Oxygen

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Phase change data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil90.2KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus54.8KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple54.33KN/AHenning and Otto, 1936Uncertainty assigned by TRC = 0.06 K; temperature measured with He gas thermometer; TRC
Quantity Value Units Method Reference Comment
Tc154.58KN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.0015 K; TRC
Tc154.58KN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.0015 K; TRC
Tc155.15KN/ACardoso, 1915Uncertainty assigned by TRC = 0.3 K; 4 determinations with same result; TRC
Quantity Value Units Method Reference Comment
Pc50.43barN/AWagner, Ewers, et al., 1976Uncertainty assigned by TRC = 0.005 bar; Vapour-pressure measurements give pc=5.04332 MPa at Tc from L.A.Weber, 1970 PRT, IPTS-68, PP+ differential pressure transducer.; TRC
Pc50.0343barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Pc49.9228barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Pc49.8519barN/ACardoso, 1915Uncertainty assigned by TRC = 0.3039 bar; TRC
Quantity Value Units Method Reference Comment
ρc13.60mol/lN/APentermann and Wagner, 1978Uncertainty assigned by TRC = 0.014 mol/l; from density measurements 65 to 300 K, Tc from Weber, 1970; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
54.36 to 100.163.85845325.675-5.667Brower and Thodos, 1968Coefficents calculated by NIST from author's data.
54.36 to 154.333.9523340.024-4.144Brower and Thodos, 1968Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Oxygen anion + Oxygen = (Oxygen anion • Oxygen)

By formula: O2- + O2 = (O2- • O2)

Quantity Value Units Method Reference Comment
Δr48. ± 20.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr130.J/mol*KPHPMSConway and Nesbit, 1968gas phase; M
Quantity Value Units Method Reference Comment
Δr13. ± 4.6kJ/molTDAsHiraoka, 1888gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B
Δr23. ± 4.2kJ/molIMREPayzant J.D. and Kebarle, 1972gas phase; B
Δr13. ± 4.2kJ/molIMREPack and Phelps, 1971gas phase; B
Δr16.7 ± 2.1kJ/molIMREParkes, 1971gas phase; B
Δr16. ± 4.2kJ/molTDAsConway and Nesbit, 1968gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.DTPack and Phelps, 1971gas phase; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O2+ + O2 = (O2+ • O2)

Quantity Value Units Method Reference Comment
Δr41. ± 5.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr104.7J/mol*KPHPMSConway and Janik, 1970gas phase; M
Δr84.J/mol*KPHPMSDurden, Kebarle, et al., 1969gas phase; M
Δr86.2J/mol*KPHPMSYang and Conway, 1964gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.300.DTRakshit and Warneck, 1981gas phase; M
14.300.DTRakshit and Warneck, 1980gas phase; M
14.296.FAHoward, Bierbaum, et al., 1972gas phase; M
25.200.FAAdams and Bohme, 1970gas phase; M

(HO2+ • 2Oxygen) + Oxygen = (HO2+ • 3Oxygen)

By formula: (HO2+ • 2O2) + O2 = (HO2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.6105.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(Oxygen anion • 7Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 8Nitrogen • Oxygen)

By formula: (O2- • 7N2 • O2) + N2 = (O2- • 8N2 • O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Δr6.40kJ/molPHPMSHiraoka, 1988, 2gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Δr75.3J/mol*KN/AHiraoka, 1988, 2gas phase; Entropy change calculated or estimated; M

O- + Oxygen = (O- • Oxygen)

By formula: O- + O2 = (O- • O2)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPDissHiller and Vestal, 1981gas phase; From thermochemical cycle, ΔrH<; M
Δr163.kJ/molPESNovich, Engelking, et al., 1979gas phase; From thermochemical cycle, from EA(O3), D(O-O2) AND EA(O); M
Δr160.kJ/molPDissCosby, Moseley, et al., 1978gas phase; M
Δr180.kJ/molCIDLifschitz, Wu, et al., 1978gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O2+ • O2) + O2 = (O2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr28.7 ± 0.3kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr133.0J/mol*KPHPMSConway and Janik, 1970gas phase; M

(HO2+ • Oxygen) + Oxygen = (HO2+ • 2Oxygen)

By formula: (HO2+ • O2) + O2 = (HO2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr28.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Oxygen cation • 3Oxygen) + Oxygen = (Oxygen cation • 4Oxygen)

By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.3 ± 0.75kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr100.J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr10.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.6 ± 0.4kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr82.8J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 4Oxygen) + Oxygen = (Oxygen cation • 5Oxygen)

By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr8.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr8. ± 3.kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr71.1J/mol*KPHPMSConway and Janik, 1970gas phase; M

O3- + Oxygen = (O3- • Oxygen)

By formula: O3- + O2 = (O3- • O2)

Quantity Value Units Method Reference Comment
Δr8.79 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-15.1 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

(Oxygen anion • 6Oxygen) + Oxygen = (Oxygen anion • 7Oxygen)

By formula: (O2- • 6O2) + O2 = (O2- • 7O2)

Quantity Value Units Method Reference Comment
Δr5.86kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • 7Oxygen) + Oxygen = (Oxygen cation • 8Oxygen)

By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr7.61kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

(Oxygen cation • Oxygen) + Nitrogen = (Oxygen cation • Nitrogen • Oxygen)

By formula: (O2+ • O2) + N2 = (O2+ • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.kJ/molHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr42.3J/mol*KHPMSSpeller and Fitaire, 1983gas phase; Entropy change is questionable; M

(H3+ • Oxygen) + Oxygen = (H3+ • 2Oxygen)

By formula: (H3+ • O2) + O2 = (H3+ • 2O2)

Quantity Value Units Method Reference Comment
Δr48.1kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(O3- • 4Oxygen) + Oxygen = (O3- • 5Oxygen)

By formula: (O3- • 4O2) + O2 = (O3- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M

H3+ + Oxygen = (H3+ • Oxygen)

By formula: H3+ + O2 = (H3+ • O2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(O2S- • 2Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 3Sulfur dioxide • Oxygen)

By formula: (O2S- • 2O2S • O2) + O2S = (O2S- • 3O2S • O2)

