Carbon monoxide
- Formula: CO
- Molecular weight: 28.0101
- IUPAC Standard InChIKey: UGFAIRIUMAVXCW-UHFFFAOYSA-N
- CAS Registry Number: 630-08-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Carbon oxide (CO); CO; Exhaust gas; Flue gas; Carbonic oxide; Carbon oxide; Carbone (oxyde de); Carbonio (ossido di); Kohlenmonoxid; Kohlenoxyd; Koolmonoxyde; NA 9202; Oxyde de carbone; UN 1016; Wegla tlenek; Carbon monooxide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -110.53 ± 0.17 | kJ/mol | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
ΔfH°gas | -110.53 | kJ/mol | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 197.660 ± 0.004 | J/mol*K | Review | Cox, Wagman, et al., 1984 | CODATA Review value |
S°gas,1 bar | 197.66 | J/mol*K | Review | Chase, 1998 | Data last reviewed in September, 1965 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1300. | 1300. to 6000. |
---|---|---|
A | 25.56759 | 35.15070 |
B | 6.096130 | 1.300095 |
C | 4.054656 | -0.205921 |
D | -2.671301 | 0.013550 |
E | 0.131021 | -3.282780 |
F | -118.0089 | -127.8375 |
G | 227.3665 | 231.7120 |
H | -110.5271 | -110.5271 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in September, 1965 | Data last reviewed in September, 1965 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 81.63 | K | N/A | Mullins, Kirk, et al., 1963 | Uncertainty assigned by TRC = 0.05 K; TRC |
Tboil | 81.61 | K | N/A | Clayton and Giauque, 1932 | Uncertainty assigned by TRC = 0.07 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 67.95 | K | N/A | Gill and Morrison, 1966 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.06 K; TRC |
Ttriple | 68.12 | K | N/A | Mullins, Kirk, et al., 1963 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 68.09 | K | N/A | Clayton and Giauque, 1932 | Crystal phase 1 phase; Uncertainty assigned by TRC = 0.07 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 134.45 | K | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.4 K; 4 determinations with same result; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 34.9875 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 34.9875 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 35.1496 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Pc | 35.2104 | bar | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.3039 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 11.1 | mol/l | N/A | Cardoso, 1915 | Uncertainty assigned by TRC = 0.04 mol/l; extrapolation of rectilinear diameter to Tc; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.0 | 93. | A | Stephenson and Malanowski, 1987 | Based on data from 68. to 108. K.; AC |
6.0 | 81. | N/A | Clayton and Giauque, 1932, 2 | Based on data from 69. to 83. K.; AC |
6.0 | 81. | C | Clayton and Giauque, 1932, 2 | AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.6 | 58. | N/A | Stephenson and Malanowski, 1987 | Based on data from 54. to 61. K.; AC |
8.1 | 60. | A | Stull, 1947 | Based on data from 51. to 68. K.; AC |
7.9 | 62. | A | Crommelin, Bijleveld, et al., 1931 | Based on data from 57. to 68. K.; AC |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to CO+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 14.014 ± 0.0003 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 594. | kJ/mol | N/A | Hunter and Lias, 1998 | at C; HL |
Proton affinity (review) | 426.3 | kJ/mol | N/A | Hunter and Lias, 1998 | at O; HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 562.8 | kJ/mol | N/A | Hunter and Lias, 1998 | at C; HL |
Gas basicity | 402.2 | kJ/mol | N/A | Hunter and Lias, 1998 | at O; HL |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH°(+) ion | 1241. | kJ/mol | N/A | N/A | |
Quantity | Value | Units | Method | Reference | Comment |
ΔfH(+) ion,0K | 1238. | kJ/mol | N/A | N/A |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
1.32608 | R-A | Refaey and Franklin, 1976 | G3MP2B3 calculations indicate an EA of ca.-1.6 eV, anion unbound; B |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
14.0142 ± 0.0003 | LS | Erman, Karawajczyk, et al., 1993 | LL |
14.1 | PE | Kimura, Katsumata, et al., 1981 | LLK |
14.014 | S | Fock, Gurtler, et al., 1980 | LLK |
14.07 ± 0.05 | EI | Hille and Mark, 1978 | LLK |
14.0 | PI | Rabalais, Debies, et al., 1974 | LLK |
14.01 | PE | Natalis, 1973 | LLK |
14.0139 | S | Ogawa and Ogawa, 1972 | LLK |
14.01 | PE | Hotop and Niehaus, 1970 | RDSH |
14.01 | PE | Collin and Natalis, 1969 | RDSH |
14.00 | PE | Turner and May, 1966 | RDSH |
14.013 ± 0.004 | S | Krupenie, 1966 | RDSH |
13.985 | PI | Cook, Metzger, et al., 1965 | RDSH |
14.01 | PE | Potts and Williams, 1974 | Vertical value; LLK |
14.01 | PE | Katrib, Debies, et al., 1973 | Vertical value; LLK |
14.0 | PE | Thomas, 1970 | Vertical value; RDSH |
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C+ | 20.94 ± 0.02 | O- | PI | Oertel, Schenk, et al., 1980 | LLK |
C+ | 20.89 | O-(2P) | EI | Smyth, Schiavone, et al., 1974 | LLK |
C+ | 20.88 ± 0.02 | O- | EI | Locht and Momigny, 1971 | LLK |
C+ | 22.45 ± 0.10 | O | EI | Hierl and Franklin, 1967 | RDSH |
