Hydrogen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar130.680 ± 0.003J/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar130.68J/mol*KReviewChase, 1998Data last reviewed in March, 1977

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 2500.2500. to 6000.
A 33.06617818.56308343.413560
B -11.36341712.257357-4.293079
C 11.432816-2.8597861.272428
D -2.7728740.268238-0.096876
E -0.1585581.977990-20.533862
F -9.980797-1.147438-38.515158
G 172.707974156.288133162.081354
H 0.00.00.0
ReferenceChase, 1998Chase, 1998Chase, 1998
Comment Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001 Data last reviewed in March, 1977; New parameter fit October 2001

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Ttriple0.KN/ARoder, Childs, et al., 1973TRC
Ttriple13.95KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.06 K; see property X for dP/dT for c-l equil.; TRC
Ttriple13.96KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.05 K; temperature measured with He gas thermometer; TRC
Quantity Value Units Method Reference Comment
Ptriple0.barN/ARoder, Childs, et al., 1973TRC
Ptriple0.0721barN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.0004 bar; TRC
Quantity Value Units Method Reference Comment
Tc33.18KN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 0.2 K; derived from P-V-T measurements; TRC
Quantity Value Units Method Reference Comment
Pc13.00barN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 0.0119 bar; derived from vapor pressure extrapolated to Tc; TRC
Quantity Value Units Method Reference Comment
ρc15.4mol/lN/AOnnes, Crommelin, et al., 1917Uncertainty assigned by TRC = 2. mol/l; by extrapolation of rectilinear diameter to Tc; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
21.01 to 32.273.5431499.3957.726van Itterbeek, Verbeke, et al., 1964Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Dicobalt octacarbonyl (solution) + Hydrogen (solution) = 2Cobalt, tetracarbonylhydro- (solution)

By formula: C8Co2O8 (solution) + H2 (solution) = 2C4HCoO4 (solution)

Quantity Value Units Method Reference Comment
Δr19.7 ± 0.8kJ/molEqSRathke, Klingler, et al., 1992solvent: Supercritical carbon dioxide; Temperature range: 333-453 K. The results corrected for 1 atm pressure of H2 are 16.7 kJ/mol and -17.6 J/(mol K) Rathke, Klingler, et al., 1992; MS
Δr13.0 ± 0.9kJ/molEqSBor, 1986solvent: n-Hexane; Temperature range: ca. 300-420 K; MS
Δr26.4kJ/molKinSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; The reaction enthalpy relies on the experimental values for the forward and reverse activation enthalpies, 72.4 and 46.0 kJ/mol, respectively Alemdaroglu, Penninger, et al., 1976. A rather different value has, however, been reported for the activation enthalpy of the forward reaction, 104.6 kJ/mol Ungváry, 1972; MS
Δr27.6kJ/molEqSAlemdaroglu, Penninger, et al., 1976solvent: n-Heptane; Temperature range: 353-428 K; MS
Δr13.4kJ/molEqSUngváry, 1972solvent: n-Heptane; Temperature range: 307-428 K. The results corrected for 1 atm pressure of H2 are 18.0 kJ/mol and -10.9 J/(mol K) Rathke, Klingler, et al., 1992; MS

H3+ + Hydrogen = (H3+ • Hydrogen)

By formula: H3+ + H2 = (H3+ • H2)

Quantity Value Units Method Reference Comment
Δr29. ± 2.kJ/molAVGN/AAverage of 4 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δr72.8 to 72.8J/mol*KRNGN/ARange of 6 values; Individual data points

C11H2O11Os (solution) + Carbon monoxide (solution) = Hydrogen (g) + Osmium, dodecacarbonyltri-, triangulo (solution)

By formula: C11H2O11Os (solution) + CO (solution) = H2 (g) + C12O12Os3 (solution)

Quantity Value Units Method Reference Comment
Δr-37.7 ± 9.6kJ/molES/KSPoë, Sampson, et al., 1993solvent: Decalin; Calculated from equilibrium and kinetic data Poë, Sampson, et al., 1993.; MS
Δr-77.4 ± 9.7kJ/molN/APoë, Sampson, et al., 1993solvent: Decalin; Calculated from data for the reactions Os3(CO)10(H)2(solution) + CO(solution) = Os3(CO)11(H)2(solution) (hrxn [kJ/mol]=-39.7±1.3, srxn [J/(mol K)]=-80.3±3.8) and Os3(CO)11(H)2(solution) + CO(solution) = Os3(CO)12(solution) + H2(g) (hrxn [kJ/mol]=-37.7±9.6, srxn [J/(mol K)]=-32.6±27.6) Poë, Sampson, et al., 1993.; MS

Cyclohexene + Hydrogen = Cyclohexane

By formula: C6H10 + H2 = C6H12

Quantity Value Units Method Reference Comment
Δr-118. ± 6.kJ/molAVGN/AAverage of 8 values; Individual data points

Chromium, hexacarbonylbis(η5-2,4-cyclopentadien-1-yl)di-, (Cr-Cr) (cr) + Hydrogen (g) = 2C8H6CrO3 (cr)

By formula: C16H10Cr2O6 (cr) + H2 (g) = 2C8H6CrO3 (cr)

Quantity Value Units Method Reference Comment
Δr-13.9 ± 4.0kJ/molRSCLandrum and Hoff, 1985The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS
Δr-15.1 ± 4.2kJ/molDSCLandrum and Hoff, 1985The reaction enthalpy was obtained from the value for the reaction 2Cr(Cp)(CO)3(H)(cr) + 1,3-cy-C6H8(solution) = [Cr(Cp)(CO)3]2(cr) + cy-C6H10(solution), -98.3 ± 3.8 kJ/mol Landrum and Hoff, 1985, together with the calculated enthalpy for 1,3-cy-C6H8(l) + H2(g) = cy-C6H10(l), -112.2±1.3 Pedley, 1994. It was assumed that 1,3-cy-C6H8 and cy-C6H10 have similar solution enthalpies in heptane; MS

Hydrogen + 1-Hexene = n-Hexane

By formula: H2 + C6H12 = C6H14

Quantity Value Units Method Reference Comment
Δr-125. ± 3.kJ/molAVGN/AAverage of 8 values; Individual data points

(H3+ • Hydrogen) + Hydrogen = (H3+ • 2Hydrogen)

By formula: (H3+ • H2) + H2 = (H3+ • 2H2)

Quantity Value Units Method Reference Comment
Δr14. ± 0.8kJ/molPHPMSHiraoka, 1987gas phase; M
Δr13.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; M
Δr14.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated; M
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr7.5kJ/molHPMSBennett and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr70.7J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; M
Δr67.4J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated; M
Δr82.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr45.2J/mol*KHPMSBennett and Field, 1972gas phase; Entropy change is questionable; M

Hydrogen + 1-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-125. ± 2.kJ/molAVGN/AAverage of 6 values; Individual data points

1-Octene + Hydrogen = Octane

By formula: C8H16 + H2 = C8H18

Quantity Value Units Method Reference Comment
Δr-125. ± 6.kJ/molAVGN/AAverage of 7 values; Individual data points