Quantity Value Units Method Reference Comment
Δr15.1 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr6. ± 13.kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O2S- • 2Sulfur dioxide • Oxygen)

By formula: (O2S- • O2S • O2) + O2S = (O2S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr19.2 ± 1.7kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr10. ± 8.4kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O3S- • Sulfur dioxide • Oxygen) + Sulfur dioxide = (O3S- • 2Sulfur dioxide • Oxygen)

By formula: (O3S- • O2S • O2) + O2S = (O3S- • 2O2S • O2)

Quantity Value Units Method Reference Comment
Δr23.8 ± 2.5kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr15. ± 8.8kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O+ + O2 = (O+ • O2)

Quantity Value Units Method Reference Comment
Δr179.kJ/molPDissHiller and Vestal, 1982gas phase; M
Δr200.kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr209.kJ/molPDissMosely, Ozenne, et al., 1981gas phase; M

(O3S- • Oxygen) + Sulfur dioxide = (O3S- • Sulfur dioxide • Oxygen)

By formula: (O3S- • O2) + O2S = (O3S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr27.2 ± 3.3kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr18. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(O2S- • Oxygen) + Sulfur dioxide = (O2S- • Sulfur dioxide • Oxygen)

By formula: (O2S- • O2) + O2S = (O2S- • O2S • O2)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B
Quantity Value Units Method Reference Comment
Δr26. ± 9.2kJ/molTDAsVacher, Jorda, et al., 1992gas phase; B

(Oxygen anion • 2Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 3Nitrogen • Oxygen)

By formula: (O2- • 2N2 • O2) + N2 = (O2- • 3N2 • O2)

Quantity Value Units Method Reference Comment
Δr10.3 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 3Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 4Nitrogen • Oxygen)

By formula: (O2- • 3N2 • O2) + N2 = (O2- • 4N2 • O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 4Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 5Nitrogen • Oxygen)

By formula: (O2- • 4N2 • O2) + N2 = (O2- • 5N2 • O2)

Quantity Value Units Method Reference Comment
Δr8.1 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 5Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 6Nitrogen • Oxygen)

By formula: (O2- • 5N2 • O2) + N2 = (O2- • 6N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.6 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • 6Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 7Nitrogen • Oxygen)

By formula: (O2- • 6N2 • O2) + N2 = (O2- • 7N2 • O2)

Quantity Value Units Method Reference Comment
Δr7.1 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Oxygen anion • Nitrogen • Oxygen) + Nitrogen = (Oxygen anion • 2Nitrogen • Oxygen)

By formula: (O2- • N2 • O2) + N2 = (O2- • 2N2 • O2)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • Oxygen) + Oxygen = (Nitric oxide anion • 2Oxygen)

By formula: (NO- • O2) + O2 = (NO- • 2O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(HO2+ • 3Oxygen) + Oxygen = (HO2+ • 4Oxygen)

By formula: (HO2+ • 3O2) + O2 = (HO2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 4Oxygen) + Oxygen = (HO2+ • 5Oxygen)

By formula: (HO2+ • 4O2) + O2 = (HO2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 5Oxygen) + Oxygen = (HO2+ • 6Oxygen)

By formula: (HO2+ • 5O2) + O2 = (HO2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 6Oxygen) + Oxygen = (HO2+ • 7Oxygen)

By formula: (HO2+ • 6O2) + O2 = (HO2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 7Oxygen) + Oxygen = (HO2+ • 8Oxygen)

By formula: (HO2+ • 7O2) + O2 = (HO2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 8Oxygen) + Oxygen = (HO2+ • 9Oxygen)

By formula: (HO2+ • 8O2) + O2 = (HO2+ • 9O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • Oxygen) + Hydrogen = (HO2+ • Hydrogen • Oxygen)

By formula: (HO2+ • O2) + H2 = (HO2+ • H2 • O2)

Quantity Value Units Method Reference Comment
Δr17.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr71.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(Oxygen anion • Oxygen) + Nitrogen = (Oxygen anion • Nitrogen • Oxygen)

By formula: (O2- • O2) + N2 = (O2- • N2 • O2)

Quantity Value Units Method Reference Comment
Δr12.0 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr69.0J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

2Dimethyl sulfide + Oxygen = 2Dimethyl Sulfoxide

By formula: 2C2H6S + O2 = 2C2H6OS

Quantity Value Units Method Reference Comment
Δr-277.7 ± 0.84kJ/molCmDouglas, 1946liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -278.3 ± 0.8 kJ/mol; At 291°K; ALS

Dimethyl sulfone = Dimethyl Sulfoxide + 0.5Oxygen

By formula: C2H6O2S = C2H6OS + 0.5O2

Quantity Value Units Method Reference Comment
Δr243.3 ± 0.84kJ/molCmDouglas, 1946liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 246.9 ± 0.8 kJ/mol; At 291°K; ALS

(Oxygen anion • 2Oxygen) + Oxygen = (Oxygen anion • 3Oxygen)

By formula: (O2- • 2O2) + O2 = (O2- • 3O2)

Quantity Value Units Method Reference Comment
Δr10.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Oxygen) + Oxygen = (Oxygen anion • 4Oxygen)

By formula: (O2- • 3O2) + O2 = (O2- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Oxygen) + Oxygen = (Oxygen anion • 5Oxygen)

By formula: (O2- • 4O2) + O2 = (O2- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Oxygen) + Oxygen = (Oxygen anion • 6Oxygen)

By formula: (O2- • 5O2) + O2 = (O2- • 6O2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 5Oxygen) + Oxygen = (Oxygen cation • 6Oxygen)

By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 6Oxygen) + Oxygen = (Oxygen cation • 7Oxygen)