C+ | 20.82 ± 0.05 | O- | EI | Hierl and Franklin, 1967 | RDSH |
C+ | 22.57 ± 0.20 | O | EI | Fineman and Petrocelli, 1961 | RDSH |
C+ | 20.89 ± 0.09 | O- | EI | Fineman and Petrocelli, 1961 | RDSH |
CO+ | 19.5 ± 0.2 | O-? | PI | Weissler, Samson, et al., 1959 | RDSH |
O+ | 23.44 | C- | EI | Smyth, Schiavone, et al., 1974 | LLK |
O+ | 23.20 ± 0.05 | C- | EI | Hierl and Franklin, 1967 | RDSH |
O+ | 24.65 ± 0.05 | C | EI | Hierl and Franklin, 1967 | RDSH |
O+ | 23.41 ± 0.17 | C- | EI | Fineman and Petrocelli, 1961 | RDSH |
O+ | 24.78 ± 0.23 | C | EI | Fineman and Petrocelli, 1961 | RDSH |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + CO = (Ag+ • CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
88.7 (+5.0,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • CO) + CO = (Ag+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
109. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • 2CO) + CO = (Ag+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.8 (+7.5,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Ag+ • 3CO) + CO = (Ag+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
45. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Ar+ + CO = (Ar+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80. ± 20. | kJ/mol | PIPECO | Norwood, Guo, et al., 1989 | gas phase; Ar+(2P3/2); M |
By formula: (Ar+ • CO) + CO = (Ar+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. | kJ/mol | PIPECO | Norwood, Guo, et al., 1989 | gas phase; approximate value from Ar+(2P3/2) 2CO -> Ar+(2P3/2) + 2CO; M |
By formula: CF3+ + CO = (CF3+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • CO) + CO = (CF3+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 2CO) + CO = (CF3+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 3CO) + CO = (CF3+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 23. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 4CO) + CO = (CF3+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 5CO) + CO = (CF3+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
By formula: (CF3+ • 6CO) + CO = (CF3+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11. | kJ/mol | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Nasu, et al., 1996 | gas phase; M |
(CFeO- • 4294967295) + = CFeO-
By formula: (CFeO- • 4294967295CO) + CO = CFeO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 146. ± 15. | kJ/mol | N/A | Villalta and Leopold, 1993 | gas phase; B |
ΔrH° | 141. ± 15. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1992 | gas phase; B |
By formula: CHO+ + CO = (CHO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.2 | kJ/mol | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrH° | 53.6 | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.1 | J/mol*K | PHPMS | Jennings, Headley, et al., 1982 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
ΔrS° | 87.4 | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; M |
By formula: (CHO+ • CO) + CO = (CHO+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 28. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 62.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 100. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 2CO) + CO = (CHO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 66.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 110. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 3CO) + CO = (CHO+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 26. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 76.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 4CO) + CO = (CHO+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrH° | 24. | kJ/mol | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 95.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
ΔrS° | 130. | J/mol*K | PHPMS | Hiraoka, Saluja, et al., 1979 | gas phase; M |
By formula: (CHO+ • 5CO) + CO = (CHO+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 6CO) + CO = (CHO+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 7CO) + CO = (CHO+ • 8CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 92.0 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 8CO) + CO = (CHO+ • 9CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 9CO) + CO = (CHO+ • 10CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 93.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 10CO) + CO = (CHO+ • 11CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.2 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 11CO) + CO = (CHO+ • 12CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 12CO) + CO = (CHO+ • 13CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 97.1 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 13CO) + CO = (CHO+ • 14CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7. ± 1. | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96.7 | J/mol*K | PHPMS | Hiraoka and Mori, 1989 | gas phase; M |
