± 0.1kcal/molChydRoth, Klarner, et al., 1980liquid phase; solvent: Heptane; ALS
Δr-55.14 ± 0.36kcal/molChydTurner, Goebel, et al., 1968liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,3-Cyclopentadiene = Cyclopentane

By formula: 2H2 + C5H6 = C5H10

Quantity Value Units Method Reference Comment
Δr-50.38 ± 0.20kcal/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -50.87 ± 0.20 kcal/mol; At 355 °K; ALS

2Hydrogen + Bicyclo[2.1.0]pent-2-ene = Cyclopentane

By formula: 2H2 + C5H6 = C5H10

Quantity Value Units Method Reference Comment
Δr-98.0 ± 0.5kcal/molChydRoth, Klarner, et al., 1980liquid phase; solvent: Heptane; ALS

Cyclopentane + Iodine = 2Hydrogen iodide + Cyclopentene

By formula: C5H10 + I2 = 2HI + C5H8

Quantity Value Units Method Reference Comment
Δr24.40kcal/molEqkFuruyama, Golden, et al., 1970gas phase; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C5H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.33 ± 0.15eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
9.83 ± 0.05EIHolmes and Lossing, 1991LL
10.35PITraeger, 1986LBLHLM
10.33 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
10.3 ± 0.1PEBieri, Burger, et al., 1977LLK
10.55 ± 0.03PERang, Paldoia, et al., 1974LLK
10.54 ± 0.05EIPuttemans, 1974LLK
10.48PEPuttemans, 1974LLK
10.40PEIkuta, Yoshihara, et al., 1973LLK
10.49EILossing, 1972LLK
10.91 ± 0.07EIGross and Wilkins, 1971LLK
10.50 ± 0.01PEPraet and Delwiche, 1970RDSH
10.49PIDewar and Worley, 1969RDSH
10.53 ± 0.05PEWatanabe, Nakayama, et al., 1962RDSH
11.01PEKimura, Katsumata, et al., 1981Vertical value; LLK
10.7 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
10.5PEBatich, Heilbronner, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H6+11.22 ± 0.04C2H4PIBrand and Baer, 1984LBLHLM
C3H6+11.45C2H4EIPuttemans, 1974LLK
C3H6+11.74 ± 0.07C2H4EIGross and Wilkins, 1971LLK
C4H7+11.08CH3PITraeger, 1986LBLHLM
C4H7+11.15 ± 0.03CH3PIBrand and Baer, 1984LBLHLM
C4H7+11.14CH3EIBrand and Baer, 1984LBLHLM
C4H7+11.14CH3EILossing, 1972LLK
C4H7+11.36 ± 0.08CH3EIGross and Wilkins, 1971LLK

De-protonation reactions

C5H9- + Hydrogen cation = Cyclopentane

By formula: C5H9- + H+ = C5H10

Quantity Value Units Method Reference Comment
Δr416.1 ± 2.0kcal/molBranDePuy, Gronert, et al., 1989gas phase; B
Δr418.3 ± 2.0kcal/molBranPeerboom, Rademaker, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr407.4 ± 2.1kcal/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr409.6 ± 2.1kcal/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

McCullough, Pennington, et al., 1959
McCullough, J.P.; Pennington, R.E.; Smith, J.C.; Hossenlopp, I.A.; Waddington, G., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: Verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Spitzer and Huffman, 1947
Spitzer, R.; Huffman, H.M., The heats of combustion of cyclopentane, cyclohexane, cycloheptane and cyclooctane, J. Am. Chem. Soc., 1947, 69, 211-213. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of formation and combustion of the normal alkylcyclopentanes and cyclohexanes and the increment per CH2 group for several homologous series of hydrocarbons, J. Res. NBS, 1946, 37, 51-56. [all data]

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Kilpatrick J.E., 1947
Kilpatrick J.E., The thermodynamics and molecular structure of cyclopentane, J. Am. Chem. Soc., 1947, 69, 2483-2488. [all data]

