Toluene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas50.1 ± 1.1kJ/molReviewRoux, Temprado, et al., 2008There are sufficient high-quality literature values to make a good evaluation with a high degree of confidence. In general, the evaluated uncertainty limits are on the order of (0.5 to 2.5) kJ/mol.; DRB
Δfgas50.00 ± 0.63kJ/molCcbProsen, Gilmont, et al., 1945Hf by Prosen, Johnson, et al., 1946; ALS
Δfgas48.0kJ/molN/ASchmidlin, 1906Value computed using ΔfHliquid° value of 10.0 kj/mol from Schmidlin, 1906 and ΔvapH° value of 38.0 kj/mol from Prosen, Gilmont, et al., 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
69.85200.Draeger, 1985Recommended values agree better with experimental heat capacities than results of calculation [ Chao J., 1984]. All other statistically calculated values [ Pitzer K.S., 1943, Taylor W.J., 1946, Scott D.W., 1962] are in close agreement with selected ones, except for high temperatures.; GT
94.68273.15
103.7 ± 0.4298.15
104.4300.
139.9400.
170.8500.
196.2600.
217.0700.
234.3800.
248.9900.
261.21000.
271.81100.
280.81200.
288.51300.
295.21400.
301.01500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
130.08 ± 0.26371.20Scott D.W., 1962Please also see Montgomery J.B., 1942, Pitzer K.S., 1943, Taylor W.J., 1946.; GT
140.2390.
137.2 ± 1.3393.
138.87 ± 0.27396.20
146.4410.
149.16 ± 0.30427.20
149.4 ± 1.7428.
160.33 ± 0.32462.20
159.0 ± 1.7463.
171.46 ± 0.34500.20

Phase change data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil383.8 ± 0.2KAVGN/AAverage of 110 out of 132 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus178.1 ± 0.6KAVGN/AAverage of 24 out of 25 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple178.15KN/AScott, Guthrie, et al., 1962Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple178.00KN/AZiegler and Andrews, 1942Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple177.9KN/AStull, 1937Uncertainty assigned by TRC = 0.2 K; TRC
Ttriple177.95KN/AKelley, 1929Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tc593. ± 2.KAVGN/AAverage of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Pc41. ± 1.barAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.316l/molN/ATsonopoulos and Ambrose, 1995 
Quantity Value Units Method Reference Comment
ρc3.17 ± 0.010mol/lN/ATsonopoulos and Ambrose, 1995 
ρc3.16mol/lN/AChirico and Steele, 1994Uncertainty assigned by TRC = 0.04 mol/l; TRC
ρc3.15mol/lN/AGoodwin, 1989Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc3.16mol/lN/ASteele, Chirico, et al., 1988Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc3.162mol/lN/ASimon, 1957Uncertainty assigned by TRC = 0.05 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap37. ± 3.kJ/molAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub43.1kJ/molBLenchitz and Velicky, 1970AC

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
287.70.020Weast and Grasselli, 1989BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
33.18383.8N/AMajer and Svoboda, 1985 
35.7346.N/ALee and Holder, 1993Based on data from 331. to 496. K.; AC
40.6264.AStephenson and Malanowski, 1987Based on data from 210. to 279. K.; AC
34.4398.AStephenson and Malanowski, 1987Based on data from 383. to 445. K.; AC
33.2455.AStephenson and Malanowski, 1987Based on data from 440. to 531. K.; AC
33.3545.AStephenson and Malanowski, 1987Based on data from 530. to 592. K.; AC
38.9284.AStephenson and Malanowski, 1987Based on data from 273. to 295. K.; AC
37.0323.N/AStephenson and Malanowski, 1987Based on data from 308. to 386. K. See also Forziati, Norris, et al., 1949.; AC
33.5 ± 0.1380.CNatarajan and Viswanath, 1985AC
32.1 ± 0.1403.CNatarajan and Viswanath, 1985AC
29.4 ± 0.1441.CNatarajan and Viswanath, 1985AC
27.1 ± 0.1470.CNatarajan and Viswanath, 1985AC
24.0 ± 0.1505.CNatarajan and Viswanath, 1985AC
35.4333.N/AEubank, Cediel, et al., 1984AC
33.4373.N/AEubank, Cediel, et al., 1984AC
31.4413.N/AEubank, Cediel, et al., 1984AC
28.4453.N/AEubank, Cediel, et al., 1984AC
24.0493.N/AEubank, Cediel, et al., 1984AC
35.4360.N/ARivenq, 1975Based on data from 343. to 383. K.; AC
37.3318.N/AGaw and Swinton, 1968Based on data from 303. to 343. K.; AC
36.9303.N/AVan Ness, Soczek, et al., 1967Based on data from 288. to 348. K.; AC
35.65341.27VScott, Gutherie, et al., 1962low T and vapor flow calorimetry; ALS
37.8278.N/AMilazzo, 1956Based on data from 210. to 293. K.; AC
37.8301.N/AThomson, 1946Based on data from 286. to 362. K.; AC
37.0323.MMWillingham, Taylor, et al., 1945Based on data from 308. to 384. K.; AC
38.8288.N/APitzer and Scott, 1943Based on data from 273. to 323. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 410.53.090.2774591.7Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
273.13 to 297.894.236791426.448-45.957Besley and Bottomley, 1974Coefficents calculated by NIST from author's data.
303. to 343.4.082451346.382-53.508Gaw and Swinton, 1968, 2Coefficents calculated by NIST from author's data.
420.00 to 580.004.544361738.1230.394Ambrose, Broderick, et al., 1967Coefficents calculated by NIST from author's data.
308.52 to 384.664.078271343.943-53.773Williamham, Taylor, et al., 1945 
273. to 323.4.141571377.578-50.507Pitzer and Scott, 1943Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.636178.15Scott, Guthrie, et al., 1962, 2DH
6.619177.95Kelley, 1929, 2DH
6.548178.0Ziegler and Andrews, 1942, 2DH
6.61178.Domalski and Hearing, 1996See also Southard and Andrews, 1930.; AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
37.25178.15Scott, Guthrie, et al., 1962, 2DH
37.20177.95Kelley, 1929, 2DH
36.79178.0Ziegler and Andrews, 1942, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C7H8+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)8.828 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)784.0kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity756.3kJ/molN/AHunter and Lias, 1998HL