By formula: (CHO+ • 14CO) + CO = (CHO+ • 15CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.36 | kJ/mol | PHPMS | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 96. | J/mol*K | N/A | Hiraoka and Mori, 1989 | gas phase; Entropy change calculated or estimated; M |
By formula: (CHO- • 4294967295CO) + CO = CHO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.7 ± 1.9 | kJ/mol | N/A | Murray, Miller, et al., 1986 | gas phase; B |
(CNiO- • 4294967295) + = CNiO-
By formula: (CNiO- • 4294967295CO) + CO = CNiO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 138. ± 24. | kJ/mol | N/A | Stevens, Feigerle, et al., 1982 | gas phase; B |
ΔrH° | 136. ± 24. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1992 | gas phase; Affinity: CO..Ni-; B |
By formula: CO+ + CO = (CO+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. | kJ/mol | PIPECO | Norwood, Guo, et al., 1988 | gas phase; CO+ in state B, ΔrH>; M |
ΔrH° | 93.7 | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
ΔrH° | 120. ± 30. | kJ/mol | EI | Munson and Franlin, 1962 | gas phase; from IP'switching reaction and heats of formation; M |
ΔrH° | 106. | kJ/mol | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
21. | 340. | HPMS | Chong and Franklin, 1971 | gas phase; equilibrium uncertain; M |
48.1 | 695. | PHPMS | Meot-Ner (Mautner) and Field, 1974 | gas phase; ΔrH>, DG>; M |
By formula: (CO+ • CO) + CO = (CO+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.3 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
ΔrH° | 15. | kJ/mol | PI | Linn, Ono, et al., 1981 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 149. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 2CO) + CO = (CO+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.2 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 103. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
By formula: (CO+ • 3CO) + CO = (CO+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.4 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.8 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
By formula: (CO+ • 4CO) + CO = (CO+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.8 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers; M |
By formula: (CO+ • 5CO) + CO = (CO+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; two isomers, at low and high temperatures; M |
By formula: (CO+ • 6CO) + CO = (CO+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.41 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 88.3 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
By formula: (CO+ • 7CO) + CO = (CO+ • 8CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.61 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 51.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; break in the van't Hoff plot; M |
By formula: (CO+ • 9CO) + CO = (CO+ • 10CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.74 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.9 | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 11CO) + CO = (CO+ • 12CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.91 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 113. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 12CO) + CO = (CO+ • 13CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.79 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 116. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 13CO) + CO = (CO+ • 14CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.70 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 14CO) + CO = (CO+ • 15CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.03 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 112. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 15CO) + CO = (CO+ • 16CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.03 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: (CO+ • 16CO) + CO = (CO+ • 17CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.87 | kJ/mol | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | PHPMS | Hiraoka and Mori, 1991 | gas phase; M |
By formula: COPt3- + CO = C2O2Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 50. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C2O2Pt3- + CO = C3O3Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 220. ± 22. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
ΔrH° | 206. ± 14. | kJ/mol | PDis | Shi, Spasov, et al., 2001 | gas phase; B |
By formula: C3CrO3- + CO = (C3CrO3- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 166. ± 16. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C3MnO3- + CO = C4MnO4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 172. ± 13. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C3O3Pt3- + CO = C4O4Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 102. ± 13. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C3O3V- + CO = C4O4V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 169. ± 24. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C4O4Pt3- + CO = C5O5Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 109. ± 18. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C4O4V- + CO = C5O5V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 13. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C5O5Pt3- + CO = C6O6Pt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
