Perylene
- Formula: C20H12
- Molecular weight: 252.3093
- IUPAC Standard InChIKey: CSHWQDPOILHKBI-UHFFFAOYSA-N
- CAS Registry Number: 198-55-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Peri-Dinaphthalene; Dibenz[de,kl]anthracene; Perilene; α-Perylene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 318.3 ± 3.7 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
47.53 | 50. | Dorofeeva O.V., 1988 | Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986, Moiseeva N.F., 1989]). These functions are reproduced in the reference book [ Frenkel M., 1994].; GT |
80.23 | 100. | ||
119.96 | 150. | ||
164.18 | 200. | ||
232.28 | 273.15 | ||
255.4 ± 2.5 | 298.15 | ||
257.13 | 300. | ||
343.29 | 400. | ||
414.92 | 500. | ||
472.09 | 600. | ||
517.61 | 700. | ||
554.33 | 800. | ||
584.35 | 900. | ||
609.22 | 1000. | ||
630.01 | 1100. | ||
647.53 | 1200. | ||
662.39 | 1300. | ||
675.09 | 1400. | ||
685.98 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 182.4 ± 2.7 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol.; DRB |
ΔfH°solid | 182.7 ± 0.46 | kJ/mol | Ccr | Westrum and Wong, 1967 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°solid | -9767.97 ± 0.46 | kJ/mol | Ccr | Westrum and Wong, 1967 | Corresponding ΔfHºsolid = 182.8 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°solid | -9754. ± 61. | kJ/mol | Ccb | Pongratz and Griengl, 1929 | At 288 K; Corresponding ΔfHºsolid = 168.65 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°solid,1 bar | 264.6 | J/mol*K | N/A | Wong and Westrum, 1980 | DH |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
274.9 | 298.15 | Wong and Westrum, 1980 | T = 5 to 575 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tfus | 543. ± 10. | K | AVG | N/A | Average of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 550.95 | K | N/A | Wong and Westrum, 1980, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 119.5 | kJ/mol | CGC | Zhao, Unhannanant, et al., 2008 | AC |
ΔvapH° | 123.1 ± 1.7 | kJ/mol | CGC | Chickos, Webb, et al., 2002 | AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 135.9 ± 2.6 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are sufficient literature values to make a qualified recommendation where the suggested value is in good agreement with values predicted using thermochemical cycles or from reliable estimates. In general, the evaluated uncertainty limits are on the order of (2 to 4) kJ/mol.; DRB |
ΔsubH° | 145.2 ± 2.5 | kJ/mol | C,ME | Gigli, Malaspina, et al., 1973 | Based on data from 443. to 518. K.; AC |
ΔsubH° | 125.5 ± 4.2 | kJ/mol | ME | Wakayama and Inokuchi, 1967 | See also Cox and Pilcher, 1970.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
89.9 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
132.6 ± 3.6 | 408. | ME | Oja and Suuberg, 1998 | Based on data from 391. to 424. K.; AC |
123.2 | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
139. | 418. | N/A | Hoyer and Peperle, 1958 | Based on data from 383. to 453. K. See also Stephenson and Malanowski, 1987.; AC |
129.6 ± 2.1 | 415. | ME | Inokuchi, Shiba, et al., 1952 | AC |
121.3 | 370. | ME | Inokuchi, 1951 | AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
32.580 | 551.29 | Sabbah and El Watik, 1992 | DH |
31.88 | 551. | Domalski and Hearing, 1996 | See also Acree, 1993.; AC |
Enthalpy of phase transition
ΔHtrs (kJ/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
31.874 | 550.95 | crystaline, I | liquid | Wong and Westrum, 1980 | DH |
Entropy of phase transition
ΔStrs (J/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
57.91 | 550.95 | crystaline, I | liquid | Wong and Westrum, 1980 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C20H12+ + C20H12 = (C20H12+ • C20H12)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82.4 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