Hydrogen anion + Hydrogen cation = Hydrogen

By formula: H- + H+ = H2

Quantity Value Units Method Reference Comment
Δr1675.3kJ/molN/AShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1675.3kJ/molN/APratt, McCormack, et al., 1992gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B
Δr1675.3kJ/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B
Quantity Value Units Method Reference Comment
Δr1649.3 ± 0.42kJ/molH-TSShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1649.3kJ/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B

Hydrogen + Cyclopentene = Cyclopentane

By formula: H2 + C5H8 = C5H10

Quantity Value Units Method Reference Comment
Δr-112.7 ± 0.54kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-112. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-109.0 ± 1.8kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-110. ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-111.6 ± 0.3kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112.6 ± 0.3 kJ/mol; At 355 °K; ALS

Hydrogen + Cyclooctene, (Z)- = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-102.kJ/molChydDoering, Roth, et al., 1989liquid phase; ALS
Δr-103. ± 0.8kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-96.40 ± 0.71kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane; ALS
Δr-96.1 ± 0.4kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid; ALS
Δr-97.40 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -98.4 ± 0.2 kJ/mol; At 355 K; ALS

0.5C36H84Cl2P4Rh2 (solution) + Hydrogen (g) = C18H44ClP2Rh (solution)

By formula: 0.5C36H84Cl2P4Rh2 (solution) + H2 (g) = C18H44ClP2Rh (solution)

Quantity Value Units Method Reference Comment
Δr-98.8 ± 2.7kJ/molRSCWang, Rosini, et al., 1995solvent: Benzene; The reaction enthalpy was calculated from the enthalpies of the reactions Rh[P(i-Pr)3]2(Cl)(H)2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution) + H2(g), -41.4 ± 1.7 kJ/mol, and 0.5{Rh[P(i-Pr)3]2(Cl)}2(solution) + t-BuNC(solution) = Rh[P(i-Pr)3]2(Cl)(CN-t-Bu)(solution), -140.2 ± 2.1 kJ/mol Wang, Rosini, et al., 1995. The enthalpy of solution of {Rh[P(i-Pr)3]2(Cl)}2(cr) was measured as 20.1 ± 1.3 kJ/mol Wang, Rosini, et al., 1995.; MS

Hydrogen + Cyclopentene, 1-methyl- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-100.8 ± 0.63kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-101.3 ± 0.50kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-96.3 ± 0.2kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,5-Hexadiene = n-Hexane

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-252. ± 2.kJ/molChydFang and Rogers, 1992liquid phase; solvent: Cyclohexane; ALS
Δr-253.9 ± 2.7kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-251.8 ± 1.5kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-251.2 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -253.3 ± 0.63 kJ/mol; At 355 °K; ALS

Hydrogen + 1-Ethylcyclopentene = Cyclopentane, ethyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-101.9 ± 0.63kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-98.3 ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-98.58 ± 0.46kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-98.58 ± 0.46kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclopentane, ethylidene- = Cyclopentane, ethyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-106.9 ± 0.4kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-101. ± 0.8kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-104.1 ± 0.50kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-104.1 ± 0.50kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclopentane, methylene- = Cyclopentane, methyl-

By formula: H2 + C6H10 = C6H12

Quantity Value Units Method Reference Comment
Δr-115.9 ± 0.96kJ/molChydAllinger, Dodziuk, et al., 1982liquid phase; solvent: Hexane; ALS
Δr-112.5 ± 0.08kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-112.3 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-112.2 ± 0.3kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

C3H7+ + Hydrogen = (C3H7+ • Hydrogen)

By formula: C3H7+ + H2 = (C3H7+ • H2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.170.PHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<; M

Cobalt ion (1+) + Hydrogen = (Cobalt ion (1+) • Hydrogen)

By formula: Co+ + H2 = (Co+ • H2)

Quantity Value Units Method Reference Comment
Δr82. ± 4.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73.2 (+9.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M

1-Pentene + Hydrogen = Pentane

By formula: C5H10 + H2 = C5H12

Quantity Value Units Method Reference Comment
Δr-126.6 ± 2.4kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-125.0 ± 1.8kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-122.6 ± 2.4kJ/molChydRogers and Skanupong, 1974liquid phase; solvent: Hexane; ALS
Δr-119. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS

Cyclohexane, methylene- + Hydrogen = Cyclohexane, methyl-

By formula: C7H12 + H2 = C7H14

Quantity Value Units Method Reference Comment
Δr-119.5 ± 0.65kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-116.1 ± 0.54kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-116.1 ± 0.54kJ/molEqkTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS
Δr-120.1 ± 0.3kJ/molChydTurner and Garner, 1957, 2liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cycloheptene = Cycloheptane

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-110. ± 0.4kJ/molChydRoth and Lennartz, 1980liquid phase; solvent: Cyclohexane; ALS
Δr-108.2 ± 0.4kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS
Δr-108.9 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -111.0 ± 0.08 kJ/mol; At 355 K; ALS

3Hydrogen + 1,3,5-Cycloheptatriene = Cycloheptane

By formula: 3H2 + C7H8 = C7H14

Quantity Value Units Method Reference Comment
Δr-305. ± 0.4kJ/molChydRoth, Klaerner, et al., 1983liquid phase; solvent: Isooctane; ALS
Δr-294.9 ± 1.6kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS
Δr-301.7 ± 1.3kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -304.8 ± 0.04 kJ/mol; at 355 K; ALS

2Hydrogen + 1,3-Butadiene, 2,3-dimethyl- = Butane, 2,3-dimethyl-

By formula: 2H2 + C6H10 = C6H14

Quantity Value Units Method Reference Comment
Δr-231.4 ± 3.0kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Dioxane; ALS
Δr-227.0 ± 2.8kJ/molChydMolnar, Rachford, et al., 1984liquid phase; solvent: Hexane; ALS
Δr-223.4 ± 0.63kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -225.4 ± 0.63 kJ/mol; At 355 °K; ALS

Pyridine + 3Hydrogen = Piperidine

By formula: C5H5N + 3H2 = C5H11N

Quantity Value Units Method Reference Comment
Δr-193.8 ± 0.75kJ/molEqkHales and Herington, 1957gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -202.2 ± 0.75 kJ/mol; At 400-550 K; ALS
Δr-193.0 ± 2.1kJ/molEqkBurrows and King, 1935liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -188.3 kJ/mol; At 423-443 K; ALS

1-Pentene, 2,4,4-trimethyl- + Hydrogen = Pentane, 2,2,4-trimethyl-

By formula: C8H16 + H2 = C8H18

Quantity Value Units Method Reference Comment
Δr-107.kJ/molChydTurner, Nettleton, et al., 1958liquid phase; solvent: Acetic acid; ALS
Δr-112.9 ± 0.3kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -114.0 ± 0.3 kJ/mol; At 355 °K; ALS
Δr-119.6 ± 3.3kJ/molChydCrawford and Parks, 1936liquid phase; ALS

Propene + Hydrogen = Propane

By formula: C3H6 + H2 = C3H8

Quantity Value Units Method Reference Comment
Δr-123.4 ± 5.0kJ/molChydKistiakowsky and Nickle, 1951gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -124.9 ± 2.1 kJ/mol; ALS
Δr-125.0 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1935gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -126.00 ± 0.054 kJ/mol; At 355 °K; ALS

