1,4-Dioxane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-315.30 ± 0.80kJ/molCcrBystrm and Mansson, 1982Reanalyzed by Cox and Pilcher, 1970, Original value = -316.5 ± 0.9 kJ/mol; ALS
Δfgas-318. ± 2.kJ/molCcbSnelson and Skinner, 1961ALS
Quantity Value Units Method Reference Comment
gas299.91J/mol*KN/AStull D.R., 1969GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.8550.Dorofeeva O.V., 1992p=1 bar. Selected values are in close agreement with statistical values calculated by [ Ellestad O.H., 1971, Thermodynamics Research Center, 1997]. Heat capacities calculated by [ Malherbe F.E., 1952] are 2-3 J/mol*K larger than those given here.; GT
41.06100.
51.71150.
63.63200.
84.31273.15
92.1 ± 1.5298.15
92.71300.
124.76400.
153.97500.
178.64600.
199.16700.
216.33800.
230.78900.
243.021000.
253.431100.
262.321200.
269.941300.
276.491400.
282.151500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-355.13 ± 0.86kJ/molCcrBystrm and Mansson, 1982ALS
Δfliquid-353.5 ± 0.8kJ/molCcbSnelson and Skinner, 1961ALS
Quantity Value Units Method Reference Comment
Δcliquid-2362.23 ± 0.99kJ/molCcrBystrm and Mansson, 1982Corresponding Δfliquid = -355.13 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2363.9 ± 0.50kJ/molCcbSnelson and Skinner, 1961Corresponding Δfliquid = -353.4 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2346.2kJ/molCcbRoth and Meyer, 1933Corrected for pressure and temperature; Corresponding Δfliquid = -371.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2186.8kJ/molCcbHerz and Lorentz, 1929Corresponding Δfliquid = -530.57 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid196.6J/mol*KN/AJacobs and Parks, 1934Extrapolation below 90 K, 11.12 cal/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
149.65298.15Grolier, Roux-Desgranges, et al., 1993DH
150.57298.15Trejo, Costas, et al., 1991DH
149.489298.15Barta, Kooner, et al., 1989DH
150.65298.15Grolier, Inglese, et al., 1984DH
150.77298.15Inglese, Grolier, et al., 1984DH
149.73298.15Inglese, Castagnolo, et al., 1981DH
149.0298.Murthy and Subrahmanyam, 1979DH
149.298.15Bonner and Cerutti, 1976DH
140.2298.Conti, Gianni, et al., 1976DH
155.6298.Deshpande and Bhatagadde, 1971T = 298 to 318 K.; DH
147.9298.15Hyder Khan and Subrahmanyam, 1971T = 298; 313 K.; DH
147.9298.Subrahmanyam and Khan, 1969DH
152.97298.2Jacobs and Parks, 1934T = 92 to 299 K. Value is unsmoothed experimental datum.; DH
146.0291.Roth and Meyer, 1933T = 8 to 28°C.; DH
154.8296.Herz and Lorentz, 1929DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil374.3 ± 0.8KAVGN/AAverage of 20 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus285. ± 1.KAVGN/AAverage of 17 out of 18 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple284.1KN/AJacobs and Parks, 1934, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc587.3KN/ACristou, Young, et al., 1991Uncertainty assigned by TRC = 1. K; TRC
Tc588.15KN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 2. K; TRC
Tc588.KN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 2. K; TRC
Tc585.15KN/AHojendahl, 1946Uncertainty assigned by TRC = 2. K; TRC
Quantity Value Units Method Reference Comment
Pc54.7155barN/AGlaser and Ruland, 1957Uncertainty assigned by TRC = 3.0398 bar; TRC
Pc52.10barN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.6894 bar; TRC
Pc50.00barN/AHojendahl, 1946Uncertainty assigned by TRC = 0.70 bar; by extrapolation of vapor pressure to critical temperature; TRC
Quantity Value Units Method Reference Comment
Vc0.239l/molN/ACristou, Young, et al., 1991Uncertainty assigned by TRC = 0.008 l/mol; TRC
Vc0.239l/molN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.004 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc4.09mol/lN/AHojendahl, 1946Uncertainty assigned by TRC = 0.11 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap38. ± 4.kJ/molAVGN/AAverage of 7 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
34.16374.5N/AMajer and Svoboda, 1985 
38.300.AStephenson and Malanowski, 1987Based on data from 285. to 375. K.; AC
36.5350.N/ACastellari, Comelli, et al., 1984Based on data from 329. to 372. K.; AC
37.3308.N/AVinson and Martin, 1963Based on data from 293. to 398. K. See also Boublik, Fried, et al., 1984.; AC
35.8273.VGallaugher and Hibbert, 1937ALS
37.318.N/AHovorka, Schaefer, et al., 1936Based on data from 283. to 353. K.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
293. to 378.4.581351570.093-31.297Crenshaw, Cope, et al., 1938Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
35.6255.AStull, 1947Based on data from 237. to 272. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
12.84284.1Domalski and Hearing, 1996AC
11.880283.2Roth and Meyer, 1933DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
41.9283.2Roth and Meyer, 1933DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
8.79272.9Domalski and Hearing, 1996CAL
45.19284.1