35. | 406. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
By formula: C20H13+ + C20H12 = (C20H13+ • C20H12)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 79.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
30. | 424. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 6.960 ± 0.001 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 888.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 859.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.9730 ± 0.0050 | LPES | Scheidt and Weinkauf, 1997 | B |
0.993 ± 0.043 | IMRE | Crocker, Wang, et al., 1993 | ΔGea(425 K) = -22.3 kcal/mol; ΔSea (estimated) = -1.5 eu (anthracene, Chowdhury, Heinis, et al., 1986); B |
0.35 ± 0.10 | CIDC | Chen and Cooks, 1995 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
887.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
859.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
6.960 ± 0.001 | LS | Shchuka, Motyka, et al., 1989 | LL |
6.90 ± 0.01 | PE | Dewar and Goodman, 1972 | LLK |
7.00 ± 0.01 | PE | Boschi, Murrell, et al., 1972 | LLK |
7.1 ± 0.1 | EI | Gallegos, 1968 | RDSH |
7.10 | CTS | Kuroda, 1964 | RDSH |
6.85 | CTS | Finch, 1964 | RDSH |
7.11 | CTS | Briegleb, 1964 | RDSH |
7.06 | CTS | Kinoshita, 1962 | RDSH |
7.1 | CTS | Briegleb, Czekalla, et al., 1961 | RDSH |
7.03 | CTS | Birks and Stifkin, 1961 | RDSH |
7.15 | CTS | Briegleb and Czekalla, 1959 | RDSH |
6.83 | CTS | Matsen, 1956 | RDSH |
6.97 | PE | Clar and Schmidt, 1977 | Vertical value; LLK |
6.97 | PE | Clar and Schmidt, 1976 | Vertical value; LLK |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | R. C. LAO, R. S. THOMAS, J. L. MONKMAN |
NIST MS number | 27346 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Moiseeva N.F., 1989
Moiseeva N.F.,
Development of Benson group additivity method for estimation of ideal gas thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1989, 153, 77-85. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Westrum and Wong, 1967
Westrum, E.F., Jr.; Wong, S.,
Strain energies and thermal properties of globular and polynuclear aromatic molecules,
AEC Rept. Coo-1149-92, Contract AT(11-1)-1149, 1967, 1-7. [all data]
Pongratz and Griengl, 1929
Pongratz, A.; Griengl, F.,
Uber Verbrennungswarmen des Perylens und einiger seiner Derivate (XXVI. MitteHung) Untersuchungen uber Perylen und seine Derivate,
Monatsh. Chem., 1929, 53, 256-262. [all data]
Wong and Westrum, 1980
Wong, W.K.; Westrum, E.F., Jr.,
Thermodynamics of polynuclear aromatic molecules. II. Low temperature thermal properties of perylene, coronene, and naphthacene,
Mol. Cryst. Liq. Cryst., 1980, 61, 207-228. [all data]
Wong and Westrum, 1980, 2
Wong, W.-K.; Westrum, E.F.,
Thermodynamics of polynuclear aromatic molecules II. Low-temp. thermal properties of perylene, coronene, and naphthacene,
Mol. Cryst. Liq. Cryst., 1980, 61, 207. [all data]
Zhao, Unhannanant, et al., 2008
Zhao, Hui; Unhannanant, Patamaporn; Hanshaw, William; Chickos, James S.,
Enthalpies of Vaporization and Vapor Pressures of Some Deuterated Hydrocarbons. Liquid-Vapor Pressure Isotope Effects,
J. Chem. Eng. Data, 2008, 53, 7, 1545-1556, https://doi.org/10.1021/je800091s
. [all data]
Chickos, Webb, et al., 2002
Chickos, James S.; Webb, Paul; Nichols, Gary; Kiyobayashi, Tetsu; Cheng, Pei-Chao; Scott, Lawrence,
The enthalpy of vaporization and sublimation of corannulene, coronene, and perylene at T= 298.15 K,
The Journal of Chemical Thermodynamics, 2002, 34, 8, 1195-1206, https://doi.org/10.1006/jcht.2002.0977
. [all data]
Gigli, Malaspina, et al., 1973
Gigli, R.; Malaspina, L.; Bardi, G.,
Ann. Chim. (Rome), 1973, 63, 627. [all data]
Wakayama and Inokuchi, 1967
Wakayama, Nobuko; Inokuchi, Hiroo,
Heats of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Molecular Packings,
