2-Propanol, 2-methyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-312.6 ± 0.88kJ/molEqkWiberg and Hao, 1991Heat of hydration; ALS
Δfgas-313. ± 1.5kJ/molCcbSkinner and Snelson, 1960ALS
Δfgas-309.7kJ/molN/ATaft and Riesz, 1955Value computed using ΔfHliquid° value of -356.0 kj/mol from Taft and Riesz, 1955 and ΔvapH° value of 46.3 kj/mol from Skinner and Snelson, 1960.; DRB

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
35.8550.Thermodynamics Research Center, 1997p=1 bar. Selected values of S(T) and Cp(T) are in good agreement with those of [ Beynon E.T., 1963] because of using practically the same molecular constants in two calculations. Please also see Chao J., 1986.; GT
52.73100.
70.40150.
85.29200.
106.29273.15
113.63 ± 0.21298.15
114.18300.
142.99400.
168.39500.
189.65600.
207.49700.
222.71800.
235.85900.
247.261000.
257.201100.
265.851200.
273.371300.
279.921400.
285.621500.
296.91750.
304.92000.
310.72250.
314.92500.
318.02750.
320.33000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
133.4 ± 1.1360.55Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.13 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Please also see Beynon E.T., 1963.; GT
132.63365.15
136.2 ± 1.1372.85
137.95383.15
139.2 ± 1.1385.65
142.88401.15
145.1 ± 1.1410.85
148.07419.15
153.55437.15
151.9 ± 1.1439.85
152.2 ± 1.1441.45
159.1 ± 1.1470.75
165.7 ± 1.1499.25
172.6 ± 1.1528.75
183.4 ± 1.1575.05
187.3 ± 1.1591.55

Phase change data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil355.5 ± 0.7KAVGN/AAverage of 65 out of 70 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus298.3 ± 0.7KAVGN/AAverage of 15 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple298.96KN/AWilhoit, Chao, et al., 1985Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.97KN/AOetting, 1963Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC
Ttriple298.5KN/AParks and Anderson, 1926Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc506.2 ± 0.3KN/AGude and Teja, 1995 
Tc506.2KN/AMajer and Svoboda, 1985 
Tc506.2KN/AAmbrose and Townsend, 1963TRC
Tc508.9KN/AKrone and Johnson, 1956TRC
Tc508.1KN/APawlewski, 1883TRC
Quantity Value Units Method Reference Comment
Pc39.7 ± 0.2barN/AGude and Teja, 1995 
Pc39.72barN/AAmbrose and Townsend, 1963TRC
Pc42.32barN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Vc0.275l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.64 ± 0.02mol/lN/AGude and Teja, 1995 
ρc3.643mol/lN/AAmbrose and Townsend, 1963TRC
ρc3.48mol/lN/AKrone and Johnson, 1956TRC
Quantity Value Units Method Reference Comment
Δvap46. ± 1.kJ/molAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Δsub41.kJ/molVRaley, Rust, et al., 1948ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
39.07355.5N/AMajer and Svoboda, 1985 
42.7338.N/AOrtega, Espiau, et al., 2003Based on data from 323. to 368. K.; AC
43.4336.N/AAucejo, Loras, et al., 1999Based on data from 321. to 359. K.; AC
46.2314.AStephenson and Malanowski, 1987Based on data from 299. to 375. K.; AC
41.4355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
43.2371.AStephenson and Malanowski, 1987Based on data from 356. to 480. K.; AC
41.4355.AStephenson and Malanowski, 1987Based on data from 347. to 363. K.; AC
39.8372.AStephenson and Malanowski, 1987Based on data from 357. to 461. K.; AC
33.6468.AStephenson and Malanowski, 1987Based on data from 453. to 506. K.; AC
42.6344.EBStephenson and Malanowski, 1987Based on data from 329. to 363. K. See also Ambrose, Counsell, et al., 1970 and Beynon and McKetta, 1963.; AC
46.12 ± 0.05303.2CMajer, Svoboda, et al., 1984ALS
46.2 ± 0.1303.CMajer, Svoboda, et al., 1984AC
44.9 ± 0.1313.CMajer, Svoboda, et al., 1984AC
43.0 ± 0.1328.CMajer, Svoboda, et al., 1984AC
41.0 ± 0.1343.CMajer, Svoboda, et al., 1984AC
37.2 ± 0.1368.CMajer, Svoboda, et al., 1984AC
44.7321.N/ASachek, Peshchenko, et al., 1982Based on data from 306. to 357. K.; AC
46.5308.N/AWilhoit and Zwolinski, 1973Based on data from 293. to 376. K.; AC
44.2328.N/ABrown, Fock, et al., 1969Based on data from 313. to 355. K. See also Boublik, Fried, et al., 1984.; AC
38.7388.N/AAmbrose and Townsend, 1963, 2Based on data from 373. to 506. K.; AC
42.1348.EBBeynon and McKetta, 1963Based on data from 333. to 363. K.; AC
42.5 ± 0.1330.CBeynon and McKetta, 1963AC
41.3 ± 0.1340.CBeynon and McKetta, 1963AC
40.4 ± 0.1346.CBeynon and McKetta, 1963AC
40.0 ± 0.1349.CBeynon and McKetta, 1963AC
39.0 ± 0.1356.CBeynon and McKetta, 1963AC
44.7323.N/AParks and Barton, 1928Based on data from 293. to 363. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 385.
A (kJ/mol) 69.08
α -0.3583
β 0.678
Tc (K) 506.2
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
312.66 to 355.564.497741174.869-93.92Brown, Fock, et al., 1969Coefficents calculated by NIST from author's data.
376.42 to 506.4.263831075.578-102.588Ambrose and Townsend, 1963, 3Coefficents calculated by NIST from author's data.
330.6 to 363.4.593231225.649-88.316Beynon and McKetta, 1963Coefficents calculated by NIST from author's data.
333.93 to 362.714.332581095.084-102.409Biddiscombe, Collerson, et al., 1963Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
51.3275.AStull, 1947Based on data from 253. to 298. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
6.7299.Domalski and Hearing, 1996AC
6.782298.5Parks and Anderson, 1926, 2DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
22.72298.5Parks and Anderson, 1926, 2DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
2.9286.1Domalski and Hearing, 1996CAL
1.66294.5
22.42299.0

