Dimethyl ether
- Formula: C2H6O
- Molecular weight: 46.0684
- IUPAC Standard InChIKey: LCGLNKUTAGEVQW-UHFFFAOYSA-N
- CAS Registry Number: 115-10-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Methane, oxybis-; Methyl ether; Methoxymethane; Wood ether; Oxybismethane; (CH3)2O; Ether, dimethyl; Ether, methyl; UN 1033; Dimethyl oxide; Dymel A; Dymel; Demeon D; DME; Methane, 1,1'-oxybis-
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Reaction thermochemistry data: reactions 51 to 52
- Ion clustering data
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -184.1 ± 0.50 | kJ/mol | Ccb | Pilcher, Pell, et al., 1964 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1460.4 ± 0.46 | kJ/mol | Ccb | Pilcher, Pell, et al., 1964 | Corresponding ΔfHºgas = -184.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
42.27 | 100. | Chao J., 1986 | p=1 bar. Selected values are in close agreement with other statistically calculated values [ Handi M.A., 1954, Seha Z., 1955, Banerjee S.C., 1964, Stull D.R., 1969] and ab initio result [ East A.L.L., 1997] at low temperatures. Discrepancies in S(1000 K) and Cp(1000 K) amount to about 5 and 3 J/mol*K, respectively, for [ Handi M.A., 1954, Banerjee S.C., 1964, Stull D.R., 1969].; GT |
48.99 | 150. | ||
54.47 | 200. | ||
62.56 | 273.15 | ||
65.57 ± 0.08 | 298.15 | ||
65.80 | 300. | ||
78.68 | 400. | ||
91.36 | 500. | ||
102.86 | 600. | ||
113.03 | 700. | ||
121.99 | 800. | ||
129.84 | 900. | ||
136.70 | 1000. | ||
142.69 | 1100. | ||
147.89 | 1200. | ||
152.41 | 1300. | ||
156.35 | 1400. | ||
159.77 | 1500. | ||
166.57 | 1750. | ||
171.50 | 2000. | ||
175.15 | 2250. | ||
177.91 | 2500. | ||
180.03 | 2750. | ||
181.70 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
62.01 | 272.20 | Kistiakowsky G.B., 1940 | GT |
65.90 | 300.76 | ||
70.33 | 333.25 | ||
75.14 | 370.42 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°liquid | 146.57 | J/mol*K | N/A | Kennedy, Sagenkahn, et al., 1941 |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
102.30 | 240. | Kennedy, Sagenkahn, et al., 1941 | T = 14 to 240 K. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 248.2 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 248.3 | K | N/A | Majer and Svoboda, 1985 | |
Tboil | 248.25 | K | N/A | Grosse, 1937 | Uncertainty assigned by TRC = 1. K; TRC |
Tboil | 249.2 | K | N/A | Maass and Boomer, 1922 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tboil | 249.5 | K | N/A | Thiele and Schulte, 1920 | Uncertainty assigned by TRC = 0.6 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 135.2 | K | N/A | Maass and Boomer, 1922 | Uncertainty assigned by TRC = 2. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 131.64 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 131.66 | K | N/A | Kennedy, Sagenkahn, et al., 1941, 2 | Uncertainty assigned by TRC = 0.06 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 401. ± 2. | K | AVG | N/A | Average of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 54. ± 3. | bar | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.164 | l/mol | N/A | Zawisza and Glowka, 1970 | Uncertainty assigned by TRC = 0.003 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.351 | mol/l | N/A | Edwards and Maass, 1935 | Uncertainty assigned by TRC = 0.43 mol/l; TRC |
ρc | 4.895 | mol/l | N/A | Tapp, Steacie, et al., 1933 | Uncertainty assigned by TRC = 0.65 mol/l; TRC |
ρc | 5.891 | mol/l | N/A | Cardoso and Coppola, 1923 | Uncertainty assigned by TRC = 0.07 mol/l; extraplation of rectilinear diameter, from obs L and G densities, to Tc = 126.9 deg C, from previous literature; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 19.3 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 18.5 | kJ/mol | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 171. to 248. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
21.510 | 248.34 | N/A | Kennedy, Sagenkahn, et al., 1941 | P = 101.325 kPa; DH |
21.51 | 248.3 | N/A | Majer and Svoboda, 1985 | |
22.6 | 250. | A | Stephenson and Malanowski, 1987 | Based on data from 183. to 265. K.; AC |
22.8 | 234. | A | Stephenson and Malanowski, 1987 | Based on data from 180. to 249. K.; AC |
21.2 | 308. | A | Stephenson and Malanowski, 1987 | Based on data from 293. to 360. K.; AC |