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
782.4Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
753.5Aue, Guidoni, et al., 2000Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM

Ionization energy determinations

IE (eV) Method Reference Comment
8.8276 ± 0.0006TELu, Eiden, et al., 1992LL
8.79PEKlasinc, Kovac, et al., 1983LBLHLM
8.80 ± 0.07EISelim and Helal, 1982LBLHLM
8.83PEKimura, Katsumata, et al., 1981LLK
8.82EIMcLoughlin, Morrison, et al., 1979LLK
8.82PETraeger and McLoughlin, 1978LLK
8.82PITraeger and McLoughlin, 1978LLK
8.82 ± 0.01EQLias and Ausloos, 1978LLK
8.84PEBock, Kaim, et al., 1978LLK
8.82PEBehan, Johnstone, et al., 1976LLK
8.81EIHoffman, 1974LLK
8.80PEMcLean, 1973LLK
8.78 ± 0.02PEMaier and Turner, 1973LLK
8.91CTSKobayashi, Kobayashi, et al., 1973LLK
8.8 ± 0.1EIGilbert, Leach, et al., 1973LLK
8.72PEDebies and Rabalais, 1973LLK
8.67EICooks, Bertrand, et al., 1973LLK
8.82PIStebbings and Taylor, 1972LLK
8.89 ± 0.03EIJohnstone and Mellon, 1972LLK
8.71CTSPitt, 1970RDSH
8.82PEDewar and Worley, 1969RDSH
8.80 ± 0.04EIBock, Seidl, et al., 1968RDSH
8.82 ± 0.02PIAkopyan and Vilesov, 1968RDSH
8.82PIBralsford, Harris, et al., 1960RDSH
8.82 ± 0.01PIWatanabe, 1954RDSH
8.82 ± 0.05SPrice and Walsh, 1947RDSH
8.82PEHowell, Goncalves, et al., 1984Vertical value; LBLHLM
8.85PEKobayashi, 1978Vertical value; LLK
9.00PEKlasinc, Novak, et al., 1978Vertical value; LLK
8.90 ± 0.03PEMarschner and Goetz, 1974Vertical value; LLK
8.82PEBischof, Dewar, et al., 1974Vertical value; LLK
8.85 ± 0.015PEKobayashi and Nagakura, 1972Vertical value; LLK
9.0 ± 0.03PEKlessinger, 1972Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C5H5+16.4 ± 0.2C2H2+HEITajima and Tsuchiya, 1973LLK
C5H5+16.7?EIHarrison, Haynes, et al., 1965RDSH
C6H5+13.70CH3EIHoffman, 1974LLK
C6H5+13.7 ± 0.1CH3EIMajer and Patrick, 1962RDSH
C7H7+10.94HTRPIHuang and Dunbar, 1991T = 0K; LL
C7H7+10.70 ± 0.09HEISelim and Helal, 1982LBLHLM
C7H7+10.71HEIMcLoughlin, Morrison, et al., 1979LLK
C7H7+10.71HPITraeger and McLoughlin, 1978LLK
C7H7+10.71 ± 0.03HTETraeger and McLoughlin, 1977LLK
C7H7+11.8HEIHoffman, 1974LLK
C7H7+11.55 ± 0.05HPIAkopyan and Vilesov, 1968RDSH
C7H7+11.7 ± 0.1HEINounou, 1966RDSH
C7H7+[C6H5CH2+]10.7 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 298K; LL
C7H7+[C6H5CH2+]11.1 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 0K; LL
C7H7+[C6H5CH2+]11.1HPILifshitz, Gotkis, et al., 1993, 2T = 0K; LL
C7H7+[C6H5CH2+]11.17 ± 0.10HPIPECOBombach, Dannacher, et al., 1983T = 0K; LBLHLM
C7H7+[C6H5CH2+]11.17 ± 0.10HPIPECOBombach, Dannacher, et al., 1983, 2T = 0K; LBLHLM
C7H7+[c-C7H7+]11.1 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 0K; LL
C7H7+[c-C7H7+]10.7 ± 0.1HPILifshitz, Gotkis, et al., 1993T = 298K; LL
C7H7+[c-C7H7+]11.1HPILifshitz, Gotkis, et al., 1993, 2T = 0K; LL
C7H7+[c-C7H7+]10.52 ± 0.07HPIPECOBombach, Dannacher, et al., 1983T = 0K; LBLHLM
C7H7+[c-C7H7+]10.52 ± 0.10HPIPECOBombach, Dannacher, et al., 1983, 2T = 0K; LBLHLM