By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka, 1988gas phase; M

Gas phase ion energetics data

Go To: Top, Phase change data, Reaction thermochemistry data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to O2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.0697 ± 0.0002eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)421.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity396.3kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.4480 ± 0.0060LPESErvin, Anusiewicz, et al., 2003B
0.4510 ± 0.0070LPESTravers, Cowles, et al., 1989B
0.4400 ± 0.0080LPESCelotta, Bennett, et al., 197289SAW puts DH(H-O2.) at 59 kcal/mol, implying ΔHacid=362.5; B
0.451 ± 0.052ECDChen and Wentworth, 1983B
0.44 ± 0.10CIDTTiernan and Wu, 1978From O2-; B
0.40 ± 0.10NBIEDurup, Parlant, et al., 1977B
0.450 ± 0.024ETSBurrow, 1974B
0.50 ± 0.10NBIEBaeda, 1972B
0.430 ± 0.030LPESCelotta, Bennett, et al., 1971B
0.460 ± 0.050NBIENalley and Compton, 1971B
>0.45 ± 0.10EndoTiernan, Hughes, et al., 1971B
0.50 ± 0.20NBIELacmann and Herschbach, 1970B
0.430 ± 0.020KinePack and Phelps, 1966B
>0.479998EndoBerkowitz, Chupka, et al., 1971B
>0.56 ± 0.10EndoChantry, 1971B
0.725005ECDChen and Chen, 2003B
>1.27 ± 0.20EndoBailey and Mahadevan, 1970B
1.119 ± 0.069IMRBVogt, Hauffle, et al., 1970B
>1.10 ± 0.10EIAEStockdale, Compton, et al., 1969From NO2; B
0.150 ± 0.050PDBurch, Smith, et al., 1958B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
421. ± 3.Litorja and Ruscic, 1998T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
12.0697 ± 0.0002STonkyn, Winniczek, et al., 1989LL
12.1 ± 0.1EIGrade, Wienecke, et al., 1983LBLHLM
12.8 ± 0.5EIGomez, Chatillon, et al., 1982LBLHLM
12.0 ± 1.0SFarber, Srivastava, et al., 1982LBLHLM
12.076 ± 0.002PEMacNeil and Dixon, 1977LLK
12.071PEKronebusch and Berkowitz, 1976LLK
12.071 ± 0.001PESamson and Gardner, 1975LLK
12.0 ± 0.5EIHildenbrand, 1975LLK
12.2 ± 0.2EIBennett, Lin, et al., 1974LLK
12.07 ± 0.01PITanaka and Tanaka, 1973LLK
12.08PENatalis, 1973LLK
12.077PEDromey, Morrison, et al., 1973LLK
12.127PEVilesov and Lopatin, 1972LLK
12.072 ± 0.008PIDibeler and Walker, 1967RDSH
12.059 ± 0.001SSamson and Cairns, 1966RDSH
12.078 ± 0.005PIBrehm, 1966RDSH
12.065 ± 0.003PINicholson, 1963RDSH
12.08 ± 0.01PIWatanabe, 1957RDSH
12.30PEKimura, Katsumata, et al., 1981Vertical value; LLK
12.33 ± 0.01PEBanna and Shirley, 1976Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
O+18.734OPIPECOBlyth, Powis, et al., 1981LLK
O+17.28O-PIOertel, Schenk, et al., 1980LLK
O+18.69 ± 0.04OEILocht and Schopman, 1974LLK
O+17.3 ± 0.2O-EILocht and Momigny, 1971LLK
O+17.25 ± 0.01O-PIDibeler and Walker, 1967RDSH
O+17.272 ± 0.024O-PIElder, Villarejo, et al., 1965RDSH
O+18.8 ± 0.4OPIWeissler, Samson, et al., 1959RDSH
O+18.99 ± 0.05OEIFrost and McDowell, 1959RDSH

Anion protonation reactions

Oxygen anion + Hydrogen cation = Hydroperoxy radical

By formula: O2- + H+ = HO2

Quantity Value Units Method Reference Comment
Δr1476.9 ± 3.0kJ/molD-EATravers, Cowles, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr1450.5 ± 3.4kJ/molH-TSTravers, Cowles, et al., 1989gas phase; B

Ion clustering data

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Calcium ion (1+) + Oxygen = (Calcium ion (1+) • Oxygen)

By formula: Ca+ + O2 = (Ca+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.296.FASpears and Fehsenfeld, 1972gas phase; M

HO2+ + Oxygen = (HO2+ • Oxygen)

By formula: HO2+ + O2 = (HO2+ • O2)

Quantity Value Units Method Reference Comment
Δr83.7kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HO2+ • Oxygen) + Oxygen = (HO2+ • 2Oxygen)

By formula: (HO2+ • O2) + O2 = (HO2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr28.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr96.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; M

(HO2+ • 2Oxygen) + Oxygen = (HO2+ • 3Oxygen)

By formula: (HO2+ • 2O2) + O2 = (HO2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr13.kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr76.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr84.J/mol*KN/AHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
4.6105.PHPMSHiraoka, Saluja, et al., 1979gas phase; Entropy change calculated or estimated; M

(HO2+ • 3Oxygen) + Oxygen = (HO2+ • 4Oxygen)

By formula: (HO2+ • 3O2) + O2 = (HO2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr11. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 4Oxygen) + Oxygen = (HO2+ • 5Oxygen)

By formula: (HO2+ • 4O2) + O2 = (HO2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr9. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 5Oxygen) + Oxygen = (HO2+ • 6Oxygen)

By formula: (HO2+ • 5O2) + O2 = (HO2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 6Oxygen) + Oxygen = (HO2+ • 7Oxygen)

By formula: (HO2+ • 6O2) + O2 = (HO2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 7Oxygen) + Oxygen = (HO2+ • 8Oxygen)

By formula: (HO2+ • 7O2) + O2 = (HO2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr88.3J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(HO2+ • 8Oxygen) + Oxygen = (HO2+ • 9Oxygen)

By formula: (HO2+ • 8O2) + O2 = (HO2+ • 9O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr86.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

H3+ + Oxygen = (H3+ • Oxygen)

By formula: H3+ + O2 = (H3+ • O2)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr82.0J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

(H3+ • Oxygen) + Oxygen = (H3+ • 2Oxygen)

By formula: (H3+ • O2) + O2 = (H3+ • 2O2)

Quantity Value Units Method Reference Comment
Δr48.1kJ/molPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KPHPMSHiraoka, Saluja, et al., 1979gas phase; From thermochemical cycle(O2H+)O2; M