21.1 | 364. | A | Stephenson and Malanowski, 1987 | Based on data from 349. to 400. K.; AC |
22.2 | 256. | A | Stephenson and Malanowski, 1987 | Based on data from 241. to 303. K.; AC |
21.4 | 248. | N/A | Ambrose, Ellender, et al., 1976 | Based on data from 171. to 248. K.; AC |
22.7 | 233. | N/A | Kennedy, Sagenkahn, et al., 1941 | Based on data from 195. to 248. K.; AC |
21.5 ± 0.1 | 248. | C | Kennedy, Sagenkahn, et al., 1941 | AC |
Entropy of vaporization
ΔvapS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
86.61 | 248.34 | Kennedy, Sagenkahn, et al., 1941 | P; DH |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
194.93 to 248.24 | 4.11475 | 894.669 | -30.604 | Kennedy, Sagenkahn, et al., 1941 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
4.9363 | 131.66 | Kennedy, Sagenkahn, et al., 1941 | DH |
4.94 | 131.7 | Domalski and Hearing, 1996 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
37.49 | 131.66 | Kennedy, Sagenkahn, et al., 1941 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Reactions 1 to 50
By formula: Li+ + C2H6O = (Li+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 165. ± 11. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 165. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
ΔrH° | 160. | kJ/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 131. | kJ/mol | ICR | Woodin and Beauchamp, 1978 | gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
165. (+10.,-0.) | CID | More, Gledening, et al., 1996 | gas phase; guided ion beam CID; M |
By formula: C3H7O2+ + C2H6O = (C3H7O2+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 126. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 90.4 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C4H9O2+ + C2H6O = (C4H9O2+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 125. | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 122. | J/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 88.7 | kJ/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: (Na+ • C2H6O) + C2H6O = (Na+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 85. ± 7. | kJ/mol | AVG | N/A | Average of 7 values; Individual data points |
By formula: Na+ + C2H6O = (Na+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. ± 5.4 | kJ/mol | CIDC | Amicangelo and Armentrout, 2001 | Anchor NH3=24.41; RCD |
ΔrH° | 91.6 ± 4.6 | kJ/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 92.0 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 92.9 ± 5.0 | kJ/mol | CIDT | More, Ray, et al., 1997 | RCD |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
73.6 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
73.6 | 298. | CIDC | McMahon and Ohanessian, 2000 | RCD |
By formula: C10H10Fe+ + C2H6O = (C10H10Fe+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. | kJ/mol | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | N/A | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
15. | 250. | PHPMS | Meot-Ner (Mautner), 1989 | gas phase; Entropy change calculated or estimated, ΔrH<, DG<; M |
By formula: (CH5O+ • 2CH4O) + C2H6O = (CH5O+ • C2H6O • 2CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.0 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: (CH5O+ • 3CH4O) + C2H6O = (CH5O+ • C2H6O • 3CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.3 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 129. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: (CH5O+ • CH4O) + C2H6O = (CH5O+ • C2H6O • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 91.6 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 105. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be (CH3)2OH+; M |
By formula: C2H7O+ + C2H6O = (C2H7O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 134. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; M |
ΔrH° | 128. | kJ/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 133. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; M |
ΔrS° | 124. | J/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: K+ + C2H6O = (K+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 72.8 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 92.9 | kJ/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
ΔrH° | 87.0 | kJ/mol | HPMS | Davidson and Kebarle, 1976, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