De-protonation reactions

C7H7- + Hydrogen cation = Toluene

By formula: C7H7- + H+ = C7H8

Quantity Value Units Method Reference Comment
Δr1599.7 ± 1.9kJ/molD-EAGunion, Gilles, et al., 1992gas phase; Kim, Wenthold, et al., 1999, with LN2 cooling of the ion, gives the same EA; B
Δr1593. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1587. ± 8.8kJ/molG+TSGal, Decouzon, et al., 2001gas phase; B
Δr1577. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr1609. ± 30.kJ/molG+TSBohme and Young, 1971gas phase; B
Quantity Value Units Method Reference Comment
Δr1564. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1557. ± 8.4kJ/molIMREGal, Decouzon, et al., 2001gas phase; B
Δr1579. ± 29.kJ/molIMRBBohme and Young, 1971gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + Toluene = (Bromine anion • Toluene)

By formula: Br- + C7H8 = (Br- • C7H8)

Quantity Value Units Method Reference Comment
Δr36. ± 7.5kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr0.4 ± 4.2kJ/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
0.4423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

C3H9Si+ + Toluene = (C3H9Si+ • Toluene)

By formula: C3H9Si+ + C7H8 = (C3H9Si+ • C7H8)

Quantity Value Units Method Reference Comment
Δr119.kJ/molPHPMSStone and Stone, 1991gas phase; forms pi complex; M
Δr131.kJ/molPHPMSStone and Stone, 1991gas phase; toluene D8, forms pi complex; M
Δr111.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr146.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
43.1468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)C6H6, Entropy change calculated or estimated; M

C4H9+ + Toluene = (C4H9+ • Toluene)

By formula: C4H9+ + C7H8 = (C4H9+ • C7H8)

Quantity Value Units Method Reference Comment
Δr120.kJ/molPHPMSStone and Stone, 1991gas phase; toluene D8, forms protonated t-butyltoluene; M
Δr122.kJ/molPHPMSStone and Stone, 1991gas phase; forms protomated t-butyltoluene; M
Quantity Value Units Method Reference Comment
Δr228.J/mol*KPHPMSStone and Stone, 1991gas phase; toluene D8, forms protonated t-butyltoluene; M
Δr228.J/mol*KPHPMSStone and Stone, 1991gas phase; forms protomated t-butyltoluene; M

C6H7N+ + Toluene = (C6H7N+ • Toluene)

By formula: C6H7N+ + C7H8 = (C6H7N+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr57.3kJ/molPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSMeot-Ner (Mautner) and El-Shall, 1986gas phase; M

C7H8+ + Toluene = (C7H8+ • Toluene)

By formula: C7H8+ + C7H8 = (C7H8+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr60.7kJ/molMPIErnstberger, Krause, et al., 1990gas phase; M
Δr23.kJ/molPIRuhl, Bisling, et al., 1986gas phase; from vIP of perpendicular dimer; M
Δr66.9kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr120.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

C9H12+ + Toluene = (C9H12+ • Toluene)

By formula: C9H12+ + C7H8 = (C9H12+ • C7H8)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr50.2kJ/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Chlorine anion + Toluene = (Chlorine anion • Toluene)

By formula: Cl- + C7H8 = (Cl- • C7H8)

Quantity Value Units Method Reference Comment
Δr16.7kJ/molTDEqFrench, Ikuta, et al., 1982gas phase; B