Lithium ion (1+) + Oxygen = (Lithium ion (1+) • Oxygen)

By formula: Li+ + O2 = (Li+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
18.319.DTColonna-Romano and Keller, 1976gas phase; low E/N; M

Nitric oxide anion + Oxygen = (Nitric oxide anion • Oxygen)

By formula: NO- + O2 = (NO- • O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr60.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
-2.200.FADunkin, Fehsenfeld, et al., 1971gas phase; DG>; M

(Nitric oxide anion • Oxygen) + Oxygen = (Nitric oxide anion • 2Oxygen)

By formula: (NO- • O2) + O2 = (NO- • 2O2)

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 2Oxygen) + Oxygen = (Nitric oxide anion • 3Oxygen)

By formula: (NO- • 2O2) + O2 = (NO- • 3O2)

Quantity Value Units Method Reference Comment
Δr11.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr65.7J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 3Oxygen) + Oxygen = (Nitric oxide anion • 4Oxygen)

By formula: (NO- • 3O2) + O2 = (NO- • 4O2)

Quantity Value Units Method Reference Comment
Δr10.2 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr67.4J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

(Nitric oxide anion • 4Oxygen) + Oxygen = (Nitric oxide anion • 5Oxygen)

By formula: (NO- • 4O2) + O2 = (NO- • 5O2)

Quantity Value Units Method Reference Comment
Δr9.8 ± 0.8kJ/molPHPMSHiraoka and Yamabe, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr80.3J/mol*KPHPMSHiraoka and Yamabe, 1991gas phase; M

Sodium ion (1+) + Oxygen = (Sodium ion (1+) • Oxygen)

By formula: Na+ + O2 = (Na+ • O2)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.8310.DTKeller and Beyer, 1971gas phase; low E/N; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O+ + O2 = (O+ • O2)

Quantity Value Units Method Reference Comment
Δr179.kJ/molPDissHiller and Vestal, 1982gas phase; M
Δr200.kJ/molPILinn, Ono, et al., 1981gas phase; M
Δr209.kJ/molPDissMosely, Ozenne, et al., 1981gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O+ • O2) + O2 = (O+ • 2O2)

Quantity Value Units Method Reference Comment
Δr29.kJ/molPILinn, Ono, et al., 1981gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O+ • 2O2) + O2 = (O+ • 3O2)

Quantity Value Units Method Reference Comment
Δr4.kJ/molPILinn, Ono, et al., 1981gas phase; M

O- + Oxygen = (O- • Oxygen)

By formula: O- + O2 = (O- • O2)

Quantity Value Units Method Reference Comment
Δr130.kJ/molPDissHiller and Vestal, 1981gas phase; From thermochemical cycle, ΔrH<; M
Δr163.kJ/molPESNovich, Engelking, et al., 1979gas phase; From thermochemical cycle, from EA(O3), D(O-O2) AND EA(O); M
Δr160.kJ/molPDissCosby, Moseley, et al., 1978gas phase; M
Δr180.kJ/molCIDLifschitz, Wu, et al., 1978gas phase; M

Oxygen cation + Oxygen = (Oxygen cation • Oxygen)

By formula: O2+ + O2 = (O2+ • O2)

Quantity Value Units Method Reference Comment
Δr41. ± 5.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr78.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr104.7J/mol*KPHPMSConway and Janik, 1970gas phase; M
Δr84.J/mol*KPHPMSDurden, Kebarle, et al., 1969gas phase; M
Δr86.2J/mol*KPHPMSYang and Conway, 1964gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
16.300.DTRakshit and Warneck, 1981gas phase; M
14.300.DTRakshit and Warneck, 1980gas phase; M
14.296.FAHoward, Bierbaum, et al., 1972gas phase; M
25.200.FAAdams and Bohme, 1970gas phase; M

(Oxygen cation • Oxygen) + Oxygen = (Oxygen cation • 2Oxygen)

By formula: (O2+ • O2) + O2 = (O2+ • 2O2)

Quantity Value Units Method Reference Comment
Δr25. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Δr28.7 ± 0.3kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr133.0J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 2Oxygen) + Oxygen = (Oxygen cation • 3Oxygen)

By formula: (O2+ • 2O2) + O2 = (O2+ • 3O2)

Quantity Value Units Method Reference Comment
Δr10.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.6 ± 0.4kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr82.8J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 3Oxygen) + Oxygen = (Oxygen cation • 4Oxygen)

By formula: (O2+ • 3O2) + O2 = (O2+ • 4O2)

Quantity Value Units Method Reference Comment
Δr9.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr10.3 ± 0.75kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr88.7J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr100.J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 4Oxygen) + Oxygen = (Oxygen cation • 5Oxygen)

By formula: (O2+ • 4O2) + O2 = (O2+ • 5O2)

Quantity Value Units Method Reference Comment
Δr8.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Δr8. ± 3.kJ/molPHPMSConway and Janik, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr89.5J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr71.1J/mol*KPHPMSConway and Janik, 1970gas phase; M

(Oxygen cation • 5Oxygen) + Oxygen = (Oxygen cation • 6Oxygen)

By formula: (O2+ • 5O2) + O2 = (O2+ • 6O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr90.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 6Oxygen) + Oxygen = (Oxygen cation • 7Oxygen)

By formula: (O2+ • 6O2) + O2 = (O2+ • 7O2)

Quantity Value Units Method Reference Comment
Δr8. ± 2.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen cation • 7Oxygen) + Oxygen = (Oxygen cation • 8Oxygen)

By formula: (O2+ • 7O2) + O2 = (O2+ • 8O2)

Quantity Value Units Method Reference Comment
Δr7.61kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

Oxygen anion + Oxygen = (Oxygen anion • Oxygen)

By formula: O2- + O2 = (O2- • O2)