Bull. Chem. Soc. Jpn., 1967, 40, 10, 2267-2271, https://doi.org/10.1246/bcsj.40.2267
. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Oja and Suuberg, 1998
Oja, Vahur; Suuberg, Eric M.,
Vapor Pressures and Enthalpies of Sublimation of Polycyclic Aromatic Hydrocarbons and Their Derivatives,
J. Chem. Eng. Data, 1998, 43, 3, 486-492, https://doi.org/10.1021/je970222l
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Hoyer and Peperle, 1958
Hoyer, H.; Peperle, W.,
Z. Elektrochem., 1958, 62, 61. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Inokuchi, Shiba, et al., 1952
Inokuchi, Hiroo; Shiba, Sukekuni; Handa, Takashi; Akamatu, Hideo,
Heats of Sublimation of Condensed Polynuclear Aromatic Hydrocarbons,
Bull. Chem. Soc. Jpn., 1952, 25, 5, 299-302, https://doi.org/10.1246/bcsj.25.299
. [all data]
Inokuchi, 1951
Inokuchi, H.,
J. Chem. Soc. Jpn. Pure Chem. Sect., 1951, 72, 552. [all data]
Sabbah and El Watik, 1992
Sabbah, R.; El Watik, L.,
New reference materials for the calibration (temperature and energy) of differential thermal analysers and scanning calorimeters,
J. Therm. Anal., 1992, 38(4), 855-863. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Acree, 1993
Acree, William E.,
Thermodynamic properties of organic compounds,
Thermochimica Acta, 1993, 219, 97-104, https://doi.org/10.1016/0040-6031(93)80486-T
. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Scheidt and Weinkauf, 1997
Scheidt, J.; Weinkauf, R.,
Photodetachment photoelectron spectroscopy of Perylene and CS2: Two Extreme Cases.,
Chem. Phys. Lett., 1997, 274, 1-3, 18, https://doi.org/10.1016/S0009-2614(97)00648-9
. [all data]
Crocker, Wang, et al., 1993
Crocker, L.; Wang, T.B.; Kebarle, P.,
Electron Affinities of Some Polycyclic Aromatic Hydrocarbons, Obtained from Electron-Transfer Equilibria,
J. Am. Chem. Soc., 1993, 115, 17, 7818, https://doi.org/10.1021/ja00070a030
. [all data]
Chowdhury, Heinis, et al., 1986
Chowdhury, S.; Heinis, T.; Grimsrud, E.P.; Kebarle, P.,
Entropy Changes and Electron Affinities from Gas-Phase Electron Transfer Equilibria: A- + B = A + B-,
J. Phys. Chem., 1986, 90, 12, 2747, https://doi.org/10.1021/j100403a037
. [all data]
Chen and Cooks, 1995
Chen, G.D.; Cooks, R.G.,
Electron affinities of polycyclic aromatic hydrocarbons determined by the kinetic method,
J. Mass Spectrom., 1995, 30, 8, 1167, https://doi.org/10.1002/jms.1190300814
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Shchuka, Motyka, et al., 1989
Shchuka, M.I.; Motyka, A.L.; Topp, M.R.,
Two-photon threshold ionization spectroscopy of perylene and Van der Waals complexes,
Chem. Phys. Lett., 1989, 164, 87. [all data]
Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W.,
Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]
Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons,
Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]
Gallegos, 1968
Gallegos, E.J.,
Mass spectrometry and ionization energies of some condensed-ring aromatic and heterocyclic compounds,
J. Phys. Chem., 1968, 72, 3452. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Finch, 1964
Finch, A.C.M.,
Charge-transfer spectra and the ionization energy of azulene,
J. Chem. Soc., 1964, 2272. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Clar and Schmidt, 1977
Clar, E.; Schmidt, W.,
Correlations between photoelectron and ultraviolet absorption spectra of polycyclic hydrocarbons. The perylene, coronene and bisanthene series,
Tetrahedron, 1977, 33, 2093. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,solid Constant pressure heat capacity of solid EA Electron affinity IE (evaluated) Recommended ionization energy S°solid,1 bar Entropy of solid at standard conditions (1 bar) T Temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°solid Enthalpy of combustion of solid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.