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Hydrogen + Acetone = Isopropyl Alcohol

By formula: H2 + C3H6O = C3H8O

Quantity Value Units Method Reference Comment
Δr-68.74 ± 0.42kJ/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-55.23kJ/molEqkBuckley and Herington, 1965gas phase; ALS
Δr-55.40 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -56.1 ± 0.4 kJ/mol; At 355 °K; ALS

(Cobalt ion (1+) • Hydrogen) + Methane = (Cobalt ion (1+) • Methane • Hydrogen)

By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)

Quantity Value Units Method Reference Comment
Δr91.2J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
94.6 (+5.0,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993; M

Cyclohexane, ethylidene- + Hydrogen = Cyclohexane, ethyl-

By formula: C8H14 + H2 = C8H16

Quantity Value Units Method Reference Comment
Δr-110. ± 1.kJ/molChydRogers and McLafferty, 1971liquid phase; solvent: Hydrocarbon; ALS
Δr-110.1 ± 0.2kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-110.1 ± 0.2kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

Hydrogen + trans-Cyclooctene = Cyclooctane

By formula: H2 + C8H14 = C8H16

Quantity Value Units Method Reference Comment
Δr-144. ± 0.4kJ/molChydRoth, Adamczak, et al., 1991liquid phase; see Doering, Roth, et al., 1989; ALS
Δr-144.0 ± 1.8kJ/molChydRogers, Von Voithenberg, et al., 1978liquid phase; solvent: Hexane; ALS
Δr-134.9 ± 0.88kJ/molChydTurner and Meador, 1957liquid phase; solvent: Acetic acid; ALS

(Cobalt ion (1+) • Hydrogen) + Hydrogen = (Cobalt ion (1+) • 2Hydrogen)

By formula: (Co+ • H2) + H2 = (Co+ • 2H2)

Quantity Value Units Method Reference Comment
Δr75. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K; M

(Cobalt ion (1+) • 2Hydrogen) + Hydrogen = (Cobalt ion (1+) • 3Hydrogen)

By formula: (Co+ • 2H2) + H2 = (Co+ • 3H2)

Quantity Value Units Method Reference Comment
Δr44. ± 2.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K; M

(Cobalt ion (1+) • 3Hydrogen) + Hydrogen = (Cobalt ion (1+) • 4Hydrogen)

By formula: (Co+ • 3H2) + H2 = (Co+ • 4H2)

Quantity Value Units Method Reference Comment
Δr44. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M
Quantity Value Units Method Reference Comment
Δr101.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K; M

(Cobalt ion (1+) • 4Hydrogen) + Hydrogen = (Cobalt ion (1+) • 5Hydrogen)

By formula: (Co+ • 4H2) + H2 = (Co+ • 5H2)

Quantity Value Units Method Reference Comment
Δr22. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K; M

(Cobalt ion (1+) • 5Hydrogen) + Hydrogen = (Cobalt ion (1+) • 6Hydrogen)

By formula: (Co+ • 5H2) + H2 = (Co+ • 6H2)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K; M

(Cobalt ion (1+) • 6Hydrogen) + Hydrogen = (Cobalt ion (1+) • 7Hydrogen)

By formula: (Co+ • 6H2) + H2 = (Co+ • 7H2)

Quantity Value Units Method Reference Comment
Δr6. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K; M

(H3+ • 3Hydrogen) + Hydrogen = (H3+ • 4Hydrogen)

By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase; M
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr80.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(H3+ • 2Hydrogen) + Hydrogen = (H3+ • 3Hydrogen)

By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)

Quantity Value Units Method Reference Comment
Δr13. ± 0.4kJ/molPHPMSHiraoka, 1987gas phase; M
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka, 1987gas phase; M
Δr84.5J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen + 4-Octene, (Z)- = Octane

By formula: H2 + C8H16 = C8H18

Quantity Value Units Method Reference Comment
Δr-118.2 ± 0.4kJ/molChydRogers, Dejroongruang, et al., 1992liquid phase; solvent: Cyclohexane; ALS
Δr-119.7 ± 2.2kJ/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane; ALS
Δr-114.6 ± 0.59kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 4-Octyne = Octane

By formula: 2H2 + C8H14 = C8H18

Quantity Value Units Method Reference Comment
Δr-268.7 ± 1.1kJ/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS
Δr-262.8 ± 0.67kJ/molChydTurner, Jarrett, et al., 1973liquid phase; solvent: Acetic acid; ALS
Δr-263.kJ/molChydSicher, Svoboda, et al., 1966liquid phase; solvent: Acetic acid; ALS

Hydrogen + Cyclooctanone = Cyclooctyl alcohol

By formula: H2 + C8H14O = C8H16O

Quantity Value Units Method Reference Comment
Δr-55.73kJ/molChydWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-53.14kJ/molChydWiberg, Crocker, et al., 1991solid phase; ALS
Δr-39.0kJ/molChydWiberg, Crocker, et al., 1991gas phase; ALS
Δr-53.14 ± 0.59kJ/molCmWiberg, Crocker, et al., 1991solid phase; ALS

Hydrogen + Cyclohexene, 1-methyl- = Cyclohexane, methyl-

By formula: H2 + C7H12 = C7H14

Quantity Value Units Method Reference Comment
Δr-111.4 ± 0.37kJ/molChydRogers, Crooks, et al., 1987liquid phase; ALS
Δr-106.3 ± 0.46kJ/molChydTurner and Garner, 1958liquid phase; solvent: Acetic acid; ALS
Δr-106.3 ± 0.46kJ/molChydTurner and Garner, 1957liquid phase; solvent: Acetic acid; ALS

2Hydrogen + 1,3-Cycloheptadiene = Cycloheptane

By formula: 2H2 + C7H10 = C7H14

Quantity Value Units Method Reference Comment
Δr-208.9 ± 0.3kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-212.4 ± 0.63kJ/molChydConn, Kistiakowsky, et al., 1939gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -214.5 ± 0.2 kJ/mol; At 355 K; ALS

Hydrogen + 2-Norbornene = Norbornane

By formula: H2 + C7H10 = C7H12

Quantity Value Units Method Reference Comment
Δr-137. ± 0.4kJ/molChydDoering, Roth, et al., 1988gas phase; ALS
Δr-141.5 ± 1.2kJ/molChydRogers, Choi, et al., 1980liquid phase; solvent: Hexane; Author was aware that data differs from previously reported values; ALS
Δr-138.6 ± 0.88kJ/molChydTurner, Meador, et al., 1957liquid phase; solvent: Acetic acid; ALS

Propanal + Hydrogen = 1-Propanol

By formula: C3H6O + H2 = C3H8O

Quantity Value Units Method Reference Comment
Δr-84.3 ± 0.4kJ/molCmWiberg, Crocker, et al., 1991liquid phase; solvent: Triglyme; Heat of hydrogenation; ALS
Δr-69.55 ± 0.76kJ/molEqkConnett, 1972gas phase; At 473-524 K; ALS
Δr-65.77 ± 0.67kJ/molChydBuckley and Cox, 1967gas phase; ALS