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
2.351272.9crystaline, IIcrystaline, IJacobs and Parks, 1934DH
12.845284.1crystaline, IliquidJacobs and Parks, 1934DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
8.6272.9crystaline, IIcrystaline, IJacobs and Parks, 1934DH
45.2284.1crystaline, IliquidJacobs and Parks, 1934DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C3H7O+ + 1,4-Dioxane = (C3H7O+ • 1,4-Dioxane)

By formula: C3H7O+ + C4H8O2 = (C3H7O+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr126.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr87.9kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O2+ + 1,4-Dioxane = (C4H9O2+ • 1,4-Dioxane)

By formula: C4H9O2+ + C4H8O2 = (C4H9O2+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr129.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr132.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr90.0kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Sodium ion (1+) + 1,4-Dioxane = (Sodium ion (1+) • 1,4-Dioxane)

By formula: Na+ + C4H8O2 = (Na+ • C4H8O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
101.298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H8O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.19 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)797.4kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity770.0kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.19 ± 0.01PIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982LBLHLM
9.13 ± 0.03PIWatanabe, Nakayama, et al., 1962RDSH
9.4PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
9.43PEKimura, Katsumata, et al., 1981Vertical value; LLK
9.41PEKobayashi and Nagakura, 1973Vertical value; LLK
9.3 ± 0.1SIGol'denfel'd, Korostyshevskii, et al., 1973Vertical value; LLK
9.43PESweigart and Turner, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CHO+11.60 ± 0.10C3H7OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
CH2O+11.41 ± 0.05C3H6OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
CH3O+11.35 ± 0.10C3H5OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H3O+11.96 ± 0.10C2H5OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H3O+12.92?EICollin and Conde, 1966RDSH
C2H4+11.90 ± 0.102CH2O/C2H4O2PIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H4O+10.39 ± 0.05C2H4OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C2H4O+10.90?EICollin and Conde, 1966RDSH
C2H5O+10.46 ± 0.05C2H3OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C3H5O+11.20 ± 0.10CH3OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C3H6O+10.65CH2OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 0K; LBLHLM
C3H6O+10.56 ± 0.10CH2OPIPECOFraser-Monteiro, Fraser-Monteiro, et al., 1982T = 298K; LBLHLM
C3H6O+11.CH2OEICollin and Conde, 1966RDSH
C4H7O2+10.95HEICollin and Conde, 1966RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C3H7O+ + 1,4-Dioxane = (C3H7O+ • 1,4-Dioxane)

By formula: C3H7O+ + C4H8O2 = (C3H7O+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr126.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr87.9kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O2+ + 1,4-Dioxane = (C4H9O2+ • 1,4-Dioxane)

By formula: C4H9O2+ + C4H8O2 = (C4H9O2+ • C4H8O2)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr129.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr132.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr90.0kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

Sodium ion (1+) + 1,4-Dioxane = (Sodium ion (1+) • 1,4-Dioxane)

By formula: Na+ + C4H8O2 = (Na+ • C4H8O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
101.298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Bystrm and Mansson, 1982
Bystrm, K.; Mansson, M., Enthalpies of formation of some cyclic 1,3- and 1,4-Di- and poly-ethers: Thermochemical strain in the -O-C-O and -O-C-C-O- groups, J. Chem. Soc. Perkin Trans. 2, 1982, 565. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A., Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran, Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Dorofeeva O.V., 1992
Dorofeeva O.V., Ideal gas thermodynamic properties of oxygen heterocyclic compounds. Part 2. Six-membered, seven-membered and eight-membered rings, Thermochim. Acta, 1992, 200, 121-150. [all data]