ΔrS° | 104. | J/mol*K | HPMS | Davidson and Kebarle, 1976, 2 | gas phase; M |
By formula: CH5O+ + C2H6O = (CH5O+ • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be ((CH3)2OH+; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, note proton affinities, core ion may be ((CH3)2OH+; M |
(C2H7O+ • • 2) + = (C2H7O+ • 2 • 2)
By formula: (C2H7O+ • C2H6O • 2H2O) + C2H6O = (C2H7O+ • 2C2H6O • 2H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.1 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 153. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, Entropy change is questionable; M |
By formula: (C2H7O+ • C2H6O) + H2O = (C2H7O+ • H2O • C2H6O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.2 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 162. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n, Entropy change is questionable; M |
(C2H7O+ • • ) + = (C2H7O+ • 2 • )
By formula: (C2H7O+ • C2H6O • H2O) + C2H6O = (C2H7O+ • 2C2H6O • H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.3 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 2 • ) + = (C2H7O+ • 3 • )
By formula: (C2H7O+ • 2C2H6O • H2O) + C2H6O = (C2H7O+ • 3C2H6O • H2O)
Bond type: Hydrogen bonds between protonated and neutral organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.8 | kJ/mol | PHPMS | Tholman, Tonner, et al., 1994 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 174. | J/mol*K | PHPMS | Tholman, Tonner, et al., 1994 | gas phase; M |
(C2H7O+ • 2 • ) + = (C2H7O+ • 3 • )
By formula: (C2H7O+ • 2CH4O • C2H6O) + CH4O = (C2H7O+ • 3CH4O • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 111. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • • ) + = (C2H7O+ • 2 • )
By formula: (C2H7O+ • CH4O • C2H6O) + CH4O = (C2H7O+ • 2CH4O • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 63.2 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 128. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • • 2) + = (C2H7O+ • 2 • 2)
By formula: (C2H7O+ • H2O • 2C2H6O) + H2O = (C2H7O+ • 2H2O • 2C2H6O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.7 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 127. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • • 3) + = (C2H7O+ • 2 • 3)
By formula: (C2H7O+ • H2O • 3C2H6O) + H2O = (C2H7O+ • 2H2O • 3C2H6O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.7 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 127. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 2 • ) + = (C2H7O+ • 3 • )
By formula: (C2H7O+ • 2H2O • C2H6O) + H2O = (C2H7O+ • 3H2O • C2H6O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 48.5 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 2) + = (C2H7O+ • • 2)
By formula: (C2H7O+ • 2H2O) + C2H6O = (C2H7O+ • C2H6O • 2H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.6 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.4 | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 3) + = (C2H7O+ • • 3)
By formula: (C2H7O+ • 3H2O) + C2H6O = (C2H7O+ • C2H6O • 3H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.7 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 138. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • • ) + = (C2H7O+ • 2 • )
By formula: (C2H7O+ • H2O • C2H6O) + H2O = (C2H7O+ • 2H2O • C2H6O)
Bond type: Hydrogen bond (positive ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
By formula: (C2H7O+ • H2O) + C2H6O = (C2H7O+ • C2H6O • H2O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77.4 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 2) + = (C2H7O+ • • 2)
By formula: (C2H7O+ • 2CH4O) + C2H6O = (C2H7O+ • C2H6O • 2CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.5 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 133. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
(C2H7O+ • 3) + = (C2H7O+ • • 3)
By formula: (C2H7O+ • 3CH4O) + C2H6O = (C2H7O+ • C2H6O • 3CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 107. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
By formula: (C2H7O+ • C2H6O) + CH4O = (C2H7O+ • CH4O • C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 75.7 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 128. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
By formula: (C2H7O+ • CH4O) + C2H6O = (C2H7O+ • C2H6O • CH4O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84.5 | kJ/mol | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 125. | J/mol*K | PHPMS | Hiraoka, Grimsrud, et al., 1974 | gas phase; n; M |