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.828286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
0.490294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable transition, not always reproducible, c,III,metastable form.; DH
6.7028298.97crystaline, IliquidOetting F.L., 1963DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
2.89286.14crystaline, IIcrystaline, IOetting F.L., 1963DH
1.66294.47crystaline, IIIcrystaline, IOetting F.L., 1963Metastable; DH
22.42298.97crystaline, IliquidOetting F.L., 1963DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.90 ± 0.03eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)802.6kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity772.2kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
9.90 ± 0.03PIPECOShao, Baer, et al., 1988LL
9.97 ± 0.02PECocksey, Eland, et al., 1971LLK
10.23PEBaker, Betteridge, et al., 1971LLK
10.23PEBaker, Betteridge, et al., 1971LLK
10.26PEBenoit and Harrison, 1977Vertical value; LLK
10.25 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.25PERobin and Kuebler, 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H7O+9.86CH3EILossing, 1977LLK
C3H7O+10.1 ± 0.2CH3EIBeauchamp, Caserio, et al., 1974LLK
C3H7O+9.87 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C3H7O+9.87CH3EIPotapov and Sorokin, 1970RDSH
C3H7O+10.2CH3EIHarrison, Ivko, et al., 1966RDSH

De-protonation reactions

C4H9O- + Hydrogen cation = 2-Propanol, 2-methyl-

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1568. ± 4.2kJ/molD-EARamond, Davico, et al., 2000gas phase; B
Δr1567. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1573.2 ± 2.9kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Δr1566. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Quantity Value Units Method Reference Comment
Δr1540. ± 4.6kJ/molH-TSRamond, Davico, et al., 2000gas phase; B
Δr1540. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1538. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Bromine anion + 2-Propanol, 2-methyl- = C4H10BrO-

By formula: Br- + C4H10O = C4H10BrO-

Quantity Value Units Method Reference Comment
Δr66.11 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr35.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 22-Propanol, 2-methyl- = C8H20BrO2-

By formula: Br- + 2C4H10O = C8H20BrO2-

Quantity Value Units Method Reference Comment
Δr54.0 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr23.6kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Bromine anion + 32-Propanol, 2-methyl- = C12H30BrO3-

By formula: Br- + 3C4H10O = C12H30BrO3-

Quantity Value Units Method Reference Comment
Δr48.5 ± 2.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr18.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