Quantity Value Units Method Reference Comment
Δr48. ± 20.kJ/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSHiraoka, 1988gas phase; M
Δr130.J/mol*KPHPMSConway and Nesbit, 1968gas phase; M
Quantity Value Units Method Reference Comment
Δr13. ± 4.6kJ/molTDAsHiraoka, 1888gas phase; see also Sherwood, Hanold, et al., 1996. Aquino, Taylor, et al., 2001 calns indicate rectangular anion; B
Δr23. ± 4.2kJ/molIMREPayzant J.D. and Kebarle, 1972gas phase; B
Δr13. ± 4.2kJ/molIMREPack and Phelps, 1971gas phase; B
Δr16.7 ± 2.1kJ/molIMREParkes, 1971gas phase; B
Δr16. ± 4.2kJ/molTDAsConway and Nesbit, 1968gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.300.DTPack and Phelps, 1971gas phase; M

(Oxygen anion • Oxygen) + Oxygen = (Oxygen anion • 2Oxygen)

By formula: (O2- • O2) + O2 = (O2- • 2O2)

Quantity Value Units Method Reference Comment
Δr10.5 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 2Oxygen) + Oxygen = (Oxygen anion • 3Oxygen)

By formula: (O2- • 2O2) + O2 = (O2- • 3O2)

Quantity Value Units Method Reference Comment
Δr10.0 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr89.1J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 3Oxygen) + Oxygen = (Oxygen anion • 4Oxygen)

By formula: (O2- • 3O2) + O2 = (O2- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 4Oxygen) + Oxygen = (Oxygen anion • 5Oxygen)

By formula: (O2- • 4O2) + O2 = (O2- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.4 ± 0.8kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 5Oxygen) + Oxygen = (Oxygen anion • 6Oxygen)

By formula: (O2- • 5O2) + O2 = (O2- • 6O2)

Quantity Value Units Method Reference Comment
Δr6. ± 1.kJ/molPHPMSHiraoka, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr67.8J/mol*KPHPMSHiraoka, 1988gas phase; M

(Oxygen anion • 6Oxygen) + Oxygen = (Oxygen anion • 7Oxygen)

By formula: (O2- • 6O2) + O2 = (O2- • 7O2)

Quantity Value Units Method Reference Comment
Δr5.86kJ/molPHPMSHiraoka, 1988gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr67.J/mol*KN/AHiraoka, 1988gas phase; Entropy change calculated or estimated; M

O3- + Oxygen = (O3- • Oxygen)

By formula: O3- + O2 = (O3- • O2)

Quantity Value Units Method Reference Comment
Δr8.79 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr-15.1 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

(O3- • Oxygen) + Oxygen = (O3- • 2Oxygen)

By formula: (O3- • O2) + O2 = (O3- • 2O2)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 2Oxygen) + Oxygen = (O3- • 3Oxygen)

By formula: (O3- • 2O2) + O2 = (O3- • 3O2)

Quantity Value Units Method Reference Comment
Δr8. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 3Oxygen) + Oxygen = (O3- • 4Oxygen)

By formula: (O3- • 3O2) + O2 = (O3- • 4O2)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molPHPMSHiraoka, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr64.4J/mol*KPHPMSHiraoka, 1988, 2gas phase; M

(O3- • 4Oxygen) + Oxygen = (O3- • 5Oxygen)

By formula: (O3- • 4O2) + O2 = (O3- • 5O2)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSHiraoka, 1988, 2gas phase; ΔrH, ΔrS approximate; M

O4- + Nitrogen + Oxygen = N2O4-

By formula: O4- + N2 + O2 = N2O4-

Quantity Value Units Method Reference Comment
Δr12.1 ± 0.84kJ/molTDAsHiraoka, 1988, 2gas phase; B
Quantity Value Units Method Reference Comment
Δr-8.8 ± 2.1kJ/molTDAsHiraoka, 1988, 2gas phase; B

References

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Henning and Otto, 1936
Henning, F.; Otto, J., Vapor pressure curves and triple points in the temperature region from 14 to 90 k, Phys. Z., 1936, 37, 633-8. [all data]

Pentermann and Wagner, 1978
Pentermann, W.; Wagner, W., New pressure-density-temperature measurements and new rational equations for the saturated liquid and vapor densities of oxygen, J. Chem. Thermodyn., 1978, 10, 1161-1172. [all data]

Wagner, Ewers, et al., 1976
Wagner, W.; Ewers, J.; Pentermann, W., A New Vapor-Pressure Measurement and a New Rational Vapor-Pressure Equation for Oxygen, J. Chem. Thermodyn., 1976, 8, 1049. [all data]

Cardoso, 1915
Cardoso, E., Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane, J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]

Brower and Thodos, 1968
Brower, G.T.; Thodos, G., Vapor Pressures of Liquid Oxygen Between the Triple Point and Critical Point, J. Chem. Eng. Data, 1968, 13, 2, 262-264, https://doi.org/10.1021/je60037a038 . [all data]

Hiraoka, 1988
Hiraoka, K., A Determination of the Stabilities of O2+(O2)n and O2-(O2)n with n = 1 - 8 from Measurements of the Gas-Phase Ion Equilibria, J. Chem. Phys., 1988, 89, 5, 3190, https://doi.org/10.1063/1.454976 . [all data]

Conway and Nesbit, 1968
Conway, D.C.; Nesbit, L.E., Stability of O4-, J. Chem. Phys., 1968, 48, 1, 509, https://doi.org/10.1063/1.1667956 . [all data]

Hiraoka, 1888
Hiraoka, K., A Determination of the Stability of O2+(O2)n and O2-(O2)n with n=1-8 from Measurements of the Gas Phase Ion Equilibria, J. Chem. Phys., 1888, 89, 5, 3190, https://doi.org/10.1063/1.454976 . [all data]

Sherwood, Hanold, et al., 1996
Sherwood, C.R.; Hanold, K.A.; Garner, M.C.; Strong, K.M.; Continetti, R.E., Translational Spectroscopy Studies of the Photodissociation Dynamics of O4-, J. Chem. Phys., 1996, 105, 24, 10803, https://doi.org/10.1063/1.472888 . [all data]

Aquino, Taylor, et al., 2001
Aquino, A.J.A.; Taylor, P.R.; Walch, S.P., Structure, properties, and photodissociation of O-4(-), J. Chem. Phys., 2001, 114, 7, 3010-3017, https://doi.org/10.1063/1.1288379 . [all data]