McCullough J.P., 1959
McCullough J.P., Thermodynamics of cyclopentane, methylcyclopentane and 1,cis-3-dimethylcyclopentane: verification of the concept of pseudorotation, J. Am. Chem. Soc., 1959, 81, 5880-5883. [all data]

Sundaram S., 1963
Sundaram S., Thermodynamic functions of some propellants, Z. Phys. Chem. (Frankfurt), 1963, 36, 376-377. [all data]

Spitzer R., 1946
Spitzer R., The heat capacity of gaseous cyclopentane, cyclohexane and methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 2537-2538. [all data]

Kaarsemaker and Coops, 1952
Kaarsemaker, S.; Coops, J., Thermal quantities of some cycloparaffins. Part III. Results of measurements, Rec. Trav. Chim. Pays/Bas, 1952, 71, 261. [all data]

Douslin and Huffman, 1946
Douslin, D.R.; Huffman, H.M., The heat capacities, heats of transition, heats of fusion and entropies of cyclopentane, methylcyclopentane and methylcylohexane, J. Am. Chem. Soc., 1946, 68, 173-176. [all data]

Aston, Fink, et al., 1943
Aston, J.G.; Fink, H.L.; Schumann, S.C., The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure, J. Am. Chem. Soc., 1943, 65, 341-346. [all data]

Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]

Tanaka, 1985
Tanaka, R., Excess heat capacities for mixtures of benzene with cyclopentane, methylcyclohexane, and cyclooctane at 298.15 K, J. Chem. Eng. Data, 1985, 30, 267-269. [all data]

Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F., A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane, Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]

Fortier, D'Arcy, et al., 1979
Fortier, J.-L.; D'Arcy, P.J.; Benson, G.C., Heat capacities of binary cycloalkane mixtures at 298.15 K, Thermochim. Acta, 1979, 28, 37-43. [all data]

Jolicoeur, Boileau, et al., 1975
Jolicoeur, C.; Boileau, J.; Bazinet, S.; Picker, P., Thermodynamic properties of aqueous organic solutes in relation to their structure. Part II. Apparent molal volumes and heat capacities of c-alkylamine hydrobromides in water, Can. J. Chem., 1975, 53, 716-722. [all data]

Szasz, Morrison, et al., 1947
Szasz, G.J.; Morrison, J.A.; Pace, E.L.; Aston, J.G., Thermal properties of cyclopentane and its use as a standard substance in low temperature thermal measurements, J. Chem. Phys., 1947, 15, 562-564. [all data]

Douslin and Huffman, 1946, 2
Douslin, D.R.; Huffman, H.M., The heat capacities, heats of transition, heats of fusion and entropies of cyclopentane, methylcyclopentane and methylcyclohexane., J. Am. Chem. Soc., 1946, 68, 173. [all data]

Aston, Finke, et al., 1943
Aston, J.G.; Finke, H.L.; Schumann, S.C., The heat capacity and entropy, heats of transition, fusion and vaporization and the vapor pressures of cyclopentane. Evidence for a non-planar structure, J. Am. Chem. Soc., 1943, 65, 341. [all data]

Jacobs and Parks, 1934, 2
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-17. [all data]

Daubert, 1996
Daubert, T.E., Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes, J. Chem. Eng. Data, 1996, 41, 365-372. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Kudchadker, Alani, et al., 1968
Kudchadker, A.P.; Alani, G.H.; Zwolinski, B.J., The Critical Constants of Organic Substances, Chem. Rev., 1968, 68, 659. [all data]

Ambrose and Grant, 1957
Ambrose, D.; Grant, D.G., The Critical Temperatures of Some Hydrocarbons and Pyridine Bases, Trans. Faraday Soc., 1957, 53, 771. [all data]