Ellestad O.H., 1971
Ellestad O.H., The vibrational spectra of 1,4-dioxan-d0 and 1,4-dioxan-d8, Spectrochim. Acta, 1971, A27, 1025-1048. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Malherbe F.E., 1952
Malherbe F.E., The infrared and Raman spectra of p-dioxane, J. Am. Chem. Soc., 1952, 74, 4408-4410. [all data]

Roth and Meyer, 1933
Roth, W.A.; Meyer, I., Einige physikalisch-chemische konstanten des dioxans, Z. Electrochem., 1933, 39, 35-37. [all data]

Herz and Lorentz, 1929
Herz, W.; Lorentz, E., Physikalisch-chemische Untersuchungen an Dioxan, Z. Phys. Chem., 1929, 140, 406-422. [all data]

Jacobs and Parks, 1934
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-1517. [all data]

Grolier, Roux-Desgranges, et al., 1993
Grolier, J.-P.E.; Roux-Desgranges, G.; Berkane, M.; Jimenez, E.; Wilhelm, E., Heat capacities and densities of mixtures of very polar substances 2. Mixtures containing N,N-dimethylformamide, J. Chem. Thermodynam., 1993, 25(1), 41-50. [all data]

Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D., Excess heat capacity of organic mixtures, Internat. DATA Series, Selected Data Mixt., 1991, Ser. [all data]

Barta, Kooner, et al., 1989
Barta, L.; Kooner, Z.S.; Hepler, L.G.; Roux-Desgranges, G.; Grolier, J.-P.E., Thermodynamics of complex formation in chloroform and 1,4-dioxane, Can. J. Chem., 1989, 67, 1225-1229. [all data]

Grolier, Inglese, et al., 1984
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E., Excess molar heat capacities of (1,4-dioxane + an n-alkane): an unusual composition dependence, J. Chem. Thermodynam., 1984, 16, 67-71. [all data]

Inglese, Grolier, et al., 1984
Inglese, A.; Grolier, J.-P.E.; Wilhelm, E., Excess volumes and excess heat capacities of oxane + cyclohexane and 1,4-dioxane + cyclohexane, Fluid Phase Equilibria, 1984, 15, 287-294. [all data]

Inglese, Castagnolo, et al., 1981
Inglese, A.; Castagnolo, M.; Dell'Atti, A.; DeGiglio, A., Thermochim. Acta, 1981, 77-87. [all data]

Murthy and Subrahmanyam, 1979
Murthy, N.M.; Subrahmanyam, S.V., Behavior of excess heat capacity of the water + p-dioxane system, Indian J. Pure Appl. Phys., 1979, 17(9), 620-622. [all data]

Bonner and Cerutti, 1976
Bonner, O.D.; Cerutti, P.J., The partial molar heat capacities of some solutes in water and deuterium oxide, J. Chem. Thermodynam., 1976, 8, 105-111. [all data]

Conti, Gianni, et al., 1976
Conti, G.; Gianni, P.; Matteoli, E.; Mengheri, M., Capacita termiche molari di alcuni composti organici mono- e bifunzionali nel liquido puro e in soluzione acquosa a 25C, Chim. Ind. (Milan), 1976, 58, 225. [all data]

Deshpande and Bhatagadde, 1971
Deshpande, D.D.; Bhatagadde, L.G., Heat capacities at constant volume, free volumes, and rotational freedom in some liquids, Aust. J. Chem., 1971, 24, 1817-1822. [all data]

Hyder Khan and Subrahmanyam, 1971
Hyder Khan, V.; Subrahmanyam, S.V., Excess thermodynamic functions of the systems: benzene + p-xylene and benzene + p-dioxan, Trans. Faraday Soc., 1971, 67, 2282-2291. [all data]

Subrahmanyam and Khan, 1969
Subrahmanyam, S.V.; Khan, V.H., Thermodynamics of the system benzene - p-dioxane, Curr. Sci., 1969, 38, 510-511. [all data]