Payzant J.D. and Kebarle, 1972
Payzant J.D.; Kebarle, P., Kinetics and Reactions Leading to O2-(H2O)n in Moist Oxygen, J. Chem. Phys., 1972, 56, 7, 3482, https://doi.org/10.1063/1.1677723 . [all data]

Pack and Phelps, 1971
Pack, J.L.; Phelps, A.V., Hydration of Oxygen Negative Ions, Bull. Am. Phys. Soc., 1971, 16, 214. [all data]

Parkes, 1971
Parkes, D.A., Electron Attachment and Negative Ion-Molecule Reactions in Pure O2, Trans. Farad. Soc., 1971, 97, 711, https://doi.org/10.1039/tf9716700711 . [all data]

Conway and Janik, 1970
Conway, D.C.; Janik, G.S., Determination of the Bond Energies for the Series O2 - O2+ through O2 - O10+, J. Chem. Phys., 1970, 53, 5, 1859, https://doi.org/10.1063/1.1674262 . [all data]

Durden, Kebarle, et al., 1969
Durden, D.A.; Kebarle, P.; Good, A., Thermal Ion-Molecule Reaction Rate Constants at Pressures up to 10 torr with a Pulsed Mass Spectrometer. Reactions in Methane, Krypton, and Oxygen, J. Chem. Phys., 1969, 50, 2, 805, https://doi.org/10.1063/1.1671133 . [all data]

Yang and Conway, 1964
Yang, J.H.; Conway, D.C., Bonding in Ion Clusters. I. O4+, J. Chem. Phys., 1964, 40, 6, 1729, https://doi.org/10.1063/1.1725389 . [all data]

Rakshit and Warneck, 1981
Rakshit, A.B.; Warneck, P., Formation and Reactions of O2+.CO2, O2+.H2O and O2+(CO2)2 Ions, Int. J. Mass Spectrom Ion Phys., 1981, 40, 2, 135, https://doi.org/10.1016/0020-7381(81)80037-X . [all data]

Rakshit and Warneck, 1980
Rakshit, A.B.; Warneck, P., A Drift Chamber Study of the Formation of Water Cluster Ions in Oxygen, J. Chem. Phys., 1980, 73, 10, 5074, https://doi.org/10.1063/1.439985 . [all data]

Howard, Bierbaum, et al., 1972
Howard, C.J.; Bierbaum, V.M.; Rundle, H.W.; Kaufman, F., Kinetics and Mechanism of Formation of Water Cluster Ions from O2+ and H2O+, J. Chem. Phys., 1972, 57, 8, 3491, https://doi.org/10.1063/1.1678783 . [all data]

Adams and Bohme, 1970
Adams, N.G.; Bohme, D., Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-, J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449 . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14, Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8 . [all data]

Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P., Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements, Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346 . [all data]

Hiraoka, 1988, 2
Hiraoka, K., Determination of the Stabilities of O3-(N2)n, O3-(O2)n, and O4-(N2)n from Measurements of the Gas Phase Equilibria, Chem. Phys., 1988, 125, 2-3, 439, https://doi.org/10.1016/0301-0104(88)87096-4 . [all data]

Hiller and Vestal, 1981
Hiller, J.F.; Vestal, M.L., Laser Photodissociation of O3- by Triple Quadrupole Mass Spectrometry, J. Chem. Phys., 1981, 74, 11, 6096, https://doi.org/10.1063/1.441053 . [all data]

Novich, Engelking, et al., 1979
Novich, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C., Laser photoelectron, photodetachment, and photodestruction spectra of O3-, J. Chem. Phys., 1979, 70, 2652. [all data]

Cosby, Moseley, et al., 1978
Cosby, P.C.; Moseley, J.T.; Peterson, J.R.; Ling, J.H., Photodissociation spectroscopy of O3, J. Chem. Phys., 1978, 69, 2771. [all data]

Lifschitz, Wu, et al., 1978
Lifschitz, C.; Wu, R.L.C.; Tiernan, T.O.; Terwillinger, D.T., Negative Ion - Molecule Reactions of Ozone and Their Implications on the Thermochemistry of O3-, J. Chem. Phys., 1978, 68, 1, 247, https://doi.org/10.1063/1.435489 . [all data]

Hiraoka and Yamabe, 1991
Hiraoka, K.; Yamabe, S., Cluster Ions: Gas Phase Stabilities of NO+(O2)n and NO+(CO2)n with n = 1 - 5, J. Chem. Phys., 1991, 95, 9, 6800, https://doi.org/10.1063/1.461518 . [all data]

Dunkin, Fehsenfeld, et al., 1971
Dunkin, D.B.; Fehsenfeld, F.C.; Schelmetekopf, A.L.; Ferguson, E.E., Three-Body Association Reactions of NO+ with O2, N2, and CO2, J. Chem. Phys., 1971, 54, 9, 3817, https://doi.org/10.1063/1.1675432 . [all data]

Speller and Fitaire, 1983
Speller, C.V.; Fitaire, M., Proceedings of the 16th International Conference on Phenomena of Ionized Gases, H. Boetticher, H. Wenk and E. Shulz - Gulde, ed(s)., ICPIG, Dusseldorf, 1983, 568. [all data]

Vacher, Jorda, et al., 1992
Vacher, J.R.; Jorda, M.; Leduc, E.; Fitaire, M., A Determination of the Stabilities of Negative Ion Clusters in SO2 and SO2-O2 Mixtures, Int. J. Mass Spectrom. Ion Proc., 1992, 114, 3, 149, https://doi.org/10.1016/0168-1176(92)80033-W . [all data]

Hiller and Vestal, 1982
Hiller, J.F.; Vestal, M.L., Laser Photodissociation of O3+ and the Energetics of Ozone and its Ions, J. Chem. Phys., 1982, 77, 3, 1248, https://doi.org/10.1063/1.444000 . [all data]

Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y., A Study of the Ion - Molecule Half Reactions O2+(a4piu, v)...(O2)m ---> O2m+1 + O, m=1, 2, 3, Using the Molecular Beam Photoionization Method, J. Chem. Phys., 1981, 74, 6, 3348, https://doi.org/10.1063/1.441487 . [all data]