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
17.300.PHPMSFrench, Ikuta, et al., 1982gas phase; M

Chromium ion (1+) + Toluene = (Chromium ion (1+) • Toluene)

By formula: Cr+ + C7H8 = (Cr+ • C7H8)

Quantity Value Units Method Reference Comment
Δr176. ± 14.kJ/molRAKLin and Dunbar, 1997RCD

(Chromium ion (1+) • Toluene) + Toluene = (Chromium ion (1+) • 2Toluene)

By formula: (Cr+ • C7H8) + C7H8 = (Cr+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr222. ± 38.kJ/molRAKLin and Dunbar, 1997RCD

Cesium ion (1+) + Toluene = (Cesium ion (1+) • Toluene)

By formula: Cs+ + C7H8 = (Cs+ • C7H8)

Quantity Value Units Method Reference Comment
Δr64.0 ± 4.6kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Cesium ion (1+) • Toluene) + Toluene = (Cesium ion (1+) • 2Toluene)

By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr61.5 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

Iodide + Toluene = (Iodide • Toluene)

By formula: I- + C7H8 = (I- • C7H8)

Quantity Value Units Method Reference Comment
Δr46.0 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Potassium ion (1+) + Toluene = (Potassium ion (1+) • Toluene)

By formula: K+ + C7H8 = (K+ • C7H8)

Quantity Value Units Method Reference Comment
Δr79.9 ± 5.0kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Potassium ion (1+) • Toluene) + Toluene = (Potassium ion (1+) • 2Toluene)

By formula: (K+ • C7H8) + C7H8 = (K+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr74.9 ± 4.6kJ/molCIDTAmunugama and Rodgers, 2002RCD

Lithium ion (1+) + Toluene = (Lithium ion (1+) • Toluene)

By formula: Li+ + C7H8 = (Li+ • C7H8)

Quantity Value Units Method Reference Comment
Δr183. ± 17.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Lithium ion (1+) • Toluene) + Toluene = (Lithium ion (1+) • 2Toluene)

By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr116. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Nitric oxide anion + Toluene = (Nitric oxide anion • Toluene)

By formula: NO- + C7H8 = (NO- • C7H8)

Quantity Value Units Method Reference Comment
Δr185.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Sodium ion (1+) + Toluene = (Sodium ion (1+) • Toluene)

By formula: Na+ + C7H8 = (Na+ • C7H8)

Quantity Value Units Method Reference Comment
Δr112. ± 3.kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Sodium ion (1+) • Toluene) + Toluene = (Sodium ion (1+) • 2Toluene)

By formula: (Na+ • C7H8) + C7H8 = (Na+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr87. ± 2.kJ/molCIDTAmunugama and Rodgers, 2002RCD

Rubidium ion (1+) + Toluene = (Rubidium ion (1+) • Toluene)

By formula: Rb+ + C7H8 = (Rb+ • C7H8)

Quantity Value Units Method Reference Comment
Δr71.1 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

(Rubidium ion (1+) • Toluene) + Toluene = (Rubidium ion (1+) • 2Toluene)

By formula: (Rb+ • C7H8) + C7H8 = (Rb+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr67.8 ± 4.2kJ/molCIDTAmunugama and Rodgers, 2002RCD

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y., Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons, J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]

Prosen, Gilmont, et al., 1945
Prosen, E.J.; Gilmont, R.; Rossini, F.D., Heats of combustion of benzene, toluene, ethyl-benzene, o-xylene, m-xylene, p-xylene, n-propylbenzene, and styrene, J. Res. NBS, 1945, 34, 65-70. [all data]

Prosen, Johnson, et al., 1946
Prosen, E.J.; Johnson, W.H.; Rossini, F.D., Heats of combustion and formation at 25°C of the alkylbenzenes through C10H14, and of the higher normal monoalkylbenzenes, J. Res. NBS, 1946, 36, 455-461. [all data]

Schmidlin, 1906
Schmidlin, M.J., Recherches chimiques et thermochimiques sur la constitution des rosanilines, Ann. Chim. Phys., 1906, 1, 195-256. [all data]

Draeger, 1985
Draeger, J.A., The methylbenzenes II. Fundamental vibrational shifts, statistical thermodynamic functions, and properties of formation, J. Chem. Thermodyn., 1985, 17, 263-275. [all data]

Chao J., 1984
Chao J., Chemical thermodynamic properties of toluene, o-, m- and p-xylenes, Thermochim. Acta, 1984, 72, 323-334. [all data]

Pitzer K.S., 1943
Pitzer K.S., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Taylor W.J., 1946
Taylor W.J., Heats, equilibrium constants, and free energies of formation of the alkylbenzenes, J. Res. Nat. Bur. Stand., 1946, 37, 95-122. [all data]