2Hydrogen + 1,3-Cyclohexadiene = Cyclohexane

By formula: 2H2 + C6H8 = C6H12

Quantity Value Units Method Reference Comment
Δr-224.4 ± 1.2kJ/molChydTurner, Mallon, et al., 1973liquid phase; solvent: Glacial acetic acid; ALS
Δr-229.6 ± 0.42kJ/molChydKistiakowsky, Ruhoff, et al., 1936gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -231.7 ± 0.4 kJ/mol; At 355 °K; ALS

Dimanganese decacarbonyl (solution) + Hydrogen (solution) = 2Hydromanganese pentacarbonyl (solution)

By formula: C10Mn2O10 (solution) + H2 (solution) = 2C5HMnO5 (solution)

Quantity Value Units Method Reference Comment
Δr36.4 ± 1.3kJ/molEqSKlingler R.J. and Rathke, 1992solvent: Supercritical carbon dioxide; Temperature range: 373-463 K; MS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to H2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)15.42593 ± 0.00005eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)422.3kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity394.7kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.425927EVALShiner, Gilligan, et al., 1993T = 0K; LL
15.425930EVALShiner, Gilligan, et al., 1993T = 0K; LL
15.425932 ± 0.000002SMcCormack, Gilligan, et al., 1989T = 0K; LL
15.429558 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.433174 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.425942 ± 0.00001LSGlab and Hessler, 1987T = 0K; LBLHLM
15.425932SEyler, Short, et al., 1986T = 0K; LBLHLM
15.425929SEyler, Short, et al., 1986T = 0K; LBLHLM
15.425930 ± 0.000027N/AEyler, Short, et al., 1986LBLHLM
15.5 ± 1.0SFarber, Srivastava, et al., 1982LBLHLM
15.98PEKimura, Katsumata, et al., 1981LLK
15.43PEBieri, Schmelzer, et al., 1980LLK
15.42589EVALHuber and Herzberg, 1979LLK
16. ± 1.EIFarber and Srivastava, 1977LLK
15.4PIRabalais, Debies, et al., 1974LLK
15.43PELee and Rabalais, 1974LLK
15.42589 ± 0.00005SHerzberg and Jungen, 1972LLK
15.4256 ± 0.0001STakezawa, 1970RDSH
15.38186 ± 0.00031PEAsbrink, 1970RDSH
15.44 ± 0.01EILossing and Semeluk, 1969RDSH
15.4256SHerzberg, 1969RDSH
15.431 ± 0.022TEVillarejo, 1968RDSH
15.439 ± 0.015PECollin and Natalis, 1968RDSH
15.43CICermak, 1968RDSH
15.37 ± 0.05EIKerwin, Marmet, et al., 1963RDSH
15.4269 ± 0.0016SBeutler and Junger, 1936RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
H+18.078 ± 0.003HPIPECOWeitzel, Mahnert, et al., 1994T = 0K; LL
H+18.0 ± 0.2HEICrowe and McConkey, 1973LLK
H+17.28 ± 0.16H-EILocht and Momigny, 1971LLK
H+17.3H-EICurran, LaboratoriesRDSH

De-protonation reactions

Hydrogen anion + Hydrogen cation = Hydrogen

By formula: H- + H+ = H2

Quantity Value Units Method Reference Comment
Δr1675.3kJ/molN/AShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1675.3kJ/molN/APratt, McCormack, et al., 1992gas phase; 399.46±0.01 kcal/mol at 0K; 0.94 correction, Gurvich, Veyts, et al.; B
Δr1675.3kJ/molD-EALykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B
Quantity Value Units Method Reference Comment
Δr1649.3 ± 0.42kJ/molH-TSShiell, Hu, et al., 2000gas phase; Given: 139714.8±1 cm-1 at 0K, or 399.465±0.003 kcal/mol; B
Δr1649.3kJ/molH-TSLykke, Murray, et al., 1991gas phase; Reported: 6082.99±0.15 cm-1, or 0.754195(18) eV; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Hydrogen = (Ar+ • Hydrogen)

By formula: Ar+ + H2 = (Ar+ • H2)

Quantity Value Units Method Reference Comment
Δr93.7kJ/molFAShul, Passarella, et al., 1987gas phase; switching reaction(Ar+)Ar, ΔrH>; Dehmer and Pratt, 1982

Formyl cation + Hydrogen = (Formyl cation • Hydrogen)

By formula: CHO+ + H2 = (CHO+ • H2)

Quantity Value Units Method Reference Comment
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975, 2gas phase
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSHiraoka and Kebarle, 1975, 2gas phase

CH5+ + Hydrogen = (CH5+ • Hydrogen)

By formula: CH5+ + H2 = (CH5+ • H2)

Quantity Value Units Method Reference Comment
Δr7.87 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr50.6J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • Hydrogen) + Hydrogen = (CH5+ • 2Hydrogen)

By formula: (CH5+ • H2) + H2 = (CH5+ • 2H2)

Quantity Value Units Method Reference Comment
Δr7.45 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • 2Hydrogen) + Hydrogen = (CH5+ • 3Hydrogen)

By formula: (CH5+ • 2H2) + H2 = (CH5+ • 3H2)

Quantity Value Units Method Reference Comment
Δr6.74 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

(CH5+ • 3Hydrogen) + Hydrogen = (CH5+ • 4Hydrogen)

By formula: (CH5+ • 3H2) + H2 = (CH5+ • 4H2)

Quantity Value Units Method Reference Comment
Δr6.57 ± 0.42kJ/molPHPMSHiraoka, Kudaka, et al., 1991gas phase
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase

C3H7+ + Hydrogen = (C3H7+ • Hydrogen)

By formula: C3H7+ + H2 = (C3H7+ • H2)

Quantity Value Units Method Reference Comment
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.170.PHPMSHiraoka and Kebarle, 1976gas phase; Entropy change calculated or estimated, DG<, ΔrH<

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993

(Cobalt ion (1+) • Water) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Water)

By formula: (Co+ • H2O) + H2 = (Co+ • H2 • H2O)

Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993, 2gas phase; ΔrS(530 K)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
83. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993, 2gas phase; ΔrS(530 K)

Cobalt ion (1+) + Hydrogen = (Cobalt ion (1+) • Hydrogen)

By formula: Co+ + H2 = (Co+ • H2)

Quantity Value Units Method Reference Comment
Δr82. ± 4.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K
Quantity Value Units Method Reference Comment
Δr92.0J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(O K)=76.1 kJ/mol, ΔrS(300 K)=86.2 J/mol*K

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73.2 (+9.6,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID

(Cobalt ion (1+) • Hydrogen) + Hydrogen = (Cobalt ion (1+) • 2Hydrogen)

By formula: (Co+ • H2) + H2 = (Co+ • 2H2)

Quantity Value Units Method Reference Comment
Δr75. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K
Quantity Value Units Method Reference Comment
Δr103.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=71.1 kJ/mol, ΔrS(300 K)=103. J/mol*K

(Cobalt ion (1+) • 2Hydrogen) + Hydrogen = (Cobalt ion (1+) • 3Hydrogen)

By formula: (Co+ • 2H2) + H2 = (Co+ • 3H2)

Quantity Value Units Method Reference Comment
Δr44. ± 2.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=85.8 J/mol*K