Jacobs and Parks, 1934, 2
Jacobs, C.J.; Parks, G.S., Thermal data on organic compounds. XIV. Some heat capacity, entropy and free energy data for cyclic substances, J. Am. Chem. Soc., 1934, 56, 1513-17. [all data]

Cristou, Young, et al., 1991
Cristou, G.; Young, C.L.; Svejda, P., Fluid Phase Equilibria, 1991, 67, 45-53. [all data]

Glaser and Ruland, 1957
Glaser, F.; Ruland, H., Untersuchungsen über dampfdruckkurven und kritische daten einiger technisch wichtiger organischer substanzen, Chem. Ing. Techn., 1957, 29, 772. [all data]

Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P., Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds, J. Chem. Eng. Data, 1956, 1, 50. [all data]

Hojendahl, 1946
Hojendahl, K., Dielectric Constant, Viscosity, Surface Tension, and Critical Data of Boron Tribromide, Dioxane, and Ethylene Dichloride, Mat.-Fys. Medd. - K. Dan. Vidensk. Selsk., 1946, 24, 1. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Castellari, Comelli, et al., 1984
Castellari, Carlo; Comelli, Fabio; Francesconi, Romolo, Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 4. Binary mixtures of 1,3-dioxolane with 1,4-dioxane and 1,1,2,2-tetrachloroethane, J. Chem. Eng. Data, 1984, 29, 2, 126-128, https://doi.org/10.1021/je00036a008 . [all data]

Vinson and Martin, 1963
Vinson, Carl G.; Martin, Joseph J., Heat of Vaporization and Vapor Pressure of 1,4-Dioxane., J. Chem. Eng. Data, 1963, 8, 1, 74-75, https://doi.org/10.1021/je60016a021 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Gallaugher and Hibbert, 1937
Gallaugher, A.F.; Hibbert, H., Studies on reactions relating to carbohydrates and polysaccharides. LV. Vapor pressures of the polyethylene glycols and their derivatives, J. Am. Chem. Soc., 1937, 59, 2521-2525. [all data]

Hovorka, Schaefer, et al., 1936
Hovorka, Frank; Schaefer, Ralph A.; Dreisbach, Dale, The System Dioxane and Water, J. Am. Chem. Soc., 1936, 58, 11, 2264-2267, https://doi.org/10.1021/ja01302a051 . [all data]

Crenshaw, Cope, et al., 1938
Crenshaw, J.L.; Cope, A.C.; Finkelstein, N.; Rogan, R., The Dioxanates of the Mercuric Halides, J. Am. Chem. Soc., 1938, 60, 10, 2308-2311, https://doi.org/10.1021/ja01277a010 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Fraser-Monteiro, Fraser-Monteiro, et al., 1982
Fraser-Monteiro, M.L.; Fraser-Monteiro, L.; Butler, J.J.; Baer, T.; Hass, J.R., Thermochemistry and dissociation dynamics of state-selected C4H8O2+ ions. 1. 1,4-Dioxane, J. Phys. Chem., 1982, 86, 739. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Kobayashi and Nagakura, 1973
Kobayashi, T.; Nagakura, S., Photoelectron spectra of tetrahydropyran, 1,3-dioxane, and 1,4-dioxane, Bull. Chem. Soc. Jpn., 1973, 46, 1558. [all data]

Gol'denfel'd, Korostyshevskii, et al., 1973
Gol'denfel'd, I.V.; Korostyshevskii, I.Z.; Mischanchuk, B.G.; Pokrovskii, V.A., Determination of ionization potentials of atoms and molecules using a field mass spectrometer equipped with an energy analyzer, Dokl. Akad. Nauk SSSR, 1973, 213, 626. [all data]

Sweigart and Turner, 1972
Sweigart, D.A.; Turner, D.W., Lone pair orbitals and their interactions studied by photoelectron spectroscopy. II. Equivalent orbitals in saturated oxygen and sulfur J. Heterocycl. Chem., J. Am. Chem. Soc., 1972, 94, 5599. [all data]

Collin and Conde, 1966
Collin, J.E.; Conde, G., L'ionisation et la dissociation des polyethers cycliques soumis a l'impact electronique, Bull. Classe Sci. Acad. Roy. Belg., 1966, 52, 978. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References