Scott D.W., 1962
Scott D.W., Toluene: thermodynamic properties, molecular vibrations, and internal rotation, J. Phys. Chem., 1962, 66, 911-914. [all data]

Montgomery J.B., 1942
Montgomery J.B., The heat capacity of organic vapors. IV. Benzene, fluorobenzene, toluene, cyclohexane, methylcyclohexane and cyclohexene, J. Am. Chem. Soc., 1942, 64, 2375-2377. [all data]

Scott, Guthrie, et al., 1962
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P., Toluene: Thermodynamic Propoerties, Molecular Vibrations, and Internal Rotation, J. Phys. Chem., 1962, 66, 911-4. [all data]

Ziegler and Andrews, 1942
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482. [all data]

Stull, 1937
Stull, D.R., A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp., J. Am. Chem. Soc., 1937, 59, 2726. [all data]

Kelley, 1929
Kelley, K.K., The heat capacity of toluene from 14 deg K to 298 deg K. the entropy and the free energy of formation., J. Am. Chem. Soc., 1929, 51, 2738. [all data]

Tsonopoulos and Ambrose, 1995
Tsonopoulos, C.; Ambrose, D., Vapor-Liquid Critical Properties of Elements and Compounds. 3. Aromatic Hydrocarbons, J. Chem. Eng. Data, 1995, 40, 547-558. [all data]

Chirico and Steele, 1994
Chirico, R.D.; Steele, W.V., Reconciliation of Calorimetrically and Spectroscopically Derived Methyl Benzene. The Importance of the Third Virial Coefficient, Ind. Eng. Chem. Res., 1994, 33, 157-67. [all data]

Goodwin, 1989
Goodwin, R.D., Toluene thermophysical properties from 178 to 800 K at pressures to 1000 Bar, J. Phys. Chem. Ref. Data, 1989, 18, 1565-636. [all data]

Steele, Chirico, et al., 1988
Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Smith, N.K., , Report, NIPPR-395, 1988. [all data]

Simon, 1957
Simon, M., Methods and Apparatus Used at the Bureau of Physicochemical Standards XV. Critical Constants and Straight-Line Diameters of Ten Hydrocarbons, Bull. Soc. Chim. Belg., 1957, 66, 375-81. [all data]

Lenchitz and Velicky, 1970
Lenchitz, Charles; Velicky, Rodolf W., Vapor pressure and heat of sublimation of three nitrotoluenes, J. Chem. Eng. Data, 1970, 15, 3, 401-403, https://doi.org/10.1021/je60046a022 . [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Lee and Holder, 1993
Lee, Chang Ha; Holder, Gerald D., Vapor-liquid equilibria in the systems toluene/naphthalene and cyclohexane/naphthalene, J. Chem. Eng. Data, 1993, 38, 2, 320-323, https://doi.org/10.1021/je00010a034 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D., Vapor pressures and boiling points of sixty API-NBS hydrocarbons, J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050 . [all data]

Natarajan and Viswanath, 1985
Natarajan, Govindarajan; Viswanath, Dabir S., Enthalpy of vaporization and vapor pressure of benzene, toluene, p-xylene, and tetralin between 1 and 16 bar, J. Chem. Eng. Data, 1985, 30, 2, 137-140, https://doi.org/10.1021/je00040a001 . [all data]

Eubank, Cediel, et al., 1984
Eubank, P.T.; Cediel, L.E.; Holste, J.C.; Hall, K.R., Enthalpies for toluene and methylcyclohexane in the fluid state, J. Chem. Eng. Data, 1984, 29, 389-393. [all data]

Rivenq, 1975
Rivenq, F., Bull. Soc. Chim. Fr., 1975, 1, 2433. [all data]

Gaw and Swinton, 1968
Gaw, W.J.; Swinton, F.L., Thermodynamic properties of binary systems containing hexafluorobenzene. Part 4.?Excess Gibbs free energies of the three systems hexafluorobenzene + benzene, touene, and p-xylene, Trans. Faraday Soc., 1968, 64, 2023, https://doi.org/10.1039/tf9686402023 . [all data]

Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L., Thermodynamic excess properties of three alcohol-hydrocarbon systems, J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017 . [all data]

Scott, Gutherie, et al., 1962
Scott, D.W.; Gutherie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P., Toluene: Thermodynamic properties, molecular vibrations, and internal rotation, J. Phys. Chem., 1962, 66, 911. [all data]

Milazzo, 1956
Milazzo, G., Ann. Chim. (Rome), 1956, 46, 1105. [all data]

Thomson, 1946
Thomson, George Wm., The Antoine Equation for Vapor-pressure Data., Chem. Rev., 1946, 38, 1, 1-39, https://doi.org/10.1021/cr60119a001 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