Mosely, Ozenne, et al., 1981
Mosely, J.T.; Ozenne, J.B.; Cosby, P.C., Photofragment Spectroscopy of O3+, J. Chem. Phys., 1981, 74, 1, 337, https://doi.org/10.1063/1.440839 . [all data]

Douglas, 1946
Douglas, T.B., Heats of formation of liquid methyl sulfoxide and crystalline methyl sulfone at 18°, J. Am. Chem. Soc., 1946, 68, 1072-1076. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ervin, Anusiewicz, et al., 2003
Ervin, K.M.; Anusiewicz, W.; Skurski, P.; Simons, J.; Lineberger, W.C., The only stable state of O-2(-) is the X (2)Pi(g) ground state and it (still!) has an adiabatic electron detachment energy of, J. Phys. Chem. A, 2003, 107, 41, 8521-8529, https://doi.org/10.1021/jp0357323 . [all data]

Travers, Cowles, et al., 1989
Travers, M.J.; Cowles, D.C.; Ellison, G.B., Reinvestigation of the Electron Affinities of O2 and NO, Chem. Phys. Lett., 1989, 164, 5, 449, https://doi.org/10.1016/0009-2614(89)85237-6 . [all data]

Celotta, Bennett, et al., 1972
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Siegel, M.W.; Levine, J., Molecular photodetachment spectrometry. II. The electron affinity of O2 and the structure of O2-, Phys. Rev. A:, 1972, 6, 631. [all data]

Chen and Wentworth, 1983
Chen, E.C.M.; Wentworth, W.E., Determination of molecular electron affinities using the electron capture detector in the pulse sampling mode at steady state, J. Phys. Chem., 1983, 87, 45. [all data]

Tiernan and Wu, 1978
Tiernan, T.O.; Wu, R.L.C., Thermochemical Data for Molecular Negative Ions from Collisional Dissociation Thresholds, Adv. Mass Spectrom., 1978, 7A, 136. [all data]

Durup, Parlant, et al., 1977
Durup, M.; Parlant, G.; Appell, J.; Durup, J.; Ozenne, J.-B., Translational spectroscopy of neutralization-reionization double collision processes of Ar+ ions at keV energies, Chem. Phys., 1977, 25, 245. [all data]

Burrow, 1974
Burrow, P.D., Temporary negative ion formation in NO and O2, Chem. Phys. Lett., 1974, 26, 265. [all data]

Baeda, 1972
Baeda, A.P.M., The adiabatic electron affinities of Cl2, Br2, I2, IBr, NO2, and O2, Physica, 1972, 59, 541. [all data]

Celotta, Bennett, et al., 1971
Celotta, R.J.; Bennett, R.A.; Hall, J.L.; Levine, J.; Siegel, M.W., Electron affinity of O2 by laser photodetachment, Bull. Am. Phys. Soc., 1971, 16, 212. [all data]

Nalley and Compton, 1971
Nalley, S.J.; Compton, R.N., Collisional ionization of cesium by oxygen: The electron affinity of O2, Chem. Phys. Lett., 1971, 9, 529. [all data]

Tiernan, Hughes, et al., 1971
Tiernan, T.O.; Hughes, B.M.; Lifschitz, C., Electron affinities from endothermic negative ion charge transfer reactions. II. O2, J. Chem. Phys., 1971, 55, 5692. [all data]

Lacmann and Herschbach, 1970
Lacmann, K.; Herschbach, D.R., Collisional Excitation and Ionization of K Atoms by Diatomic Molecules: Role of Ion-pair States, Chem. Phys. Lett., 1970, 6, 2, 106, https://doi.org/10.1016/0009-2614(70)80144-0 . [all data]

Pack and Phelps, 1966
Pack, J.L.; Phelps, A.V., Electron Attachment and Detachment. I. Pure O2 at Low Energy, J. Chem. Phys., 1966, 44, 5, 1870, https://doi.org/10.1063/1.1726956 . [all data]

Berkowitz, Chupka, et al., 1971
Berkowitz, J.; Chupka, W.A.; Gutman, D., Electron Affinities of O2, O3, NO, NO2, and NO3 by Endothermic Charge Transfer, J. Chem. Phys., 1971, 55, 6, 2733, https://doi.org/10.1063/1.1676488 . [all data]

Chantry, 1971
Chantry, P.J., Doppler broadening in beam experiments, J. Chem. Phys., 1971, 55, 2746. [all data]

Chen and Chen, 2003
Chen, E.S.; Chen, E.C.M., Semiempirical characterization of homonuclear diatomic ions: 6. Group VI and VII anions, J. Phys. Chem. A, 2003, 107, 1, 169-177, https://doi.org/10.1021/jp0268922 . [all data]

Bailey and Mahadevan, 1970
Bailey, T.L.; Mahadevan, P., Electron Transfer and Detachment in Collisions of Low Energy Negative Ions with O2, J. Chem. Phys., 1970, 52, 1, 179, https://doi.org/10.1063/1.1672663 . [all data]

Vogt, Hauffle, et al., 1970
Vogt, D.; Hauffle, B.; Neuert, H., Ladungsaustausch-Reaktionen Einiger Negativer Ionen mit O2 und die Elektronenaffinitat des O2, Z. Phys., 1970, 232, 5, 439, https://doi.org/10.1007/BF01395674 . [all data]

Stockdale, Compton, et al., 1969
Stockdale, J.A.D.; Compton, R.N.; Hurst, G.S.; Reinhardt, P.W., Collisions of Monoenergetic Electrons with NO2: Possible Lower Limits to the Electron Affinities of O2 and NO, J. Chem. Phys., 1969, 50, 5, 2176, https://doi.org/10.1063/1.1671347 . [all data]

Burch, Smith, et al., 1958
Burch, D.S.; Smith, S.J.; Branscomb, L.M., Photodetachment of O2-., Phys. Rev., 1958, 112, 1, 171, https://doi.org/10.1103/PhysRev.112.171 . [all data]