(Cobalt ion (1+) • 3Hydrogen) + Hydrogen = (Cobalt ion (1+) • 4Hydrogen)

By formula: (Co+ • 3H2) + H2 = (Co+ • 4H2)

Quantity Value Units Method Reference Comment
Δr44. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K
Quantity Value Units Method Reference Comment
Δr101.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=40. kJ/mol, ΔrS(300 K)=105. J/mol*K

(Cobalt ion (1+) • 4Hydrogen) + Hydrogen = (Cobalt ion (1+) • 5Hydrogen)

By formula: (Co+ • 4H2) + H2 = (Co+ • 5H2)

Quantity Value Units Method Reference Comment
Δr22. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=18. kJ/mol, ΔrS(300 K)=91.6 J/mol*K

(Cobalt ion (1+) • 5Hydrogen) + Hydrogen = (Cobalt ion (1+) • 6Hydrogen)

By formula: (Co+ • 5H2) + H2 = (Co+ • 6H2)

Quantity Value Units Method Reference Comment
Δr20. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=17. kJ/mol, ΔrS(300 K)=99.6 J/mol*K

(Cobalt ion (1+) • 6Hydrogen) + Hydrogen = (Cobalt ion (1+) • 7Hydrogen)

By formula: (Co+ • 6H2) + H2 = (Co+ • 7H2)

Quantity Value Units Method Reference Comment
Δr6. ± 3.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K
Quantity Value Units Method Reference Comment
Δr75.3J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrH(0 K)=3. kJ/mol; ΔrS(300 K)=75.3 J/mol*K

Iron ion (1+) + Hydrogen = (Iron ion (1+) • Hydrogen)

By formula: Fe+ + H2 = (Fe+ • H2)

Quantity Value Units Method Reference Comment
Δr52.3 ± 0.8kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 45.2 kJ/mol
Quantity Value Units Method Reference Comment
Δr90.0J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 45.2 kJ/mol

(Iron ion (1+) • Hydrogen) + Hydrogen = (Iron ion (1+) • 2Hydrogen)

By formula: (Fe+ • H2) + H2 = (Fe+ • 2H2)

Quantity Value Units Method Reference Comment
Δr71.1 ± 0.8kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 65.7 kJ/mol
Quantity Value Units Method Reference Comment
Δr105.J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 65.7 kJ/mol

(Iron ion (1+) • 2Hydrogen) + Hydrogen = (Iron ion (1+) • 3Hydrogen)

By formula: (Fe+ • 2H2) + H2 = (Fe+ • 3H2)

Quantity Value Units Method Reference Comment
Δr35. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 31. kJ/mol
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 31. kJ/mol

(Iron ion (1+) • 3Hydrogen) + Hydrogen = (Iron ion (1+) • 4Hydrogen)

By formula: (Fe+ • 3H2) + H2 = (Fe+ • 4H2)

Quantity Value Units Method Reference Comment
Δr41. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 36. kJ/mol
Quantity Value Units Method Reference Comment
Δr104.J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 36. kJ/mol

(Iron ion (1+) • 4Hydrogen) + Hydrogen = (Iron ion (1+) • 5Hydrogen)

By formula: (Fe+ • 4H2) + H2 = (Fe+ • 5H2)

Quantity Value Units Method Reference Comment
Δr11. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.2 kJ/mol
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.2 kJ/mol

(Iron ion (1+) • 5Hydrogen) + Hydrogen = (Iron ion (1+) • 6Hydrogen)

By formula: (Fe+ • 5H2) + H2 = (Fe+ • 6H2)

Quantity Value Units Method Reference Comment
Δr11. ± 0.4kJ/molSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.6 kJ/mol
Quantity Value Units Method Reference Comment
Δr75.7J/mol*KSIDTBushnell, Kemper, et al., 1995gas phase; ΔrH(0K) = 9.6 kJ/mol

HN2+ + Hydrogen = (HN2+ • Hydrogen)

By formula: HN2+ + H2 = (HN2+ • H2)

Quantity Value Units Method Reference Comment
Δr30.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr94.6J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(HN2+ • Hydrogen) + Hydrogen = (HN2+ • 2Hydrogen)

By formula: (HN2+ • H2) + H2 = (HN2+ • 2H2)

Quantity Value Units Method Reference Comment
Δr7.5kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

Hydroxyl anion + Hydrogen = (Hydroxyl anion • Hydrogen)

By formula: HO- + H2 = (HO- • H2)

Quantity Value Units Method Reference Comment
Δr30.kJ/molCIDPaulson and Henchman, 1984gas phase; approximate value

HO2+ + Hydrogen = (HO2+ • Hydrogen)

By formula: HO2+ + H2 = (HO2+ • H2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

(HO2+ • Oxygen) + Hydrogen = (HO2+ • Hydrogen • Oxygen)

By formula: (HO2+ • O2) + H2 = (HO2+ • H2 • O2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase

H3+ + Hydrogen = (H3+ • Hydrogen)

By formula: H3+ + H2 = (H3+ • H2)

Quantity Value Units Method Reference Comment
Δr29. ± 2.kJ/molAVGN/AAverage of 4 out of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δr72.8 to 72.8J/mol*KRNGN/ARange of 6 values; Individual data points

(H3+ • Hydrogen) + Hydrogen = (H3+ • 2Hydrogen)

By formula: (H3+ • H2) + H2 = (H3+ • 2H2)

Quantity Value Units Method Reference Comment
Δr14. ± 0.8kJ/molPHPMSHiraoka, 1987gas phase
Δr13.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr14.kJ/molHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Δr7.5kJ/molHPMSBennett and Field, 1972gas phase; Entropy change is questionable
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, 1987gas phase
Δr70.7J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase
Δr67.4J/mol*KHPMSBeuhler, Ehrenson, et al., 1983gas phase; deuterated
Δr82.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase
Δr45.2J/mol*KHPMSBennett and Field, 1972gas phase; Entropy change is questionable

(H3+ • 2Hydrogen) + Hydrogen = (H3+ • 3Hydrogen)

By formula: (H3+ • 2H2) + H2 = (H3+ • 3H2)

Quantity Value Units Method Reference Comment
Δr13. ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr77.4J/mol*KPHPMSHiraoka, 1987gas phase
Δr84.5J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

(H3+ • 3Hydrogen) + Hydrogen = (H3+ • 4Hydrogen)

By formula: (H3+ • 3H2) + H2 = (H3+ • 4H2)

Quantity Value Units Method Reference Comment
Δr7.2 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Δr10.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase
Δr80.8J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase

(H3+ • 4Hydrogen) + Hydrogen = (H3+ • 5Hydrogen)

By formula: (H3+ • 4H2) + H2 = (H3+ • 5H2)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 5Hydrogen) + Hydrogen = (H3+ • 6Hydrogen)

By formula: (H3+ • 5H2) + H2 = (H3+ • 6H2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 6Hydrogen) + Hydrogen = (H3+ • 7Hydrogen)

By formula: (H3+ • 6H2) + H2 = (H3+ • 7H2)

Quantity Value Units Method Reference Comment
Δr3.7 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 7Hydrogen) + Hydrogen = (H3+ • 8Hydrogen)