Pitzer and Scott, 1943
Pitzer, K.S.; Scott, D.W., The thermodynamics and molecular structure of benzene and its methyl derivatives, J. Am. Chem. Soc., 1943, 65, 803-829. [all data]

Besley and Bottomley, 1974
Besley, L.M.; Bottomley, G.A., Vapour Pressure of Toluene from 273.15 to 298.15 K, J. Chem. Thermodyn., 1974, 6, 6, 577-580, https://doi.org/10.1016/0021-9614(74)90045-7 . [all data]

Gaw and Swinton, 1968, 2
Gaw, W.J.; Swinton, F.L., Thermodynamic Properties of Binary Systems Containing Hexafluorobenzene. Part 3. Excess Gibbs Free Energy of the System Hexafluorobenzene + Cyclohexane, Trans. Faraday Soc., 1968, 64, 637-647, https://doi.org/10.1039/tf9686400637 . [all data]

Ambrose, Broderick, et al., 1967
Ambrose, D.; Broderick, B.E.; Townsend, R., The Vapour Pressures Above the Normal Boiling Point and the Critical Pressures of Some Aromatic Hydrocarbons, J. Chem. Soc. A:, 1967, 633-641, https://doi.org/10.1039/j19670000633 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Scott, Guthrie, et al., 1962, 2
Scott, D.W.; Guthrie, G.B.; Messerly, J.F.; Todd, S.S.; Berg, W.T.; Hossenlopp, I.A.; McCullough, J.P., Toluene: thermodynamic properties, molecular vibrations, and internal rotation, J. Phys. Chem., 1962, 66, 911-914. [all data]

Kelley, 1929, 2
Kelley, K.K., The heat capacity of toluene from 14K to 298K. The entropy and the free energy of formation, J. Am. Chem. Soc., 1929, 51, 2738-2741. [all data]

Ziegler and Andrews, 1942, 2
Ziegler, W.T.; Andrews, D.H., The heat capacity of benzene-d6, J. Am. Chem. Soc., 1942, 64, 2482-2485. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Southard and Andrews, 1930
Southard, John C.; Andrews, Donald H., The heat capacities of organic compounds at low temperatures. iii. an adiabatic calorimeter for heat capacities at low temperatures, Journal of the Franklin Institute, 1930, 209, 3, 349-360, https://doi.org/10.1016/S0016-0032(30)90040-3 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D., Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons, Int. J. Mass Spectrom., 2000, 201, 283. [all data]

Lu, Eiden, et al., 1992
Lu, K.-T.; Eiden, G.C.; Weisshaar, J.C., Toluene cation: nearly free rotation of the methyl group, J. Phys. Chem., 1992, 96, 9742. [all data]

Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H., Photoelectron spectra of acenes. Electronic structure and substituent effects, Pure Appl. Chem., 1983, 55, 289. [all data]

Selim and Helal, 1982
Selim, E.T.M.; Helal, A.I., The study of C1-C3 monosubstituted alkyl benzenes by the inverse convolution of first differential ionization efficiency curves, Org. Mass Spectrom., 1982, 17, 539. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

McLoughlin, Morrison, et al., 1979
McLoughlin, R.G.; Morrison, J.D.; Traeger, J.C., Photoionization of the C-1 - C-4 monosubstituted alkyl benzenes: Thermochemistry of [C7H7]+ and [C8H9]+ formation, Org. Mass Spectrom., 1979, 14, 104. [all data]

Traeger and McLoughlin, 1978
Traeger, J.C.; McLoughlin, R.G., A photoionization study of the energetics of C7H7+ ion formed from C7H8 precursors, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 319. [all data]

Lias and Ausloos, 1978
Lias, S.G.; Ausloos, P.J., eIonization energies of organic compounds by equilibrium measurements, J. Am. Chem. Soc., 1978, 100, 6027. [all data]

Bock, Kaim, et al., 1978
Bock, H.; Kaim, W.; Rohwer, H.E., Die hyperkonjugative Stabilisierung von p-Xylol-Radikalkationen durch (H3C)3Si-Substituenten, Chem. Ber., 1978, 111, 3573. [all data]

Behan, Johnstone, et al., 1976
Behan, J.M.; Johnstone, R.A.W.; Bentley, T.W., An evaluation of empirical methods for calculating the ionization potentials of substituted benzenes, Org. Mass Spectrom., 1976, 11, 207. [all data]

Hoffman, 1974
Hoffman, M.K., Hidden rearrangements in the mass spectral decomposition of cycloheptatriene, Z. Naturforsch. A:, 1974, 29, 1077. [all data]

