Acenaphthene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid17. ± 0.74kcal/molReviewRoux, Temprado, et al., 2008There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB
Δfsolid16.8 ± 0.6kcal/molCcbBoyd, Christensen, et al., 1965ALS
Quantity Value Units Method Reference Comment
Δcsolid-1487.0 ± 0.6kcal/molCcbBoyd, Christensen, et al., 1965Corresponding Δfsolid = 16.8 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar45.141cal/mol*KN/AFinke, Messerly, et al., 1977DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
45.500298.15Finke, Messerly, et al., 1977T = 10 to 440 K.; DH
44.41298.Sadowska, Stepniewska, et al., 1969T = 20 to 93°C, equation only; liquid, 93 to 200°C, equation only.; DH
50.31298.1Eibert, 1944T = 25 to 200°C, equations only in t°C. Cp(c) = 0.2756 + 0.001854t cal/g*K (25 to 60°C); Cp(liq) = 0.409 + 0.000598t cal/g*K (95 to 200°C).; DH

Phase change data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil552.2KN/AWeast and Grasselli, 1989BS
Tboil552.KN/ABuckingham and Donaghy, 1982BS
Tboil502.65KN/APerkin, 1896Uncertainty assigned by TRC = 1. K; TRC
Quantity Value Units Method Reference Comment
Tfus367. ± 4.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple366.56KN/AFinke, Messerly, et al., 1977, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple366.55KN/AOsborn and Douslin, 1975Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Δvap16.3kcal/molCGCZhao, Unhannanant, et al., 2008AC
Δvap16.8 ± 0.26kcal/molGCHaftka, Parsons, et al., 2006Based on data from 363. to 423. K.; AC
Δvap15.8kcal/molCGCChickos, Hesse, et al., 1998AC
Δvap15.8kcal/molN/ARuuzicka, Mokbel, et al., 1998See also Hanshaw, Nutt, et al., 2008.; AC
Δvap15.9 ± 0.31kcal/molN/AMokbel, Guetachew, et al., 1995See also Hanshaw, Nutt, et al., 2008.; AC
Quantity Value Units Method Reference Comment
Δsub20.3 ± 0.1kcal/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δsub20.2kcal/molCGC-DSCChickos, Hesse, et al., 1998AC
Δsub19.9 ± 0.24kcal/molN/AOsborn and Douslin, 1975, 2See also Finke, Messerly, et al., 1977.; AC
Δsub20.6 ± 0.3kcal/molVBoyd, Christensen, et al., 1965ALS
Δsub20.6kcal/molN/ABoyd, Christensen, et al., 1965DRB

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
15.3398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC
14.6366.N/ARuuzicka, Mokbel, et al., 1998See also Hanshaw, Nutt, et al., 2008.; AC
14.5378.N/AMokbel, Guetachew, et al., 1995See also Hanshaw, Nutt, et al., 2008.; AC
13.403.AStephenson and Malanowski, 1987Based on data from 368. to 552. K.; AC
14.4383.AStephenson and Malanowski, 1987Based on data from 368. to 413. K. See also Osborn and Douslin, 1975, 2 and Boublik, Fried, et al., 1984.; AC
14.7395.ICramer, 1943AC
13.0466.IMortimer and Murphy, 1923Based on data from 413. to 561. K.; AC
13.2435.N/AMortimer and Murphy, 1923Based on data from 420. to 561. K. See also Boublik, Fried, et al., 1984.; AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
368. to 413.4.316652062.099-73.146Osborn and Douslin, 1975, 2Coefficents calculated by NIST from author's data.
420.4 to 560.94.925462611.29-20.227Mortimer and Murphy, 1923Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
19.9383.GSNass, Lenoir, et al., 1995Based on data from 313. to 453. K.; AC
18.4318.GSSATO, INOMATA, et al., 1986Based on data from 293. to 342. K.; AC
20.7 ± 0.2303.GSSonnefeld, Zoller, et al., 1983Based on data from 283. to 323. K.; AC
19.7366.BOsborn and Douslin, 1975, 2AC
20.24 ± 0.64283.VRadchenko and Kitaigorodskii, 1974ALS
20.6 ± 0.2290. to 340.MEBoyd, Christensen, et al., 1965See also Cox and Pilcher, 1970.; AC
19.63 ± 0.10368.VAihara, 1959crystal phase; ALS
19.6 ± 0.1300.VAihara, 1959, 2Based on data from 291. to 310. K. See also Stephenson and Malanowski, 1987.; AC
19.5258. to 308.N/AHoyer and Peperle, 1958AC