ΔrH° | 166. ± 14. | kJ/mol | PDis | Shi, Spasov, et al., 2001 | gas phase; B |
By formula: C5O5V- + CO = C6O6V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. ± 15. | kJ/mol | CIDT | Sunderlin, Wang, et al., 1993 | gas phase; B |
By formula: C6H5MnO- + CO = C6H5MnO-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.9 ± 2.1 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C6H5MnO- + CO = C7H5MnO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.6 ± 2.5 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C6O6Pt4- + CO = C8O8Pt4-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 77. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: C7H5CrO2- + CO = C8H5CrO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36.4 ± 3.3 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C7H5O2V- + CO = C7H5O2V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 33.1 ± 2.9 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: C7H5O2V- + CO = C8H5O3V-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.8 ± 2.5 | kJ/mol | N/A | Sunderlin and Squires, 1999 | gas phase; B |
By formula: Co+ + CO = (Co+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 7.1 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+6.7,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
163. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • CO) + CO = (Co+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 153. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
152. (+8.8,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M | |
138. (+20.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 2CO) + CO = (Co+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 82. ± 12. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
82. (+12.,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 3CO) + CO = (Co+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75.3 (+5.9,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Co+ • 4CO) + CO = (Co+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74.9 ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75.3 (+5.0,-0.) | CID | Goebel, Haynes, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Cr+ + CO = (Cr+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 90. ± 4. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
90.0 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • CO) + CO = (Cr+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 95. ± 3. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95. (+3.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 2CO) + CO = (Cr+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.0 ± 5.9 | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 (+5.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 3CO) + CO = (Cr+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.0 ± 7.5 | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
51.0 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 4CO) + CO = (Cr+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 62. ± 3. | kJ/mol | CIDT | Khan, Clemmer, et al., 1993 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
62. (+3.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cr+ • 5CO) + CO = (Cr+ • 6CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
130. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: Cu+ + CO = (Cu+ • CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
149. (+6.7,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • CO) + CO = (Cu+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
172. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 2CO) + CO = (Cu+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 3CO) + CO = (Cu+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
53. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Fe+ + CO = (Fe+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 129. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 130. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
131. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • CO) + CO = (Fe+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 148. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
151. (+14.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 2CO) + CO = (Fe+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.0 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
66.1 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 3CO) + CO = (Fe+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.9 ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
103. (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 4CO) + CO = (Fe+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.1 ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
112. (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Fe+ • 3CO • 2Fe) + CO = (Fe+ • 4CO • 2Fe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 238. | kJ/mol | PDiss | Tecklenberg, Bricker, et al., 1988 | gas phase; ΔrH<; M |