By formula: (H3+ • 7H2) + H2 = (H3+ • 8H2)

Quantity Value Units Method Reference Comment
Δr3.3 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1987gas phase

(H3+ • 8Hydrogen) + Hydrogen = (H3+ • 9Hydrogen)

By formula: (H3+ • 8H2) + H2 = (H3+ • 9H2)

Quantity Value Units Method Reference Comment
Δr2.6 ± 0.4kJ/molPHPMSHiraoka, 1987gas phase
Quantity Value Units Method Reference Comment
Δr79.9J/mol*KPHPMSHiraoka, 1987gas phase

Hydronium cation + Hydrogen = (Hydronium cation • Hydrogen)

By formula: H3O+ + H2 = (H3O+ • H2)

Quantity Value Units Method Reference Comment
Δr15. ± 2.kJ/molSCATTERINGOkumura, Yeh, et al., 1990gas phase

Potassium ion (1+) + Hydrogen = (Potassium ion (1+) • Hydrogen)

By formula: K+ + H2 = (K+ • H2)

Quantity Value Units Method Reference Comment
Δr7.78kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 6.07 kJ/mol
Quantity Value Units Method Reference Comment
Δr56.5J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 6.07 kJ/mol

(Potassium ion (1+) • Hydrogen) + Hydrogen = (Potassium ion (1+) • 2Hydrogen)

By formula: (K+ • H2) + H2 = (K+ • 2H2)

Quantity Value Units Method Reference Comment
Δr6.15kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 5.65 kJ/mol
Quantity Value Units Method Reference Comment
Δr46.9J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 5.65 kJ/mol

Lithium ion (1+) + Hydrogen = (Lithium ion (1+) • Hydrogen)

By formula: Li+ + H2 = (Li+ • H2)

Quantity Value Units Method Reference Comment
Δr27. ± 19.kJ/molEIWu, 1979gas phase

Sodium ion (1+) + Hydrogen = (Sodium ion (1+) • Hydrogen)

By formula: Na+ + H2 = (Na+ • H2)

Quantity Value Units Method Reference Comment
Δr12.3kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 10.3 kJ/mol
Quantity Value Units Method Reference Comment
Δr55.2J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 10.3 kJ/mol

(Sodium ion (1+) • Hydrogen) + Hydrogen = (Sodium ion (1+) • 2Hydrogen)

By formula: (Na+ • H2) + H2 = (Na+ • 2H2)

Quantity Value Units Method Reference Comment
Δr10.1kJ/molSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 9.41 kJ/mol
Quantity Value Units Method Reference Comment
Δr51.9J/mol*KSIDTBushnell, Kemper, et al., 1994gas phase; ΔrH(0K) = 9.41 kJ/mol

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin American Petroleum Institute Research Project 44
NIST MS number 245692

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Roder, Childs, et al., 1973
Roder, H.M.; Childs, G.E.; McCarty, R.D.; Angerhofer, P.E., Survey of the Prop. of the Hydrogen Isotopes Below Their Critical Temp, Natl. Bur. Stand. (U. S.), 1973. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Onnes, Crommelin, et al., 1917
Onnes, H.K.; Crommelin, C.-A.; Cath, P.G., Isothermals of di-atomic substances and their binary mixtures. XIX. A preliminary determination of the critical point of hydrogen., Proc. K. Ned. Akad. Wet., 1917, 20, 178-184. [all data]

van Itterbeek, Verbeke, et al., 1964
van Itterbeek, A.; Verbeke, O.; Theewes, F.; Staes, K.; de Boelpaep, J., The Difference in Vapour Pressure Between Normal and Equilibrium Hydrogen. Vapour Pressure of Normal Hydrogen Between 20 ºK and 32 ºK, Physica (Amsterdam), 1964, 30, 6, 1238-1244, https://doi.org/10.1016/0031-8914(64)90114-4 . [all data]

Rathke, Klingler, et al., 1992
Rathke, J.W.; Klingler, R.J.; Krause, T.R., Organometallics, 1992, 11, 585. [all data]

Bor, 1986
Bor, G., Pure & Appl. Chem., 1986, 58, 543. [all data]

Alemdaroglu, Penninger, et al., 1976
Alemdaroglu, N.H.; Penninger, J.M.L.; Oltay, E., Monatsh. Chem., 1976, 107, 1043. [all data]

Ungváry, 1972
Ungváry, F., J. Organometal. Chem., 1972, 36, 363. [all data]

Poë, Sampson, et al., 1993
Poë, A.J.; Sampson, C.N.; Smith, R.T.; Zheng, Y., J. Am. Chem. Soc., 1993, 115, 3174. [all data]

Landrum and Hoff, 1985
Landrum, J.T.; Hoff, C.D., J. Organometal. Chem., 1985, 282, 215. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Hiraoka, 1987
Hiraoka, K., A Determination of the Stabilities of H3+(H2)n with n=1-9 from Measurements of the gas-Phase Ion Equilibria H3+(H2)n-1 + H2 = H3+(H2)n, J. Chem. Phys., 1987, 87, 7, 4048, https://doi.org/10.1063/1.452909 . [all data]

Beuhler, Ehrenson, et al., 1983
Beuhler, R.J.; Ehrenson, S.; Friedman, L., Hydrogen Cluster Ion Equilibria, J. Chem. Phys., 1983, 79, 12, 5982, https://doi.org/10.1063/1.445781 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., A Determination of the Stabilities of H5+, H7+, H9+, and H11+ from Measurement of the Gas Phase Ion Equilibria Hn+ + H2 = H(n + 2)+ (n = 3, 5, 7, 9), J. Chem. Phys., 1975, 62, 6, 2267, https://doi.org/10.1063/1.430751 . [all data]

Bennett and Field, 1972
Bennett, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VII. The Hydrogen System, J. Am. Chem. Soc., 1972, 94, 25, 8669, https://doi.org/10.1021/ja00780a003 . [all data]

Shiell, Hu, et al., 2000
Shiell, R.C.; Hu, X.K.; Hu, Q.C.J.; Hepburn, J.W., Threshold Ion-pair Production spectroscopy (TIPPS) of H2 and D2, Faraday Disc. Chem. Soc., 2000, 115, 331, https://doi.org/10.1039/a909428h . [all data]

Pratt, McCormack, et al., 1992
Pratt, S.T.; McCormack, E.F.; Dehmer, J.L.; Dehmer, P.M., Field-Induced Ion-Pair Formation in Molecular Hydrogen, Phys. Rev. Lett., 1992, 68, 5, 584, https://doi.org/10.1103/PhysRevLett.68.584 . [all data]

Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]

Lykke, Murray, et al., 1991
Lykke, K.R.; Murray, K.K.; Lineberger, W.C., Threshold Photodetachment of H-, Phys. Rev. A, 1991, 43, 11, 6104, https://doi.org/10.1103/PhysRevA.43.6104 . [all data]

Allinger, Dodziuk, et al., 1982
Allinger, N.L.; Dodziuk, H.; Rogers, D.W.; Naik, S.N., Heats of hydrogenation and formation of some 5-membered ring compounds by molecular mechanics calculations and direct measurements, Tetrahedron, 1982, 38, 1593-1597. [all data]