By formula: (C2H7O+ • C2H6O) + C2H6O = (C2H7O+ • 2C2H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 42.3 | kJ/mol | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 117. | J/mol*K | PHPMS | Grimsrud and Kebarle, 1973 | gas phase; M |
By formula: CH6N+ + C2H6O = (CH6N+ • C2H6O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90.0 | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 123. | J/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: (Li+ • 2C2H6O) + C2H6O = (Li+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 89.1 ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
110. (+5.9,-0.) | CID | More, Gledening, et al., 1996 | gas phase; guided ion beam CID; M |
By formula: (Li+ • 3C2H6O) + C2H6O = (Li+ • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68. ± 10. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95.4 (+6.7,-0.) | CID | More, Gledening, et al., 1996 | gas phase; guided ion beam CID; M |
By formula: (Li+ • C2H6O) + C2H6O = (Li+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 121. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
130. (+4.,-0.) | CID | More, Gledening, et al., 1996 | gas phase; guided ion beam CID; M |
+ = C2H6ClO-
By formula: Cl- + C2H6O = C2H6ClO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.4 ± 1.7 | kJ/mol | TDAs | Bogdanov, Lee, et al., 2001 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12. ± 4.2 | kJ/mol | TDAs | Bogdanov, Lee, et al., 2001 | gas phase; B |
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1703. ± 8.4 | kJ/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1666. ± 9.2 | kJ/mol | H-TS | DePuy, Bierbaum, et al., 1984 | gas phase; B |
By formula: (Na+ • 2C2H6O) + C2H6O = (Na+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 66.9 ± 5.0 | kJ/mol | CIDT | More, Ray, et al., 1997 | RCD |
By formula: (Na+ • 3C2H6O) + C2H6O = (Na+ • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 58.2 ± 4.2 | kJ/mol | CIDT | More, Ray, et al., 1997 | RCD |
By formula: (K+ • 2C2H6O) + C2H6O = (K+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (K+ • 3C2H6O) + C2H6O = (K+ • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cs+ • 2C2H6O) + C2H6O = (Cs+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cs+ • C2H6O) + C2H6O = (Cs+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Rb+ • 2C2H6O) + C2H6O = (Rb+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37. ± 11. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Rb+ • C2H6O) + C2H6O = (Rb+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (K+ • C2H6O) + C2H6O = (K+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.0 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: (Cu+ • 2C2H6O) + C2H6O = (Cu+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 ± 4.2 | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: (Cu+ • 3C2H6O) + C2H6O = (Cu+ • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45. ± 10. | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: (Cu+ • C2H6O) + C2H6O = (Cu+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 7.9 | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: Cs+ + C2H6O = (Cs+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Rb+ + C2H6O = (Rb+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.9 ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference |
---|---|---|---|
1.0 | V | N/A | |
0.99 | R | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C2H6O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 10.025 ± 0.025 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 792. | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 764.5 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
10.025 ± 0.025 | PIPECO | Butler, Holland, et al., 1984 | LBLHLM |
9.95 ± 0.07 | EI | Bowen and Maccoll, 1984 | LBLHLM |
10.04 | PE | Kimura, Katsumata, et al., 1981 | LLK |
9.8 ± 0.1 | PE | Aue, Webb, et al., 1980 | LLK |
9.8 | PE | Aue and Bowers, 1979 | LLK |
10.01 ± 0.01 | PI | Botter, Pechine, et al., 1977 | LLK |
9.94 ± 0.01 | PE | Cocksey, Eland, et al., 1971 | LLK |
10.1 ± 0.2 | EI | Ivko, 1970 | RDSH |
9.94 | PE | Dewar and Worley, 1969 | RDSH |
9.96 ± 0.05 | S | Hernandez, 1963 | RDSH |