CH6N+ + 2-Propanol, 2-methyl- = (CH6N+ • 2-Propanol, 2-methyl-)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr95.8kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
41.8495.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

CN- + 2-Propanol, 2-methyl- = (CN- • 2-Propanol, 2-methyl-)

By formula: CN- + C4H10O = (CN- • C4H10O)

Quantity Value Units Method Reference Comment
Δr76. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr44.8 ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

C3H9Sn+ + 2-Propanol, 2-methyl- = (C3H9Sn+ • 2-Propanol, 2-methyl-)

By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr153.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr136.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
82.0525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C4H9O- + 2-Propanol, 2-methyl- = (C4H9O- • 2-Propanol, 2-methyl-)

By formula: C4H9O- + C4H10O = (C4H9O- • C4H10O)

Quantity Value Units Method Reference Comment
Δr117. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ACaldwell, Rozeboom, et al., 1984gas phase; switching reaction(CH3O-)CH3OH, Entropy change calculated or estimated; re-evaluated using Meot-Ner(Mautner), 1986 and Paul and Kebarle, 1990; M
Quantity Value Units Method Reference Comment
Δr78.7 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B,M

cyclopentadienide anion + 2-Propanol, 2-methyl- = (cyclopentadienide anion • 2-Propanol, 2-methyl-)

By formula: C5H5- + C4H10O = (C5H5- • C4H10O)

Quantity Value Units Method Reference Comment
Δr71.1 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr134.J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr31. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

C5H11O- + 2-Propanol, 2-methyl- = (C5H11O- • 2-Propanol, 2-methyl-)

By formula: C5H11O- + C4H10O = (C5H11O- • C4H10O)

Quantity Value Units Method Reference Comment
Δr115. ± 12.kJ/molN/ACaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr78.2 ± 8.4kJ/molIMRECaldwell, Rozeboom, et al., 1984gas phase; Reanchored to average data from Paul and Kebarle, 1990 and Meot-ner and Sieck, 1986.; value altered from reference due to change in acidity scale; B

C6H5NO2- + 2-Propanol, 2-methyl- = (C6H5NO2- • 2-Propanol, 2-methyl-)

By formula: C6H5NO2- + C4H10O = (C6H5NO2- • C4H10O)

Quantity Value Units Method Reference Comment
Δr68.6kJ/molPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KPHPMSSieck, 1985gas phase; M

thiophenoxide anion + 2-Propanol, 2-methyl- = C10H15OS-

By formula: C6H5S- + C4H10O = C10H15OS-

Quantity Value Units Method Reference Comment
Δr61.09 ± 0.42kJ/molTDAsSieck and Meot-ner, 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr30.1 ± 2.1kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Chlorine anion + 2-Propanol, 2-methyl- = (Chlorine anion • 2-Propanol, 2-methyl-)

By formula: Cl- + C4H10O = (Cl- • C4H10O)

Quantity Value Units Method Reference Comment
Δr77. ± 20.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr115.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Δr100.J/mol*KPHPMSSieck, 1985gas phase; M
Δr97.9J/mol*KN/ALarson and McMahon, 1984gas phase; Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Δr110.J/mol*KPHPMSKebarle, 1977gas phase; M
Δr43.1J/mol*KN/AYamdagni and Kebarle, 1971gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr48.45kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr51.5 ± 1.3kJ/molTDAsSieck, 1985gas phase; B
Δr48.53kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B
Δr46.4 ± 8.4kJ/molIMRELarson and McMahon, 1984, 2gas phase; B,M
Δr46.4 ± 8.4kJ/molTDAsYamdagni and Kebarle, 1971gas phase; B

(Chlorine anion • 2-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 22-Propanol, 2-methyl-)

By formula: (Cl- • C4H10O) + C4H10O = (Cl- • 2C4H10O)

Quantity Value Units Method Reference Comment
Δr70.71 ± 0.84kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr62.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr30.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr30. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 22-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 32-Propanol, 2-methyl-)

By formula: (Cl- • 2C4H10O) + C4H10O = (Cl- • 3C4H10O)

Quantity Value Units Method Reference Comment
Δr66.1 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr57.3 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr18. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 32-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 42-Propanol, 2-methyl-)