McLean, 1973
McLean, R.A.N., The bonding of a silicon atom with a phenyl ring: The photoelectron spectrum of phenylsilane, Can. J. Chem., 1973, 51, 2089. [all data]

Maier and Turner, 1973
Maier, J.P.; Turner, D.W., Steric inhibition of resonance studied by molecular photoelectron spectroscopy. Part 2. Phenylethylenes, J. Chem. Soc. Faraday Trans. 2, 1973, 69, 196. [all data]

Kobayashi, Kobayashi, et al., 1973
Kobayashi, H.; Kobayashi, M.; Kaizu, Y., Molecular complexes of arenetricarbonylchromium, Bull. Chem. Soc. Jpn., 1973, 46, 3109. [all data]

Gilbert, Leach, et al., 1973
Gilbert, J.R.; Leach, W.P.; Miller, J.R., Ionisation appearance potential measurements in arene chromium tricarbonyls, J. Organomet. Chem., 1973, 49, 219. [all data]

Debies and Rabalais, 1973
Debies, T.P.; Rabalais, J.W., Photoelectron spectra of substituted benzenes. II. Seven valence electron substituents, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 355. [all data]

Cooks, Bertrand, et al., 1973
Cooks, R.G.; Bertrand, M.; Beynon, J.H.; Rennekamp, M.E.; Setser, D.W., Energy partitioning data as an ion structure probe. Substituted anisoles, J. Am. Chem. Soc., 1973, 95, 1732. [all data]

Stebbings and Taylor, 1972
Stebbings, W.L.; Taylor, J.W., Photoionization mass spectrometry. II. Contrasting fragmentation of toluene by photons and by electrons, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 471. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Pitt, 1970
Pitt, C.G., Hyperconjugation: An alternative to the concept of the pπ-dπ bond in Group IV chemistry, J. Organomet. Chem., 1970, 23, 35. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Bock, Seidl, et al., 1968
Bock, H.; Seidl, H.; Fochler, M., d-Orbitaleffekte in silicium-substituierten π-Elektronensystemen. X. Vertikale Ionisierungsenergien von Alkyl- und Silyl-benzolen, Chem. Ber., 1968, 101, 2815. [all data]

Akopyan and Vilesov, 1968
Akopyan, M.E.; Vilesov, F.I., Mass-spectrometric investigation of the photo-ionization of benzene and its methyl derivatives, Khim. Vysokikh Energ., 1968, 2, 107, In original 89. [all data]

Bralsford, Harris, et al., 1960
Bralsford, R.; Harris, P.V.; Price, W.C., The effect of fluorine on the electronic spectra and ionization potentials of molecules, Proc. Roy. Soc. (London), 1960, A258, 459. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Walsh, 1947
Price, W.C.; Walsh, A.D., The absorption spectra of benzene derivatives in the vacuum ultra-violet. I, Proc. Roy. Soc. (London), 1947, A191, 22. [all data]

Howell, Goncalves, et al., 1984
Howell, J.O.; Goncalves, J.M.; Amatore, C.; Klasinc, L.; Wightman, R.M.; Kochi, J.K., Electron transfer from aromatic hydrocarbons and their π-complexes with metals. Comparison of the standard oxidation potentials and vertical ionization potentials, J. Am. Chem. Soc., 1984, 106, 3968. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G., Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode, Croat. Chem. Acta, 1978, 51, 43. [all data]

Marschner and Goetz, 1974
Marschner, F.; Goetz, H., Korrelation zwischen photoelektronen- und elektronen-spektren. III. Eine methode zur deutung der PE- und UV-spektren vom toluol, Tetrahedron, 1974, 30, 3451. [all data]

Bischof, Dewar, et al., 1974
Bischof, P.K.; Dewar, M.J.S.; Goodman, D.W.; Jones, T.B., Photoelectron spectra of molecules. VI. Hyperconjugation versus pπ-dπ bonding in group IVb compounds, J. Organomet. Chem., 1974, 82, 89. [all data]

Kobayashi and Nagakura, 1972
Kobayashi, T.; Nagakura, S., Photoelectron spectra of nitro-compounds, Chem. Lett., 1972, 903. [all data]

Klessinger, 1972
Klessinger, M., Ionization potentials of substituted benzenes, Angew. Chem. Int. Ed. Engl., 1972, 11, 525. [all data]

Tajima and Tsuchiya, 1973
Tajima, S.; Tsuchiya, T., Energetics consideration of C5H5+ ions produced from various precursors by electron impact, Bull. Chem. Soc. Jpn., 1973, 46, 3291. [all data]

Harrison, Haynes, et al., 1965
Harrison, A.G.; Haynes, P.; McLean, S.; Meyer, F., The mass spectra of methyl-substituted cyclopentadienes, J. Am. Chem. Soc., 1965, 87, 5099. [all data]