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
5.12959366.56N/AFinke, Messerly, et al., 1977DH
5.02367.DSCSharma, Gupta, et al., 2008AC
5.129366.6N/ADomalski and Hearing, 1996AC
4.8358366.4N/ASadowska, Stepniewska, et al., 1969DH
5.9990367.8N/AEibert, 1944DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
13.99366.56Finke, Messerly, et al., 1977DH
13.20366.4Sadowska, Stepniewska, et al., 1969DH
16.3367.8Eibert, 1944DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C12H10+ + Acenaphthene = (C12H10+ • Acenaphthene)

By formula: C12H10+ + C12H10 = (C12H10+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.1283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H8+ + Acenaphthene = (C12H8+ • Acenaphthene)

By formula: C12H8+ + C12H10 = (C12H8+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.2kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.3283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H11+ + Acenaphthene = (C12H11+ • Acenaphthene)

By formula: C12H11+ + C12H10 = (C12H11+ • C12H10)

Quantity Value Units Method Reference Comment
Δr14.8kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.6330.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated; M

C12H9- + Hydrogen cation = Acenaphthene

By formula: C12H9- + H+ = C12H10

Quantity Value Units Method Reference Comment
Δr372.5 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene; B
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene; B

C6H7N+ + Acenaphthene = (C6H7N+ • Acenaphthene)

By formula: C6H7N+ + C12H10 = (C6H7N+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.5kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

2Hydrogen + Acenaphthene = hexahydroacenaphthylene

By formula: 2H2 + C12H10 = hexahydroacenaphthylene

Quantity Value Units Method Reference Comment
Δr-27.kcal/molEqkFrye and Weitkamp, 1969gas phase; ALS

Gas phase ion energetics data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C12H10+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)7.75 ± 0.05eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)203.6kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity196.2kcal/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kcal/mol) Reference Comment
203.1Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kcal/mol) Reference Comment
196.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
7.68 ± 0.05EQMautner(Meot-Ner), 1980LLK
7.73 ± 0.01PEDewar, Haselbach, et al., 1970RDSH
7.66CTSKinoshita, 1962RDSH
7.76 ± 0.03PEHeilbronner, Hoshi, et al., 1976Vertical value; LLK
7.82 ± 0.04PEBoschi, Clar, et al., 1974Vertical value; LLK

De-protonation reactions

C12H9- + Hydrogen cation = Acenaphthene

By formula: C12H9- + H+ = C12H10

Quantity Value Units Method Reference Comment
Δr372.5 ± 2.5kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene; B
Quantity Value Units Method Reference Comment
Δr365.8 ± 2.0kcal/molTDEqMeot-ner and Kafafi, 1988gas phase; acenaphthene: 1,8-(1,2-ethano)naphthalene; B

Ion clustering data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

C6H7N+ + Acenaphthene = (C6H7N+ • Acenaphthene)

By formula: C6H7N+ + C12H10 = (C6H7N+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.5kcal/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase
Quantity Value Units Method Reference Comment
Δr27.6cal/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase

C12H8+ + Acenaphthene = (C12H8+ • Acenaphthene)

By formula: C12H8+ + C12H10 = (C12H8+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr14.2kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
6.3283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C12H10+ + Acenaphthene = (C12H10+ • Acenaphthene)

By formula: C12H10+ + C12H10 = (C12H10+ • C12H10)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr17.0kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
8.1283.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