Roth and Lennartz, 1980
Roth, W.R.; Lennartz, H.W., Heats of hydrogenation. I. Determination of heats of hydrogenation with an isothermal titration calorimeter, Chem. Ber., 1980, 113, 1806-1817. [all data]

Turner, Jarrett, et al., 1973
Turner, R.B.; Jarrett, A.D.; Goebel, P.; Mallon, B.J., Heats of hydrogenation. 9. Cyclic acetylenes and some miscellaneous olefins, J. Am. Chem. Soc., 1973, 95, 790-792. [all data]

Rogers and McLafferty, 1971
Rogers, D.W.; McLafferty, F.J., A new hydrogen calorimeter. Heats of hydrogenation of allyl and vinyl unsaturation adjacent to a ring, Tetrahedron, 1971, 27, 3765-3775. [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Doering, Roth, et al., 1989
Doering, W.E.; Roth, W.R.; Bauer, F.; Breuckmann, R.; Ebbrecht, T.; Herbold, M.; Schmidt, R.; Lennartz, H-W.; Lenoir, D.; Boese, R., Rotational barriers of strained olefines, Chem. Ber., 1989, 122, 1263-1266. [all data]

Rogers, Von Voithenberg, et al., 1978
Rogers, D.W.; Von Voithenberg, H.; Allinger, N.L., Heats of hydrogenation of the cis and trans isomers of cyclooctene, J. Org. Chem., 1978, 43, 360-361. [all data]

Turner and Meador, 1957
Turner, R.B.; Meador, W.R., Heats of hydrogenation. IV. Hydrogenation of some cis- and trans-cycloolefins, J. Am. Chem. Soc., 1957, 79, 4133-4136. [all data]

Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A., Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes, J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]

Wang, Rosini, et al., 1995
Wang, K.; Rosini, G.P.; Nolan, S.P.; Goldman, A.S., J. Am. Chem. Soc., 1995, 117, 5082. [all data]

Rogers, Crooks, et al., 1987
Rogers, D.W.; Crooks, E.; Dejroongruang, K., Enthalpies of hydrogenation of the hexenes, J. Chem. Thermodyn., 1987, 19, 1209-1215. [all data]

Turner and Garner, 1958
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1958, 80, 1424-1430. [all data]

Turner and Garner, 1957
Turner, R.B.; Garner, R.H., Heats of hydrogenation. V. Relative stabilities in certain exocyclic-endocyclic olefin pairs, J. Am. Chem. Soc., 1957, 80, 1424-1430. [all data]

Turner and Garner, 1957, 2
Turner, R.B.; Garner, R.H., The stability relationship of 1-methyl-cyclopentene and methylenecyclopentane, J. Am. Chem. Soc., 1957, 79, 253. [all data]

Fang and Rogers, 1992
Fang, W.; Rogers, D.W., Enthalpy of hydrogenation of the hexadienes and cis- and trans-1,3,5-hexatriene, J. Org. Chem., 1992, 57, 2294-2297. [all data]

Molnar, Rachford, et al., 1984
Molnar, A.; Rachford, R.; Smith, G.V.; Liu, R., Heats of hydrogenation by a simple and rapid flow calorimetric method, Appl. Catal., 1984, 9, 219-223. [all data]

Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G., Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes, J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]

Kistiakowsky, Ruhoff, et al., 1936
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. IV. Hydrogenation of some dienes and of benzene, J. Am. Chem. Soc., 1936, 58, 146-153. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S., Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect, J. Phys. Chem., 1974, 78, 2569-2572. [all data]

Turner, Meador, et al., 1957
Turner, R.B.; Meador, W.R.; Winkler, R.E., Heats of hydrogenation. I. Apparatus and the heats of hydrogenation of bicyclo[2,2,1]heptene, bicyclo[2,2,1]heptadiene, bicyclo[2,2,2]octene and bicyclo[2,2,2]octadiene, J. Am. Chem. Soc., 1957, 79, 4116-4121. [all data]

Roth, Klaerner, et al., 1983
Roth, W.R.; Klaerner, F.G.; Gerit, F.; Grimme, W.; Koeser, H.G.; Busch, R.; Muskulus, B.; Breuckmann, R.; Scholz, B.P.; Lennartz, H.W., Stereochemistry of the bicyclo[2.1.0]pentane ring opening: thermolysis of tricyclo[3.2.0.0(,)]heptane derivatives, Chem. Ber., 1983, 116, 2717-2737. [all data]

Hales and Herington, 1957
Hales, J.L.; Herington, E.F.G., Equilibrium between pyridine and piperidine, Trans. Faraday Soc., 1957, 53, 616-622. [all data]

Burrows and King, 1935
Burrows, G.H.; King, L.A., Jr., The free energy change that accompanies hydrogenation of pyridine to piperidine, J. Am. Chem. Soc., 1935, 57, 1789-1791. [all data]

Turner, Nettleton, et al., 1958
Turner, R.B.; Nettleton, J.E.; Perelman, Heats of Hydrogenation. VI. Heats of hydrogenation of some substituted ethylenes, J. Am. Chem. Soc., 1958, 80, 1430-1433. [all data]

Crawford and Parks, 1936
Crawford, B.L., Jr.; Parks, G.S., The heat of hydrogenation of diisobutylene, J. Am. Chem. Soc., 1936, 58, 373. [all data]

Kistiakowsky and Nickle, 1951
Kistiakowsky, G.B.; Nickle, A.G., Ethane-ethylene and propane-propylene equilibria, Faraday Discuss. Chem. Soc., 1951, 10, 175-187. [all data]

Kistiakowsky, Ruhoff, et al., 1935
Kistiakowsky, G.B.; Ruhoff, J.R.; Smith, H.A.; Vaughan, W.E., Heats of organic reactions. II. Hydrogenation of some simpler olefinic hydrocarbons, J. Am. Chem. Soc., 1935, 57, 876-882. [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R., Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld, Chem. Ber., 1991, 124, 2499-2521. [all data]

Rogers, Dejroongruang, et al., 1992
Rogers, D.W.; Dejroongruang, K.; Samuel, S.D.; Fang, W.; Zhao, Y., Enthalpies of hydrogenation of the octenes and the methylheptenes, J. Chem. Thermodyn., 1992, 24, 561-565. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Sicher, Svoboda, et al., 1966
Sicher, J.; Svoboda, M.; Zavada, J.; Turner, R.B.; Goebel, P., Sterochemical studies - XXXVI. An approach to conformational analysis of medium ring compounds. Unsaturated ten-membered ring derivates, Tetrahedron, 1966, 22, 659-671. [all data]

Doering, Roth, et al., 1988
Doering, W.E.; Roth, W.R.; Breuckmann, R.; Figge, L.; Lennartz, H.-W.; Fessner, W.-D.; Prinzbach, F.H., Verbotene Reaktionen. - [2 + 2]-Cycloreversion starrer Cyclobutane, Chem. Ber., 1988, 121, 1-9. [all data]

Rogers, Choi, et al., 1980
Rogers, D.W.; Choi, L.S.; Girellini, R.S., Heats of hydrogenation and formation of quadricyclene, norbornadiene, norbornene, and nortricyclene, J. Phys. Chem., 1980, 84, 1810-1814. [all data]