Kay, 1947
Kay, W.B., Vapor Pressures and Saturated Liquid and Vapor DEensities of Cyclopentane, Methylcyclopentane, Ethylcyclopentane, and Methylcyclohexane, J. Am. Chem. Soc., 1947, 69, 1273-7. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Spitzer and Pitzer, 1946
Spitzer, Ralph; Pitzer, Kenneth S., The Heat Capacity of Gaseous Cyclopentane, Cyclohexane and Methylcyclohexane, J. Am. Chem. Soc., 1946, 68, 12, 2537-2538, https://doi.org/10.1021/ja01216a032 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rahm and Gmelin, 1992
Rahm, U.; Gmelin, E., Low temperature microcalorimetry by differential scanning, J. Therm. Anal., 1992, 38(3), 335-344. [all data]

Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N., Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements, Tetrahedron, 1982, 38, 1593-1597. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Roth, Klarner, et al., 1980
Roth, W.R.; Klarner, F.-G.; Lennartz, H.-W., Heats of hydrogenation. II. Heat of hydrogenation of bicyclo[2.1.0]pent-2-ene, an antiaromatic system, Chem. Ber., 1980, 113, 1806-1818. [all data]

Turner, Goebel, et al., 1968
Turner, R.B.; Goebel, P.; Mallon, B.J.; Doering, W.E.; Coburn, J.F., Jr.; Pomerantz, M., Heats of hydrogenation. VIII. Compounds with three- and four-membered rings, J. Am. Chem. Soc., 1968, 90, 4315-4322. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Furuyama, Golden, et al., 1970
Furuyama, S.; Golden, D.M.; Benson, S.W., Thermochemistry of cyclopentene and cyclopentadiene from studies of gas-phase equilibria, J. Chem. Thermodyn., 1970, 2, 161-169. [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Traeger, 1986
Traeger, J.C., Heat of formation for the 1-methylallyl cation by photoionization mass spectrometry, J. Phys. Chem., 1986, 90, 4114. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Rang, Paldoia, et al., 1974
Rang, S.; Paldoia, P.; Talvari, A., Ionization potentials of unsaturated hydrocarbons. 2. Mono-substituted cyclopentenes and cyclohexenes, Eesti. NSV Tead. Akad. Toim., 1974, 354. [all data]

Puttemans, 1974
Puttemans, J.P., Ionisation de cycloalcanes (C5 a C12) en spectroscopie photoelectronique et par impact electronique, Ing. Chim. (Brussels), 1974, 56, 64. [all data]

Ikuta, Yoshihara, et al., 1973
Ikuta, S.; Yoshihara, K.; Shiokawa, T.; Jinno, M.; Yokoyama, Y.; Ikeda, S., Photoelectron spectroscopy of cyclohexane, cyclopentane, and some related compounds, Chem. Lett., 1973, 1237. [all data]

Lossing, 1972
Lossing, F.P., Free radicals by mass spectrometry. XLV. Ionization potentials and heats of formation of C3H3, C3H5, and C4H7 radicals and ions, Can. J. Chem., 1972, 50, 3973. [all data]

Gross and Wilkins, 1971
Gross, M.L.; Wilkins, C.L., Computer-assisted ion cyclotron resonance appearance potential measurements for C5H10 isomers, Anal. Chem., 1971, 43, 1624. [all data]

Praet and Delwiche, 1970
Praet, M.-T.; Delwiche, J., Ionization energies of some cyclic molecules, Chem. Phys. Lett., 1970, 5, 546. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Batich, Heilbronner, et al., 1974
Batich, C.; Heilbronner, E.; Rommel, E.; Semmelhack, M.F.; Foos, J.S., Equivalence of the energy gaps {DELTA}I(1,2) and {DELTA}E(1,2) between corresponding bands in the photoelectron (I) and electronic absorption (E) spectra of spiro[4.4]nonatetraene. An amusing consequence of spiroconjugation, J. Am. Chem. Soc., 1974, 96, 7662. [all data]

Brand and Baer, 1984
Brand, W.A.; Baer, T., Dissociation dynamics of energy-selected C5H10+ ions, J. Am. Chem. Soc., 1984, 106, 3154. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References