C12H11+ + Acenaphthene = (C12H11+ • Acenaphthene)

By formula: C12H11+ + C12H10 = (C12H11+ • C12H10)

Quantity Value Units Method Reference Comment
Δr14.8kcal/molPHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.6330.PHPMSMeot-Ner (Mautner), 1980gas phase; Entropy change calculated or estimated

References

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Boyd, Christensen, et al., 1965
Boyd, R.H.; Christensen, R.L.; Pua, R., The heats of combustion of acenaphthene, acenaphthylene, and fluoranthene. Strain and delocalization in bridged naphthalenes, J. Am. Chem. Soc., 1965, 87, 3554-3559. [all data]

Finke, Messerly, et al., 1977
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R., Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn., 1977, 9, 937-956. [all data]

Sadowska, Stepniewska, et al., 1969
Sadowska, K.W.; Stepniewska, G.B.; Recko, W.M., Specific heat and enthalpy of fusion of acenaphthene and acenaphthylene, Przem. Chem., 1969, 48, 282-285. [all data]

Eibert, 1944
Eibert, J., Thesis Washington University (St. Louis), 1944. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Perkin, 1896
Perkin, W.H., LXIX. On Magnetic Rotatory Power, especially of Aromatic Compounds, J. Chem. Soc., 1896, 69, 1025-1257. [all data]

Finke, Messerly, et al., 1977, 2
Finke, H.L.; Messerly, J.F.; Lee, S.H.; Osborn, A.G.; Douslin, D.R., Comprehensive thermodynamic studies of seven aromatic hydrocarbons, J. Chem. Thermodyn., 1977, 9, 937. [all data]

Osborn and Douslin, 1975
Osborn, A.G.; Douslin, D.R., Vapor Pressure and Derived Enthalpies of Vaporization for Some Condensed Ring Hydrocarbons, J. Chem. Eng. Data, 1975, 20, 229-31. [all data]

Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S., Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects, J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s . [all data]

Haftka, Parsons, et al., 2006
Haftka, Joris J.H.; Parsons, John R.; Govers, Harrie A.J., Supercooled liquid vapour pressures and related thermodynamic properties of polycyclic aromatic hydrocarbons determined by gas chromatography, Journal of Chromatography A, 2006, 1135, 1, 91-100, https://doi.org/10.1016/j.chroma.2006.09.050 . [all data]

Chickos, Hesse, et al., 1998
Chickos, James; Hesse, Donald; Hosseini, Sarah; Nichols, Gary; Webb, Paul, Sublimation enthalpies at 298.15K using correlation gas chromatography and differential scanning calorimetry measurements, Thermochimica Acta, 1998, 313, 2, 101-110, https://doi.org/10.1016/S0040-6031(97)00432-2 . [all data]

Ruuzicka, Mokbel, et al., 1998
Ruuzicka, Kvetoslav; Mokbel, Ilham; Majer, Vladimir; Ruuzicka, Vlastimil; Jose, Jacques; Zábranský, Milan, Description of vapour--liquid and vapour--solid equilibria for a group of polycondensed compounds of petroleum interest, Fluid Phase Equilibria, 1998, 148, 1-2, 107-137, https://doi.org/10.1016/S0378-3812(98)00200-3 . [all data]

Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S., Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons, J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x . [all data]

Mokbel, Guetachew, et al., 1995
Mokbel, I.; Guetachew, T.; Jose, J., Vapor pressures and sublimation pressures of 14 polycyclic aromatic hydrocarbons (C11 - C18) at pressures in the range from 0.5 Pa to 30 kPa, ELDATA: Int. Electron. J. Phys. Chem. Data, 1995, 1, 2, 167. [all data]