By formula: (Cl- • 3C4H10O) + C4H10O = (Cl- • 4C4H10O)

Quantity Value Units Method Reference Comment
Δr53.1 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr131.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr14. ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 42-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 52-Propanol, 2-methyl-)

By formula: (Cl- • 4C4H10O) + C4H10O = (Cl- • 5C4H10O)

Quantity Value Units Method Reference Comment
Δr49.8 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr135.J/mol*KPHPMSHiraoka and Mizuse, 1987gas phase; M
Quantity Value Units Method Reference Comment
Δr9.2 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; B

(Chlorine anion • 52-Propanol, 2-methyl-) + 2-Propanol, 2-methyl- = (Chlorine anion • 62-Propanol, 2-methyl-)

By formula: (Cl- • 5C4H10O) + C4H10O = (Cl- • 6C4H10O)

Quantity Value Units Method Reference Comment
Δr47.7 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B,M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AHiraoka and Mizuse, 1987gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr7.5 ± 4.2kJ/molTDAsHiraoka and Mizuse, 1987gas phase; Estimated entropy; single temperature measurement; B

Fluorine anion + 2-Propanol, 2-methyl- = C4H9D10FO-

By formula: F- + C4H10O = C4H9D10FO-

Quantity Value Units Method Reference Comment
Δr105. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Fluorine anion + 2-Propanol, 2-methyl- = (Fluorine anion • 2-Propanol, 2-methyl-)

By formula: F- + C4H10O = (F- • C4H10O)

Quantity Value Units Method Reference Comment
Δr139.7 ± 2.9kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr139. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Δr137. ± 9.2kJ/molCIDTDeTuri and Ervin, 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr109.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr108.8kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr107. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Fluorine anion + 22-Propanol, 2-methyl- = C8H20FO2-

By formula: F- + 2C4H10O = C8H20FO2-

Quantity Value Units Method Reference Comment
Δr92.0 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr56.86kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Fluorine anion + 32-Propanol, 2-methyl- = C12H30FO3-

By formula: F- + 3C4H10O = C12H30FO3-

Quantity Value Units Method Reference Comment
Δr76.6 ± 4.2kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr32.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

HS- + 2-Propanol, 2-methyl- = (HS- • 2-Propanol, 2-methyl-)

By formula: HS- + C4H10O = (HS- • C4H10O)

Quantity Value Units Method Reference Comment
Δr70.3 ± 1.3kJ/molTDAsSieck and Meot-ner, 1989gas phase; B,M
Quantity Value Units Method Reference Comment
Δr83.3J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr45.6 ± 5.0kJ/molTDAsSieck and Meot-ner, 1989gas phase; B

Iodide + 2-Propanol, 2-methyl- = (Iodide • 2-Propanol, 2-methyl-)

By formula: I- + C4H10O = (I- • C4H10O)

Quantity Value Units Method Reference Comment
Δr54.8 ± 1.3kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr50.6 ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr78.2J/mol*KPHPMSCaldwell and Kebarle, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr25.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Δr27. ± 4.2kJ/molTDAsCaldwell and Kebarle, 1984gas phase; B

Iodide + 22-Propanol, 2-methyl- = C8H20IO2-

By formula: I- + 2C4H10O = C8H20IO2-

Quantity Value Units Method Reference Comment
Δr47.3 ± 1.7kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr18.1kJ/molTDAsBogdanov, Peschke, et al., 1999gas phase; B

Lithium ion (1+) + 2-Propanol, 2-methyl- = (Lithium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr178. ± 10.kJ/molCIDTRodgers and Armentrout, 2000RCD

Nitrogen oxide anion + 2-Propanol, 2-methyl- = (Nitrogen oxide anion • 2-Propanol, 2-methyl-)

By formula: NO2- + C4H10O = (NO2- • C4H10O)

Quantity Value Units Method Reference Comment
Δr82.01 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr45.2 ± 1.3kJ/molTDAsSieck, 1985gas phase; B

Sodium ion (1+) + 2-Propanol, 2-methyl- = (Sodium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr117. ± 4.2kJ/molCIDTRodgers and Armentrout, 2000RCD
Δr116. ± 4.2kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
89.5298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg and Hao, 1991
Wiberg, K.B.; Hao, S., Enthalpies of hydration of alkenes. 4. Formation of acyclic tert-alcohols, J. Org. Chem., 1991, 56, 5108-5110. [all data]