Connett, 1972
Connett, J.E., Chemical equilibria. 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 233-237. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Klingler R.J. and Rathke, 1992
Klingler R.J.; Rathke, J.W., Inorg. Chem., 1992, 31, 804. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Shiner, Gilligan, et al., 1993
Shiner, D.; Gilligan, J.M.; Cook, B.M.; Lichten, W., H2, D2, and HD ionization potentials by accurate calibration of several iodine lines, Phys. Rev. A, 1993, 47, 4042. [all data]

McCormack, Gilligan, et al., 1989
McCormack, E.; Gilligan, J.M.; Cornaggia, C.; Eyler, E.E., Measurement of high Rydberg states and the ionization potential of H2, Phys. Rev. A, 1989, 39, 2260. [all data]

Glab and Hessler, 1987
Glab, W.L.; Hessler, J.P., Multiphoton excitation of high singlet np Rydberg states of molecular hydrogen: Spectroscopy and dynamics, Phys. Rev. A, 1987, 35, 2102. [all data]

Eyler, Short, et al., 1986
Eyler, E.E.; Short, R.C.; Pipkin, F.M., Precision spectroscopy of the nf triplet Rydberg states of H2 and determination of the triplet ionization potential, Phys. Rev. Lett., 1986, 56, 2602. [all data]

Farber, Srivastava, et al., 1982
Farber, M.; Srivastava, R.D.; Moyer, J.W., Mass spectrometric determination of the thermodynamics of potassium hydroxide and minor potassium-containing species required in magnetohydrodynamic power systems, J. Chem. Thermodyn., 1982, 14, 1103. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Schmelzer, et al., 1980
Bieri, G.; Schmelzer, A.; Asbrink, L.; Jonsson, M., Fluorine and the fluoroderivatives of acetylene and diacetylene studied by 30.4 nm He(II) photoelectron spectroscopy, Chem. Phys., 1980, 49, 213. [all data]

Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G., Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules,, Van Nostrand Reinhold Co., 1979, ,1. [all data]

Farber and Srivastava, 1977
Farber, M.; Srivastava, R.D., Mass spectrometric determination of the heats of formation of the silane fluorides, Chem. Phys. Lett., 1977, 51, 307. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Lee and Rabalais, 1974
Lee, T.H.; Rabalais, J.W., Vibrational transition probabilities in photoelectron spectra, J. Chem. Phys., 1974, 61, 2747. [all data]

Herzberg and Jungen, 1972
Herzberg, G.; Jungen, Ch., Rydberg series and ionization potential of the H2 molecule, J. Mol. Spectrosc., 1972, 41, 425. [all data]

Takezawa, 1970
Takezawa, S., Absorption spectrum of H2 in the vacuum-uv region. II. Rydberg series converging to the first six vibrational levels of the H2+ ground state, J. Chem. Phys., 1970, 52, 5793. [all data]

Asbrink, 1970
Asbrink, L., The photoelectron spectrum of H2, Chem. Phys. Lett., 1970, 7, 549. [all data]

Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P., Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]

Herzberg, 1969
Herzberg, G., Dissociation energy and ionization potential of molecular hydrogen, Phys. Rev. Letters, 1969, 23, 1081. [all data]

Villarejo, 1968
Villarejo, D., Measurement of threshold electrons in the photoionization of H2 and D2, J. Chem. Phys., 1968, 48, 4014. [all data]

Collin and Natalis, 1968
Collin, J.E.; Natalis, P., Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Kerwin, Marmet, et al., 1963
Kerwin, L.; Marmet, P.; Clarke, E.M., Recent work with the electrostatic electron selector, Advan. Mass Spectrom., 1963, 2, 522. [all data]

Beutler and Junger, 1936
Beutler, H.; Junger, H.-O., Uber das Absorptionsspektrum des Wasserstoffs. III. Die Autoionisierung im Term 3pπ 1u des H2 und ihre Auswahlgesetze. Bestimmung der lonisierungsenergie des H2, Z. Physik, 1936, 100, 80. [all data]

Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M., ZEKE-PEPICO investigations of dissociation energies in ionic reactions, Chem. Phys. Lett., 1994, 224, 371. [all data]

Crowe and McConkey, 1973
Crowe, A.; McConkey, J.W., Dissociative ionization by electron impact. I. Protons from H2, J. Phys. B:, 1973, 6, 2088. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Curran, Laboratories
Curran, R.K., Negative ion formation in various gases at pressures up to .5 mm of Hg, Scientific Paper 62-908-113-P7, Westinghouse Research, Laboratories, Pittsburgh, 1962. [all data]

Shul, Passarella, et al., 1987
Shul, R.J.; Passarella, R.; Upshulte, B.L.; Keesee, R.G.; Castleman, A.W., Thermal Energy Reactions Invoving Ar+ Monomer and Dimer with N2, H2, Xe, and Kr, J. Chem. Phys., 1987, 86, 8, 4446, https://doi.org/10.1063/1.452718 . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Hiraoka and Kebarle, 1975, 2
Hiraoka, K.; Kebarle, P., Stability and Structure of H3CO+ Formed from COH+ + H2 at Low Temperature, J. Chem. Phys., 1975, 63, 4, 1688, https://doi.org/10.1063/1.431499 . [all data]

Hiraoka, Kudaka, et al., 1991
Hiraoka, K.; Kudaka, I.; Yamabe, S., Gas-Phase Solvation of CH5+ with H2, Chem. Phys. Lett., 1991, 184, 4, 271, https://doi.org/10.1016/0009-2614(91)85122-D . [all data]

Bushnell, Kemper, et al., 1995
Bushnell, J.E.; Kemper, P.R.; Bowers, M.T., Factors Affecting sigma Bond Activation in Simple Systems; Measurement of Experimental Binding energies of Fe+(H2)1-6 Clusters, J. Phys. Chem., 1995, 99, 42, 15602, https://doi.org/10.1021/j100042a040 . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Paulson and Henchman, 1984
Paulson, J.F.; Henchman, M.J., NATO Advanced Study Institute, Ionic Processes in the Gas Phase, Series C, M. A. Almoster - Ferreira, ed(s)., Reidel, Boston, 1984, 331. [all data]

Okumura, Yeh, et al., 1990
Okumura, M.; Yeh, L.I.; Myers, J.D.; Lee, Y.T., Infrared Spectra of the Solvated Hydronium Ion: Vibrational Predissociation Spectroscopy of Mass-Selected H3O+.(H2O)n.(H2)m, J. Phys. Chem., 1990, 94, 9, 3416, https://doi.org/10.1021/j100372a014 . [all data]

Bushnell, Kemper, et al., 1994
Bushnell, J.E.; Kemper, P.R.; Bowers, M.T., Na+/K+(H2)1,2 clusters: experiment, J. Phys. Chem., 1994, 98, 8, 2044, https://doi.org/10.1021/j100059a011 . [all data]

Wu, 1979
Wu, C.H., Binding Energies of LiH2 and LiH2+ and the Ionization Potential of LiH2, J. Chem. Phys., 1979, 71, 2, 783, https://doi.org/10.1063/1.438367 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References