By formula: (Fe+ • Fe) + CO = (Fe+ • CO • Fe)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 245. | kJ/mol | PDiss | Tecklenberg, Bricker, et al., 1988 | gas phase; ΔrH<; M |
By formula: K+ + CO = (K+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18. ± 5.0 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Kr+ + CO = (Kr+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 103. ± 7.5 | kJ/mol | SIFT | Praxmarer, Jordan, et al., 1993 | gas phase; switching reaction(Kr+)Kr; Wadt, 1978, Radzig and Smirnov, 1985; M |
By formula: Li+ + CO = (Li+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55. ± 13. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 55. ± 12. | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: (Li+ • CO) + CO = (Li+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 36. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 36. ± 4.2 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35. ± 4.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 35. ± 4.2 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
By formula: Mg+ + CO = (Mg+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41. ± 5.9 | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: (Mg+ • CO) + CO = (Mg+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38. ± 3. | kJ/mol | CIDT | Andersen, Muntean, et al., 2000 | RCD |
By formula: Mn+ + CO = (Mn+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; ΔrH>; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
25. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • CO) + CO = (Mn+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; ΔrH<; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
63. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 2CO) + CO = (Mn+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 30. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
74. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 3CO) + CO = (Mn+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80. ± 10. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
65. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 4CO) + CO = (Mn+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 10. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
121. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Mn+ • 5CO) + CO = (Mn+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 130. ± 20. | kJ/mol | KERDS | Dearden, Hayashibara, et al., 1989 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
142. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: Na+ + CO = (Na+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 32. ± 7.9 | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 52.7 | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
By formula: (Na+ • CO) + CO = (Na+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
ΔrH° | 24. ± 3. | kJ/mol | CIDT | Walter, Sievers, et al., 1998 | RCD |
ΔrH° | 31. | kJ/mol | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 63.2 | J/mol*K | HPMS | Castleman, Peterson, et al., 1983 | gas phase; M |
By formula: Ni+ + CO = (Ni+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 160. ± 10. | kJ/mol | MKER | Carpenter, van Koppen, et al., 1995 | gas phase; determined from MKER and theory; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
174. (+10.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
178. (+9.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • CO) + CO = (Ni+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
168. (+10.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion bema CID; M | |
169. (+9.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 2CO) + CO = (Ni+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91.6 (+5.9,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
95.0 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Ni+ • 3CO) + CO = (Ni+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
72. (+3.,-0.) | CID | Khan, Steele, et al., 1995 | gas phase; guided ion beam CID; M | |
72.0 (+5.0,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: O2- + CO = (O2- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | <56.90 | kJ/mol | IMRB | Adams and Bohme, 1970 | gas phase; CO..O2- + O2 -> O4- + CO. G3MP2B3 calculations indicate a HOF(A-) ca. -38 kcal/mol; B |
By formula: Pt+ + CO = (Pt+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 212. ± 10. | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • CO) + CO = (Pt+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 10. | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • 2CO) + CO = (Pt+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 97.9 ± 5.0 | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: (Pt+ • 3CO) + CO = (Pt+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.1 ± 5.0 | kJ/mol | CIDT | Zhang and Armentrout, 2001 | RCD |