Skinner and Snelson, 1960
Skinner, H.A.; Snelson, A., The heats of combustion of the four isomeric butyl alcohols, Trans. Faraday Soc., 1960, 56, 1776-1783. [all data]

Taft and Riesz, 1955
Taft, R.W., Jr.; Riesz, P., Thermodynamic properties for the system isobutene-t-butyl alcohol, J. Am. Chem. Soc., 1955, 77, 902-904. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Beynon E.T., 1963
Beynon E.T., Jr., The thermodynamic properties of 2-methyl-2-propanol, J. Phys. Chem., 1963, 67, 2761-2765. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Oetting, 1963
Oetting, F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330!31k, J. Phys. Chem., 1963, 67, 2757-61. [all data]

Parks and Anderson, 1926
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-12. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 54, 3614-25. [all data]

Krone and Johnson, 1956
Krone, L.H.; Johnson, R.C., Thermodynamic Properties of tert-Butyl ALcohol, AIChE J., 1956, 2, 552-4. [all data]

Pawlewski, 1883
Pawlewski, B., Critical temperatures of some liquids, Ber. Dtsch. Chem. Ges., 1883, 16, 2633-36. [all data]

Raley, Rust, et al., 1948
Raley, J.H.; Rust, F.F.; Vaughan, W.E., Decompositions of Di-t-alkyl peroxides. I. Kinetics, J. Am. Chem. Soc., 1948, 70, 88-94. [all data]

Ortega, Espiau, et al., 2003
Ortega, Juan; Espiau, Fernando; Postigo, Miguel, Isobaric Vapor-Liquid Equilibria and Excess Quantities for Binary Mixtures of an Ethyl Ester + tert -Butanol and a New Approach to VLE Data Processing, J. Chem. Eng. Data, 2003, 48, 4, 916-924, https://doi.org/10.1021/je0202073 . [all data]

Aucejo, Loras, et al., 1999
Aucejo, Antonio; Loras, Sonia; Muñoz, Rosa; Ordoñez, Luis Miguel, Isobaric vapor--liquid equilibrium for binary mixtures of 2-methylpentane+ethanol and +2-methyl-2-propanol, Fluid Phase Equilibria, 1999, 156, 1-2, 173-183, https://doi.org/10.1016/S0378-3812(99)00029-1 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Beynon and McKetta, 1963
Beynon, Eugene T.; McKetta, John J., THE THERMODYNAMIC PROPERTIES OF 2-METHYL-2-PROPANOL, J. Phys. Chem., 1963, 67, 12, 2761-2765, https://doi.org/10.1021/j100806a060 . [all data]

Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Hynek, V., On the enthalpy of vaporization of isomeric butanols, J. Chem. Thermodyn., 1984, 16, 1059-1066. [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Brown, Fock, et al., 1969
Brown, I.; Fock, W.; Smith, F., The thermodynamic properties of solutions of normal and branched alcohols in benzene and n-hexane, The Journal of Chemical Thermodynamics, 1969, 1, 3, 273-291, https://doi.org/10.1016/0021-9614(69)90047-0 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Parks and Barton, 1928
Parks, George S.; Barton, Bernard, VAPOR PRESSURE DATA FOR ISOPROPYL ALCOHOL AND TERTIARY BUTYL ALCOHOL, J. Am. Chem. Soc., 1928, 50, 1, 24-26, https://doi.org/10.1021/ja01388a004 . [all data]

Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Parks and Anderson, 1926, 2
Parks, G.S.; Anderson, C.T., Thermal data on organic compounds. III. The heat capacities, entropies and free energies of tertiary butyl alcohol, mannitol, erythritol and normal butyric acid, J. Am. Chem. Soc., 1926, 48, 1506-1512. [all data]

Oetting F.L., 1963
Oetting F.L., The heat capacity and entropy of 2-methyl-2-propanol from 15 to 330 K, J. Phys. Chem., 1963, 67, 2757-2761. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K., Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions, J. Phys. Chem., 1988, 92, 5123. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Robin and Kuebler, 1973
Robin, M.B.; Kuebler, N.A., Excited electronic states of the simple alcohols, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 13. [all data]

Lossing, 1977
Lossing, F.P., Heats of formation of some isomeric [CnH2n+1]+ ions. Substitutional effects on ion stability, J. Am. Chem. Soc., 1977, 99, 7526. [all data]