10.00 ± 0.02 | PI | Watanabe, 1957 | RDSH |
10.0 | PE | Bajic, Humski, et al., 1985 | Vertical value; LBLHLM |
10.1 | PE | Bieri, Asbrink, et al., 1982 | Vertical value; LBLHLM |
11.94 | PE | Utsunomiya, Kobayashi, et al., 1980 | Vertical value; LLK |
10.0 ± 0.2 | PE | Carnovale, Livett, et al., 1980 | Vertical value; LLK |
10.1 | PE | Aue and Bowers, 1979 | Vertical value; LLK |
10.03 | PE | Kobayashi, 1978 | Vertical value; LLK |
9.98 | PE | Benoit and Harrison, 1977 | Vertical value; LLK |
10.052 | PE | Aue, Webb, et al., 1975 | Vertical value; LLK |
10.04 | PE | Bock, Mollere, et al., 1973 | Vertical value; LLK |
10.04 | PE | Cradock and Whiteford, 1972 | Vertical value; LLK |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
CHO+ | ≤12.85 ± 0.10 | H2+CH3 | PIPECO | Butler, Holland, et al., 1984 | T = 298K; LBLHLM |
CHO+ | 14.0 ± 0.2 | ? | EI | Ivko, 1970 | RDSH |
CH3+ | ≤14.4 ± 0.1 | CH2O+H | PIPECO | Butler, Holland, et al., 1984 | T = 298K; LBLHLM |
CH3+ | 14.93 ± 0.13 | ? | EI | Haney and Franklin, 1969 | RDSH |
CH3O+ | ≤11.85 ± 0.10 | CH3 | PIPECO | Butler, Holland, et al., 1984 | T = 298K; LBLHLM |
CH3O+ | ≤11.8 | CH3 | EI | Lossing, 1977 | LLK |
CH3O+ | 12.4 ± 0.1 | CH3 | EI | Ivko, 1970 | RDSH |
CH3O+ | 11.95 ± 0.05 | CH3 | EI | Haney and Franklin, 1969 | RDSH |
C2H5O+ | 11.115 ± 0.010 | H | PIPECO | Butler, Holland, et al., 1984 | T = 0K; LBLHLM |
C2H5O+ | 10.99 ± 0.08 | H | EI | Bowen and Maccoll, 1984 | LBLHLM |
C2H5O+ | 10.99 | H | EI | Lossing, 1977 | LLK |
C2H5O+ | 11.23 ± 0.04 | H | EI | Solka and Russell, 1974 | LLK |
C2H5O+ | 10.70 ± 0.13 | H | EI | Finney and Harrison, 1972 | LLK |
C2H5O+ | 11.55 ± 0.15 | H | EI | Ivko, 1970 | RDSH |
C2H5O+ | 11.42 ± 0.01 | H | EI | Martin, Lampe, et al., 1966 | RDSH |
De-protonation reactions
C2H5O- + =
By formula: C2H5O- + H+ = C2H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1703. ± 8.4 | kJ/mol | Bran | DePuy, Bierbaum, et al., 1984 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1666. ± 9.2 | kJ/mol | H-TS | DePuy, Bierbaum, et al., 1984 | gas phase; B |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS; DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS)
2, 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 78 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Pilcher, Pell, et al., 1964
Pilcher, G.; Pell, A.S.; Coleman, D.J.,
Measurements of heats of combustion by flame calorimetry. Part 2-Dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether,
Trans. Faraday Soc., 1964, 60, 499-505. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Handi M.A., 1954
Handi M.A.,
Molecular spectroscopy. Determination and interpretation of fundamental frequencies of dimethyl ether from infrared absorption spectrum; application for thermodynamic functions calculation,
Compt. Rend. Acad. Sci., 1954, 239, 349-351. [all data]
Seha Z., 1955
Seha Z.,
Thermodynamic functions of dimethyl ether,
Chem. Listy, 1955, 49, 1569-1570. [all data]
Banerjee S.C., 1964
Banerjee S.C.,
Thermodynamic properties of organic compounds. Part 1. Normal symmetrical aliphatic ethers,
Brit. Chem. Eng., 1964, 9, 311-313. [all data]
Stull D.R., 1969
Stull D.R., Jr.,
The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]
East A.L.L., 1997
East A.L.L.,
Ab initio statistical thermodynamical models for the computation of third-law entropies,
J. Chem. Phys., 1997, 106, 6655-6674. [all data]
Kistiakowsky G.B., 1940
Kistiakowsky G.B.,
Gaseous heat capacities. III,
J. Chem. Phys., 1940, 8, 618-622. [all data]
Kennedy, Sagenkahn, et al., 1941
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G.,
The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether. The density of gaseous dimethyl ether,
J. Am. Chem. Soc., 1941, 63, 2267-2272. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Grosse, 1937
Grosse, A.V.,
Refractive Indices at Low Temperatures,
J. Am. Chem. Soc., 1937, 59, 2739-41. [all data]
Maass and Boomer, 1922
Maass, O.; Boomer, E.H.,
Vapor Densities at Low Pressures and Over and Extended Temperature Range. I. The Properties of Ethylene Oxide Compared to Oxygen Compounds of Similar Molecular Weight,
J. Am. Chem. Soc., 1922, 44, 8, 1709-1728, https://doi.org/10.1021/ja01429a013
. [all data]
Thiele and Schulte, 1920
Thiele, A.; Schulte, E.,