Majer and Patrick, 1962
Majer, J.R.; Patrick, C.R., Electron impact on some halogenated aromatic compounds, J. Chem. Soc. Faraday Trans., 1962, 58, 17. [all data]

Huang and Dunbar, 1991
Huang, F.-S.; Dunbar, R.C., Time-resolved photodissociation of toluene ion [Eo(C6H5CH3+ Ü C7H7+ + H)=2.11 eV; cited data derived using evaluated IP for toluene. Modeling uncertainties give considerable latitude in the assignment of kinetic parameters.], Int. J. Mass Spectrom. Ion Processes, 1991, 109, 151. [all data]

Traeger and McLoughlin, 1977
Traeger, J.C.; McLoughlin, R.G., Threshold photoionization and dissociation of toluene and cycloheptatriene, J. Am. Chem. Soc., 1977, 99, 7351. [all data]

Nounou, 1966
Nounou, P., Etude des composes aromatiques par spectrometrie de masse. I. Mesure des potentials d'ionisation et d'apparition par la methode du potential retardateur et interpretation des courbes d'ionisation differentielle, J. Chim. Phys., 1966, 63, 994. [all data]

Lifshitz, Gotkis, et al., 1993
Lifshitz, C.; Gotkis, Y.; Ioffe, A.; Laskin, J.; Shaik, S., Is the tropylium ion (Tr+) formed from toluene at its thermochemical threshold?, Int. J. Mass Spectrom. Ion Processes, 1993, 125, R7. [all data]

Lifshitz, Gotkis, et al., 1993, 2
Lifshitz, C.; Gotkis, Y.; Laskin, J.; Ioffe, A.; Shaik, S., Threshold formation of benzylium (Bz+) and tropylium (Tr+) from toluene. Nonstatistical behavior in Franck-Condon gaps, J. Phys. Chem., 1993, 97, 12291. [all data]

Bombach, Dannacher, et al., 1983
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., Energy and time dependence of the decay processes of toluene molecular cations, J. Am. Chem. Soc., 1983, 105, 4205. [all data]

Bombach, Dannacher, et al., 1983, 2
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate-energy functions for the formation of tropylium and benzylium ions from toluene molecular cations, Chem. Phys. Lett., 1983, 95, 259. [all data]

Gunion, Gilles, et al., 1992
Gunion, R.F.; Gilles, M.K.; Polak, M.L.; Lineberger, W.C., Ultraviolet Photoelectron Spectroscopy of the Phenide, Benzyl, and Phenoxide Anions., Int. J. Mass Spectrom. Ion Proc., 1992, 117, 601, https://doi.org/10.1016/0168-1176(92)80115-H . [all data]

Kim, Wenthold, et al., 1999
Kim, J.B.; Wenthold, P.G.; Lineberger, W.C., Ultraviolet photoelectron spectroscopy of o-, m-, and p-halobenzyl anions, J. Phys. Chem. A, 1999, 103, 50, 10833-10841, https://doi.org/10.1021/jp992817o . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Gal, Decouzon, et al., 2001
Gal, J.F.; Decouzon, M.; Maria, P.C.; Gonzalez, A.I.; Mo, O.; Yanez, M.; El Chaouch, S.; Guillemin, J.C., Acidity trends in alpha,beta-unsaturated alkanes, silanes, germanes, and stannanes, J. Am. Chem. Soc., 2001, 123, 26, 6353-6359, https://doi.org/10.1021/ja004079j . [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme and Young, 1971
Bohme, D.K.; Young, L.B., Electron affinities from thermal proton transfer reactions: C6H5 and C6H5CH2, Can. J. Chem., 1971, 49, 2918. [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Stone and Stone, 1991
Stone, J.M.; Stone, J.A., A High Pressure Mass Spectrometric Study of the Binding of (CH3)3Si+ and (CH3)3C+ to Toluene and Benzene, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 247, https://doi.org/10.1016/0168-1176(91)85107-W . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S., Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems, J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026 . [all data]

Ernstberger, Krause, et al., 1990
Ernstberger, B.; Krause, H.; Kiermeier, A.; Neusser, H.J., Multiphoton ionization and dissociation of mixed van der Waals clusters in a linear reflectron time-of-flight mass spectrometer, J. Chem. Phys., 1990, 92, 9, 5285, https://doi.org/10.1063/1.458603 . [all data]

Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H., Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet, Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6 . [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Lin and Dunbar, 1997
Lin, C.-Y.; Dunbar, R.C., Radiative Association Kinetics and Binding Energies of Chromium Ions with Benzene and Benzene Derivatives, Organometallics, 1997, 16, 12, 2691, https://doi.org/10.1021/om960949n . [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References