Beauchamp, Caserio, et al., 1974
Beauchamp, J.L.; Caserio, M.C.; McMahon, T.B., Ion-molecule reactions of tert-butyl alcohol by ion cyclotron resonance spectroscopy, J. Am. Chem. Soc., 1974, 96, 6243. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Potapov and Sorokin, 1970
Potapov, V.K.; Sorokin, V.V., Investigation of ionic molecular reactions proceeding during photoionization of aromatic compounds and alcohols, Dokl. Akad. Nauk SSSR, 1970, 195, 616, In original 848. [all data]

Harrison, Ivko, et al., 1966
Harrison, A.G.; Ivko, A.; Van Raalte, D., Energetics of formation of some oxygenated ions and the proton affinities of carbonyl compounds, Can. J. Chem., 1966, 44, 1625. [all data]

Ramond, Davico, et al., 2000
Ramond, T.M.; Davico, G.E.; Schwartz, R.L.; Lineberger, W.C., Vibronic structure of alkoxy radicals via photoelectron spectroscopy, J. Chem. Phys., 2000, 112, 3, 1158-1169, https://doi.org/10.1063/1.480767 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

DeTuri and Ervin, 1999
DeTuri, V.F.; Ervin, K.M., Competitive threshold collision-induced dissociation: Gas-phase acidities and bond dissociation energies for a series of alcohols, J. Phys. Chem. A, 1999, 103, 35, 6911-6920, https://doi.org/10.1021/jp991459m . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bogdanov, Peschke, et al., 1999
Bogdanov, B.; Peschke, M.; Tonner, D.S.; Szulejko, J.E.; McMahon, T.B., Stepwise solvation of halides by alcohol molecules in the gas phase, Int. J. Mass Spectrom., 1999, 187, 707-725, https://doi.org/10.1016/S1387-3806(98)14180-5 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Caldwell, Rozeboom, et al., 1984
Caldwell, G.; Rozeboom, M.D.; Kiplinger, J.P.; Bartmess, J.E., Anion-alcohol hydrogen bond strengths in the gas phase, J. Am. Chem. Soc., 1984, 106, 4660. [all data]

Paul and Kebarle, 1990
Paul, G.J.C.; Kebarle, P., Thermodynamics of the Association Reactions OH- - H2O = HOHOH- and CH3O- - CH3OH = CH3OHOCH3- in the Gas Phase, J. Phys. Chem., 1990, 94, 12, 5184, https://doi.org/10.1021/j100375a076 . [all data]

Meot-ner and Sieck, 1986
Meot-ner, M.; Sieck, L.W., Relative acidities of water and methanol, and the stabilities of the dimer adducts, J. Phys. Chem., 1986, 90, 6687. [all data]

Meot-Ner(Mautner), 1986
Meot-Ner(Mautner), M., Comparative Stabilities of Cationic and Anionic Hydrogen-Bonded Networks. Mixed Clusters of Water-Methanol, J. Am. Chem. Soc., 1986, 108, 20, 6189, https://doi.org/10.1021/ja00280a014 . [all data]

Meot-ner, 1988
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Hiraoka and Mizuse, 1987
Hiraoka, K.; Mizuse, S., Gas-Phase Solvation of Cl- with H2O, CH3OH, C2H4OH, i-C3H7OH, n-C3H7OH, and t-C4H9OH, Chem. Phys., 1987, 118, 3, 457, https://doi.org/10.1016/0301-0104(87)85078-4 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Kebarle, 1977
Kebarle, P., Ion Thermochemistry and Solvation from Gas Phase Ion Equilibria, Ann. Rev. Phys. Chem., 1977, 28, 1, 445, https://doi.org/10.1146/annurev.pc.28.100177.002305 . [all data]

Yamdagni and Kebarle, 1971
Yamdagni, R.; Kebarle, P., Hydrogen bonding energies to negative ions from gas phase measurements of ionic equilibria, J. Am. Chem. Soc., 1971, 93, 7139. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Caldwell and Kebarle, 1984
Caldwell, G.; Kebarle, P., Binding energies and structural effects in halide anion-ROH and -RCOOH complexes from gas phase equilibria measurements, J. Am. Chem. Soc., 1984, 106, 967. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References