Binary equilibrium systems with solid carbon dioxide,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1920, 96, 312-42. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Kennedy, Sagenkahn, et al., 1941, 2
Kennedy, R.M.; Sagenkahn, M.; Aston, J.G.,
The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Dimethyl Ether. The Density of Gaseous Dimethyl Ether,
J. Am. Chem. Soc., 1941, 63, 2267-72. [all data]
Zawisza and Glowka, 1970
Zawisza, A.C.; Glowka, S.,
Liquid-vapour equilibria and thermodynamic functions of dimethyl ether - sulphur dioxide system up to 300c and 77.81 atmospheres,
Bull. Acad. Pol. Sci., Ser. Sci. Chim., 1970, 18, 549-54. [all data]
Edwards and Maass, 1935
Edwards, J.; Maass, O.,
Density and Adsorption Studies in the Region of the Critical Temperature: System Dimethyl-ether-alumina.,
Can. J. Res., Sect. A, 1935, 12, 357-71. [all data]
Tapp, Steacie, et al., 1933
Tapp, J.S.; Steacie, E.W.R.; Maass, O.,
Density of a Vapor in Equilibrium with a Liquid Near the Critical Temperature.,
Can. J. Res., 1933, 9, 217-39. [all data]
Cardoso and Coppola, 1923
Cardoso, E.; Coppola, A.A.,
Experimental researches on some thermal properties of gas I the densities of coexisting phases of methyl ether,
J. Chim. Phys. Phys.-Chim. Biol., 1923, 20, 337-46. [all data]
Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers,
The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L.,
Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids,
J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
More, Gledening, et al., 1996
More, M.B.; Gledening, E.D.; Ray, D.; Feller, D.; Armentrout, P.B.,
Cation-Ether Complexes in the Gas Phase: Bond Dissociation Energies and Equilibrium Structures of Li+[O(CH3)2]x, x=1-4,
J. Phys. Chem., 1996, 100, 5, 1605, https://doi.org/10.1021/jp9523175
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Amicangelo and Armentrout, 2001
Amicangelo, J.C.; Armentrout, P.B.,
Relative and Absolute Bond Dissociation Energies of Sodium Cation Complexes Determined Using Competitive Collision-Induced Dissociation Experiments,
Int. J. Mass Spectrom., 2001, 212, 1-3, 301, https://doi.org/10.1016/S1387-3806(01)00494-8
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
More, Ray, et al., 1997
More, M.B.; Ray, D.; Armentrout, P.B.,
Cation-ether complexes in the gas phase: Bond dissociation energies of Na+(dimethyl ether)(x), x=1-4; Na+(1,2-dimethoxyethane)(x), x=1 and 2; and Na+(12-crown-4),
J. Phys. Chem. AJOURNAL OF PHYSICAL CHEMISTRY A 101 (5): 831-839 JAN 30 1997, 1997, 101, 831. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Meot-Ner (Mautner), 1989
Meot-Ner (Mautner), M.,
Ion DChemistry of Ferrocene. Thermochemistry of Ionization and Protonation and Solvent Clustering. Slow and Entropy - Driven Proton - Transfer Kinetics,
J. Am. Chem. Soc., 1989, 111, 8, 2830, https://doi.org/10.1021/ja00190a014
. [all data]
Hiraoka, Grimsrud, et al., 1974
Hiraoka, K.; Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Hydrogen Ion in Water - Dimethyl Ether and Methanol - Dimethyl Ether Mixtures,
J. Am. Chem. Soc., 1974, 96, 11, 3359, https://doi.org/10.1021/ja00818a004
. [all data]
Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W.,
Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range,
J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012
. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes with Ethylene Diamine and Dimethoxyethane (Glyme) from Measurements of the Complexing Equilibria in the Gas Phase,
Can. J. Chem., 1976, 54, 16, 2594, https://doi.org/10.1139/v76-368
. [all data]
Davidson and Kebarle, 1976, 2
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Tholman, Tonner, et al., 1994
Tholman, D.; Tonner, D.S.; McMahon, T.B.,
Spontaneous Unimolecular Dissociation of Small Cluster Ions, (H3O)+(L)n and Cl-(H2O)n (n = 2-4), under Fourier Transform Ion Cyclotron Resonance Conditions,
J. Phys. Chem., 1994, 98, 8, 2002, https://doi.org/10.1021/j100059a002
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Bogdanov, Lee, et al., 2001
Bogdanov, B.; Lee, H.J.S.; McMahon, T.B.,
Influence of fluorine substitution on the structures and thermochemistry of chloride ion-ether complexes in the gas phase,
Int. J. Mass Spectrom., 2001, 210, 387-402, https://doi.org/10.1016/S1387-3806(01)00404-3
. [all data]
DePuy, Bierbaum, et al., 1984