Osborn and Douslin, 1975, 2
Osborn, Ann G.; Douslin, Donald R., Vapor pressures and derived enthalpies of vaporization for some condensed-ring hydrocarbons, J. Chem. Eng. Data, 1975, 20, 3, 229-231, https://doi.org/10.1021/je60066a022 . [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Mortimer and Murphy, 1923
Mortimer, F. Spencer.; Murphy, Ray v., The Vapor Pressures of Some Substances Found in Coal Tar., Ind. Eng. Chem., 1923, 15, 11, 1140-1142, https://doi.org/10.1021/ie50167a012 . [all data]

Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius, Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure, Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351 . [all data]

SATO, INOMATA, et al., 1986
SATO, NOBUYUKI; INOMATA, HIROSHI; ARAI, KUNIO; SAITO, SHOZABURO, Measurement of vapor pressures for coal-related aromatic compounds by gas saturation method., J. Chem. Eng. Japan / JCEJ, 1986, 19, 2, 145-147, https://doi.org/10.1252/jcej.19.145 . [all data]

Sonnefeld, Zoller, et al., 1983
Sonnefeld, W.J.; Zoller, W.H.; May, W.E., Dynamic coupled-column liquid-chromatographic determination of ambient-temperature vapor pressures of polynuclear aromatic hydrocarbons, Anal. Chem., 1983, 55, 2, 275-280, https://doi.org/10.1021/ac00253a022 . [all data]

Radchenko and Kitaigorodskii, 1974
Radchenko, L.G.; Kitaigorodskii, A.I., The vapour pressures and heats of sublimation of naphthalene, biphenyl, octafluoronaphthalene, decafluorobiphenyl, acenaphthene and α-nitronaphthalene, Russ. J. Phys. Chem. (Engl. Transl.), 1974, 48, 1595. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Aihara, 1959
Aihara, A., Estimation of the energy of hydrogen bonds formed in crystals. I. Sublimation pressures of some organic molecular crystals and the additivity of lattice energy, Bull. Chem. Soc. Jpn., 1959, 32, 1242. [all data]

Aihara, 1959, 2
Aihara, Ariyuki, Estimation of the Energy of Hydrogen Bonds Formed in Crystals. I. Sublimation Pressures of Some Organic Molecular Crystals and the Additivity of Lattice Energy, Bull. Chem. Soc. Jpn., 1959, 32, 11, 1242-1248, https://doi.org/10.1246/bcsj.32.1242 . [all data]

Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W., Z. Elektrochem., 1958, 62, 61. [all data]

Sharma, Gupta, et al., 2008
Sharma, B.L.; Gupta, S.; Tandon, S.; Kant, R., Physico-mechanical properties of naphthalene--acenaphthene eutectic system by different modes of solidification, Materials Chemistry and Physics, 2008, 111, 2-3, 423-430, https://doi.org/10.1016/j.matchemphys.2008.04.049 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M., Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization, J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012 . [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Frye and Weitkamp, 1969
Frye, C.G.; Weitkamp, A.W., Equilibrium hydrogenations of multi-ring aromatics, J. Chem. Eng. Data, 1969, 14, 372-376. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M., Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite, J. Phys. Chem., 1980, 84, 2716. [all data]

Dewar, Haselbach, et al., 1970
Dewar, M.J.S.; Haselbach, E.; Worley, S.D., Calculated and observed ionization potentials of unsaturated polycyclic hydrocarbons; calculated heats of formation by several semiempirical s.c.f. m.o. methods, Proc. Roy. Soc. (London), 1970, A315, 431. [all data]

Kinoshita, 1962
Kinoshita, M., The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil, Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]

Heilbronner, Hoshi, et al., 1976
Heilbronner, E.; Hoshi, T.; von Rosenberg, J.L.; Hafner, K., Alkyl-induced, natural hypsochromic shifts of the 2A←2X and 2B←2X transitions of azulene and naphthalene radical cations, Nouv. J. Chim., 1976, 1, 105. [all data]

Boschi, Clar, et al., 1974
Boschi, R.; Clar, E.; Schmidt, W., Photoelectron spectra of polynuclear aromatics. III. The effect of nonplanarity in sterically overcrowded aromatic hydrocarbons, J. Chem. Phys., 1974, 60, 4406. [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References