Litorja and Ruscic, 1998
Litorja, M.; Ruscic, B., A photoionization study of the hydroperoxyl radical, HO2, and hydrogen peroxide, H2O2, J. Electron Spectroscopy and Related Phenomena, 1998, 97, 131. [all data]

Tonkyn, Winniczek, et al., 1989
Tonkyn, R.G.; Winniczek, J.W.; White, M.G., Rotationally resolved photoionization of O2 near threshold, Chem. Phys. Lett., 1989, 164, 137. [all data]

Grade, Wienecke, et al., 1983
Grade, M.; Wienecke, J.; Rosinger, W.; Hirschwald, W., Electron impact investigation of the molecules SeS(g) and TeSe(g) under high-temperature equilibrium conditions, Ber. Bunsen-Ges. Phys. Chem., 1983, 87, 355. [all data]

Gomez, Chatillon, et al., 1982
Gomez, M.; Chatillon, C.; Allibert, M., Thermodynamics of gaseous and condensed indium oxides by mass spectrometry with controlled oxygen oressure, J. Chem. Thermodyn., 1982, 14, 447. [all data]

Farber, Srivastava, et al., 1982
Farber, M.; Srivastava, R.D.; Moyer, J.W., Mass spectrometric determination of the thermodynamics of potassium hydroxide and minor potassium-containing species required in magnetohydrodynamic power systems, J. Chem. Thermodyn., 1982, 14, 1103. [all data]

MacNeil and Dixon, 1977
MacNeil, K.A.G.; Dixon, R.N., High-resolution photoelectron spectroscopy of methanol and its deuterated derivatives: Internal rotation in the ground ionic state, J. Electron Spectrosc. Relat. Phenom., 1977, 11, 315. [all data]

Kronebusch and Berkowitz, 1976
Kronebusch, P.L.; Berkowitz, J., Photodissociative ionization in the 21-41 eV region: O2, N2, CO, NO, CO2, H2O, NH3 and CH4, Int. J. Mass Spectrom. Ion Phys., 1976, 22, 283. [all data]

Samson and Gardner, 1975
Samson, J.A.R.; Gardner, J.L., On the ionization potential of molecular oxygen, Can. J. Phys., 1975, 53, 1948. [all data]

Hildenbrand, 1975
Hildenbrand, D.L., Vertical ionization potential of the CF2 radical, Chem. Phys. Lett., 1975, 32, 30. [all data]

Bennett, Lin, et al., 1974
Bennett, S.L.; Lin, S.-S.; Gilles, P.W., High-temperature vaporization of ternary systems. I. Mass spectrometry of oxygen-rich vanadium-tungsten-oxygen species, J. Phys. Chem., 1974, 78, 266. [all data]

Tanaka and Tanaka, 1973
Tanaka, K.; Tanaka, I., Photoelectron spectra from some autoionizing state of O2 near the ionization threshold, J. Chem. Phys., 1973, 59, 5042. [all data]

Natalis, 1973
Natalis, P., Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques, Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]

Dromey, Morrison, et al., 1973
Dromey, R.G.; Morrison, J.D.; Peel, J.B., Time-averaged and deconvoluted photoelectron spectrum of the first band of O2, Chem. Phys. Lett., 1973, 23, 30. [all data]

Vilesov and Lopatin, 1972
Vilesov, F.I.; Lopatin, S.N., Photoelectron spectrometer, Zh. Tekh. Fiz., 1972, 42, 176. [all data]

Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A., Mass spectrometric study of the photoionization of small polyatomic molecules, Advan. Mass Spectrom., 1967, 4, 767. [all data]

Samson and Cairns, 1966
Samson, J.A.R.; Cairns, R.B., Ionization potential of O2, J. Opt. Soc. Am., 1966, 56, 769. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1963
Nicholson, A.J.C., Photo-ionization efficiency curves. Measurement of ionization potentials and interpretation of fine structure, J. Chem. Phys., 1963, 39, 954. [all data]

Watanabe, 1957
Watanabe, K., Ionization potentials of some molecules, J. Chem. Phys., 1957, 26, 542. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Banna and Shirley, 1976
Banna, M.S.; Shirley, D.A., Molecular photoelectron spectroscopy at 132.3 eV: N2, CO, C2H4 and O2, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 255. [all data]

Blyth, Powis, et al., 1981
Blyth, R.C.G.; Powis, I.; Danby, C.J., Competing pre-dissociations of O2+(B 2Σg-), Chem. Phys. Lett., 1981, 84, 272. [all data]

Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H., Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV, Chem. Phys., 1980, 46, 251. [all data]

Locht and Schopman, 1974
Locht, R.; Schopman, J., The dissociative ionization in oxygen, Int. J. Mass Spectrom. Ion Phys., 1974, 15, 361. [all data]

Locht and Momigny, 1971
Locht, R.; Momigny, J., Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2, Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]

Elder, Villarejo, et al., 1965
Elder, F.A.; Villarejo, D.; Inghram, M.G., Electron affinity of oxygen, J. Chem. Phys., 1965, 43, 758. [all data]

Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R., Photoionization analysis by mass spectroscopy, J. Opt. Soc. Am., 1959, 49, 338. [all data]

Frost and McDowell, 1959
Frost, D.C.; McDowell, C.A., Recent electron impact studies on simple molecules (O2, Cl2, I2), Advan. Mass Spectrom., 1959, 1, 413. [all data]

Spears and Fehsenfeld, 1972
Spears, K.G.; Fehsenfeld, F.C., Termolecular Association Reactions of Mg, Ca, and Ba Ions, J. Chem. Phys., 1972, 56, 11, 5698, https://doi.org/10.1063/1.1677091 . [all data]

Colonna-Romano and Keller, 1976
Colonna-Romano, L.M.; Keller, G.E., The Clustering of O2 and He to Li+, J. Chem. Phys., 1976, 64, 6, 2684, https://doi.org/10.1063/1.432522 . [all data]

Keller and Beyer, 1971
Keller, G.E.; Beyer, R.A., CO2 and O2 Clustering to Sodium Ions, J. Geophys. Res., 1971, 74, 1, 289, https://doi.org/10.1029/JA076i001p00289 . [all data]


Notes

Go To: Top, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References