DePuy, C.H.; Bierbaum, V.M.; Damrauer, R.,
Relative Gas-Phase Acidities of the Alkanes,
J. Am. Chem. Soc., 1984, 106, 4051. [all data]
Koizumi, 2001
Koizumi, H.,
Collision-Induced Dissociation and Theoretical Studies of Cu+-Dimethyl Ether Complexes,
J.Phys. Chem. A, 2001, 105, 11, 2444, https://doi.org/10.1021/jp003509p
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Butler, Holland, et al., 1984
Butler, J.J.; Holland, D.M.P.; Parr, A.C.; Stockbauer, R.,
A threshold photoelectron-photoion coincidence spectrometric study of dimethyl ether (CH3OCH3),
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 1. [all data]
Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A.,
Low energy, low temperature mass spectra,
Org. Mass Spectrom., 1984, 19, 379. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Aue, Webb, et al., 1980
Aue, D.H.; Webb, H.M.; Davidson, W.R.; Vidal, M.; Bowers, M.T.; Goldwhite, H.; Vertal, L.E.; Douglas, J.E.; Kollman, P.A.; Kenyon, G.L.,
Proton affinities photoelectron spectra of three-membered-ring J. Heterocycl. Chem.,
J. Am. Chem. Soc., 1980, 102, 5151. [all data]
Aue and Bowers, 1979
Aue, D.H.; Bowers, M.T.,
Chapter 9. Stabilities of positive ions from equilibrium gas phase basicity measurements
in Ions Chemistry,, ed. M.T. Bowers, 1979. [all data]
Botter, Pechine, et al., 1977
Botter, R.; Pechine, J.M.; Rosenstock, H.M.,
Photoionization of dimethyl ether and diethyl ether,
Int. J. Mass Spectrom. Ion Phys., 1977, 25, 7. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Ivko, 1970
Ivko, A.A.,
Use of mass spectroscopy and isotope labelling for determining the structure of ions and molecules,
Org. Katal., 1970, 20. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Hernandez, 1963
Hernandez, G.J.,
Vacuum ultraviolet absorption spectrum of dimethyl ether,
J. Chem. Phys., 1963, 38, 1644. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Bajic, Humski, et al., 1985
Bajic, M.; Humski, K.; Klasinc, L.; Ruscic, B.,
Substitution effects on electronic structure of thiophene,
Z. Naturforsch. B:, 1985, 40, 1214. [all data]
Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]
Utsunomiya, Kobayashi, et al., 1980
Utsunomiya, C.; Kobayashi, T.; Nagakura, S.,
Photoelectron angular distribution measurements for some aliphatic alcohols, amines, halides,
Bull. Chem. Soc. Jpn., 1980, 53, 1216. [all data]
Carnovale, Livett, et al., 1980
Carnovale, F.; Livett, M.K.; Peel, J.B.,
The photoelectron spectrum of the dimethyl ether-hydrogen chloride complex,
J. Am. Chem. Soc., 1980, 102, 569. [all data]
Kobayashi, 1978
Kobayashi, T.,
A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes,
Phys. Lett., 1978, 69, 105. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T.,
Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects,
J. Am. Chem. Soc., 1975, 97, 4137. [all data]
Bock, Mollere, et al., 1973
Bock, H.; Mollere, P.; Becker, G.; Fritz, G.,
Photoelectron spectra molecular properties. XX. Dimethyl ether, methoxysilane, and disiloxane,
J. Organomet. Chem., 1973, 61, 113. [all data]
Cradock and Whiteford, 1972
Cradock, S.; Whiteford, R.A.,
Photoelectron spectra of the methyl, silyl and germyl derivatives of the group VI elements,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 281. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Lossing, 1977
Lossing, F.P.,
Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability,
J. Am. Chem. Soc., 1977, 99, 7526. [all data]
Solka and Russell, 1974
Solka, B.H.; Russell, M.E.,
Energetics of formation of some structural isomers of gaseous C2H5O+ C2H6N+ ions,
J. Phys. Chem., 1974, 78, 1268. [all data]
Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G.,
A third-derivative method for determining electron-impact onset potentials,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]
Martin, Lampe, et al., 1966
Martin, R.H.; Lampe, F.W.; Taft, R.W.,
An electron-impact study of ionization and dissociation in methoxy- and halogen- substituted methanes,
J. Am. Chem. Soc., 1966, 88, 1353. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
AE Appearance energy Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°liquid Entropy of liquid at standard conditions T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ΔvapS Entropy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.