By formula: Pt3- + CO = COPt3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 222. ± 29. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Pt4- + CO = (Pt4- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 251. ± 38. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Pt5- + CO = (Pt5- • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 241. ± 38. | kJ/mol | N/A | Grushow and Ervin, 1997 | gas phase; B |
By formula: Ti+ + CO = (Ti+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 118. ± 5.9 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • CO) + CO = (Ti+ • 2CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 113. ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 2CO) + CO = (Ti+ • 3CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 100. ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 3CO) + CO = (Ti+ • 4CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.0 ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 4CO) + CO = (Ti+ • 5CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 69.9 ± 4.2 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 5CO) + CO = (Ti+ • 6CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 74. ± 3. | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: (Ti+ • 6CO) + CO = (Ti+ • 7CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 ± 7.1 | kJ/mol | CIDT | Meyer and Armentrout, 1996 | RCD |
By formula: V+ + CO = (V+ • CO)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 120. ± 14. | kJ/mol | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH(0 K0, guided ion beam CID; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
113. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M |
By formula: (V+ • CO) + CO = (V+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
106. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 2CO) + CO = (V+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
69. (+4.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
61. (+12.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 3CO) + CO = (V+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
85.8 (+9.6,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
95. (+14.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 4CO) + CO = (V+ • 5CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
91. (+3.,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
92.9 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 5CO) + CO = (V+ • 6CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
99.6 (+6.7,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M | |
124. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (V+ • 6CO) + CO = (V+ • 7CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
50.2 (+8.8,-0.) | CID | Sievers and Armentrout, 1995 | gas phase; guided ion beam CID; M |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A.,
CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Mullins, Kirk, et al., 1963
Mullins, J.C.; Kirk, B.S.; Ziegler, W.T.,
, U. S. A. E. C. NP-13862, 1963. [all data]
Clayton and Giauque, 1932
Clayton, J.O.; Giauque, W.F.,
The Heat Capacity and Entropy of Carbon Monoxide. Heat of Vaporization Vapor Pressure of Solid and Liquid. Free Energy to 5000 K from Spectroscopic Data,
J. Am. Chem. Soc., 1932, 54, 2610. [all data]
Gill and Morrison, 1966
Gill, E.K.; Morrison, J.A.,
Thermodynamic Properties of Condensed CO,
J. Chem. Phys., 1966, 45, 1585. [all data]
Cardoso, 1915
Cardoso, E.,
Study of the Critical Point of Several Difficultly LIquifiable Gases: Nitrogen, Carbon Monoxide, Oxygen and Methane,
J. Chim. Phys. Phys.-Chim. Biol., 1915, 13, 312. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Clayton and Giauque, 1932, 2
Clayton, J.O.; Giauque, W.F.,
The heat capacity and entropy of carbon monoxide. Heat of vaporization. Vapor pressures of solid and liquid. Free energy to 5000°K. From spectroscopic data,
J. Am. Chem. Soc., 1932, 54, 2610-2626. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Crommelin, Bijleveld, et al., 1931
Crommelin, C.A.; Bijleveld, W.J.; Brown, E.G.,
Proc. R. Acad. Sci. Amsterdam, 1931, 34, 1314. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Refaey and Franklin, 1976
Refaey, K.M.A.; Franklin, J.L.,
Endoergic ion-molecule-collision processes of negative ions. III. Collisions of I- on O2, CO and CO2,
Int. J. Mass Spectrom. Ion Phys., 1976, 20, 19. [all data]
Erman, Karawajczyk, et al., 1993
Erman, P.; Karawajczyk, A.; Rachlew-Kallne, E.; Stromholm, C.; Larsson, J.; Persson, A.; Zerne, R.,
Direct determination of the ionization potential of CO by resonantly enhanced multiphoton ionization mass spectrometry,
Chem. Phys. Lett., 1993, 215, 173. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Fock, Gurtler, et al., 1980
Fock, J.-H.; Gurtler, P.; Koch, E.E.,
Molecular Rydberg transitions in carbon monoxide: term value/ionization energy correlation of BF, CO and N2.,
Chem. Phys., 1980, 47, 87. [all data]
Hille and Mark, 1978
Hille, E.; Mark, T.D.,
Cross section for single and double ionization of carbon monoxide by electron impact from threshold up to 180 eV,
J. Chem. Phys., 1978, 69, 4600. [all data]
Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O.,
Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules,
J. Chem. Phys., 1974, 61, 516. [all data]
Natalis, 1973
Natalis, P.,
Contribution a la spectroscopie photoelectronique. Effets de l'autoionisation dans less spectres photoelectroniques de molecules diatomiques et triatomiques,
Acad. R. Belg. Mem. Cl. Sci. Collect. 8, 1973, 41, 1. [all data]
Ogawa and Ogawa, 1972
Ogawa, M.; Ogawa, S.,
Absorption spectrum of CO in the Hopfield helium continuum region, 600-1020 A,
J. Mol. Spectrosc., 1972, 41, 393. [all data]
Hotop and Niehaus, 1970
Hotop, H.; Niehaus, A.,
Reactions of excited atoms and molecules with atoms and molecules. V.Comparison of Penning electron and photoelectron spectra of H2, N2 and CO,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 415. [all data]
Collin and Natalis, 1969
Collin, J.E.; Natalis, P.,
Ionic states and photon impact-enhanced vibrational excitation in diatomic molecules by photoelectron spectroscopy. Photoelectron spectra of N2, CO and O2,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 231. [all data]
Turner and May, 1966
Turner, D.W.; May, D.P.,
Franck-Condon factors in ionization: experimental measurement using molecular photoelectron spectroscopy,
J. Chem. Phys., 1966, 45, 471. [all data]
Krupenie, 1966
Krupenie, P.H.,
The band spectrum of carbon monoxide,
Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. NSRDS-NBS, 1966, 5. [all data]
Cook, Metzger, et al., 1965
Cook, G.R.; Metzger, P.H.; Ogawa, M.,
Photoionization and absorption coefficients of CO in the 600 to 1000 A region,
Can. J. Phys., 1965, 43, 1706. [all data]
Potts and Williams, 1974
Potts, A.W.; Williams, T.A.,
The observation of "forbidden" transitions in He II photoelectron spectra,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 3. [all data]
Katrib, Debies, et al., 1973
Katrib, A.; Debies, T.P.; Colton, R.J.; Lee, T.H.; Rabalais, J.W.,
The use of differential photoionization cross sections as a function of excitation energy in assigning photoelectron spectra,
Chem. Phys. Lett., 1973, 22, 196. [all data]
Thomas, 1970
Thomas, T.D.,
X-ray photoelectron spectroscopy of carbon monoxide,
J. Chem. Phys., 1970, 53, 1744. [all data]
Oertel, Schenk, et al., 1980
Oertel, H.; Schenk, H.; Baumgartel, H.,
Ion pair formation from photon irradiation of O2, NO and CO in 17-30 eV,
Chem. Phys., 1980, 46, 251. [all data]
Smyth, Schiavone, et al., 1974
Smyth, K.C.; Schiavone, J.A.; Freund, R.S.,
Dissociative excitation of CO by electron impact: Translational spectroscopy of long-lived high-Rydberg fragment atoms,
J. Chem. Phys., 1974, 60, 1358. [all data]
Locht and Momigny, 1971
Locht, R.; Momigny, J.,
Mass spectrometric study of ion-pair processes in diatomic molecules: H2, CO, NO and O2,
Int. J. Mass Spectrom. Ion Phys., 1971, 7, 121. [all data]
Hierl and Franklin, 1967
Hierl, P.M.; Franklin, J.L.,
Appearance potentials and kinetic energies of ions from N2, CO, and NO,
J. Chem. Phys., 1967, 47, 3154. [all data]
Fineman and Petrocelli, 1961
Fineman, M.A.; Petrocelli, A.W.,
Molecular studies with a Lozier electron impact apparatus,
Planetary Space Sci., 1961, 3, 187. [all data]
Weissler, Samson, et al., 1959
Weissler, G.L.; Samson, J.A.R.; Ogawa, M.; Cook, G.R.,
Photoionization analysis by mass spectroscopy,
J. Opt. Soc. Am., 1959, 49, 338. [all data]
Meyer, Chen, et al., 1995
Meyer, F.; Chen, Y.M.; Armentrout, P.B.,
Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4),
J. Am. Chem. Soc., 1995, 117, 14, 4071, https://doi.org/10.1021/ja00119a023
. [all data]
Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y.,
A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method,
Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0
. [all data]
Hiraoka, Nasu, et al., 1996
Hiraoka, K.; Nasu, M.; Fujimaki, S.; Ignacio, E.W.; Yamabe, S.,
Gas-Phase Stability and Structure of the Cluster Ions CF3+(CO)n, CF3+(N2)n, CF3+((CF4)n, and CF4H+(CF4)n,
J. Phys. Chem., 1996, 100, 13, 5245, https://doi.org/10.1021/jp9530010
. [all data]
Villalta and Leopold, 1993
Villalta, P.W.; Leopold, D.G.,
A Study of FeCO- and the 3-Sigma(-) and 5-Sigma(-) States of FeCO by Negative Ion Photoelectron Spectroscopy,
J. Chem. Phys., 1993, 98, 10, 7730, https://doi.org/10.1063/1.464580
. [all data]
Sunderlin, Wang, et al., 1992
Sunderlin, L.S.; Wang, D.; Squires, R.R.,
Metal Carbonyl Bond Strengths in Fe(CO)n- and Ni(CO)n-,
J. Am. Chem. Soc., 1992, 114, 8, 2788, https://doi.org/10.1021/ja00034a004
. [all data]
Jennings, Headley, et al., 1982
Jennings, K.R.; Headley, J.V.; Mason, R.S.,
The Temperature Dependence of Ion - Molecule Association Reactions,
Int. J. Mass. Spectrom. Ion Phys, 1982, 45, 315. [all data]
Hiraoka, Saluja, et al., 1979
Hiraoka, K.; Saluja, P.P.S.; Kebarle, P.,
Stabilities of Complexes (N2)nH+, (CO)nH+ and (O2)nH+ for n = 1 to 7 Based on Gas Phase Ion Equilibrium Measurements,
Can. J. Chem., 1979, 57, 16, 2159, https://doi.org/10.1139/v79-346
. [all data]
Meot-Ner (Mautner) and Field, 1974
Meot-Ner (Mautner), M.; Field, F.H.,
Kinetics and Thermodynamics of the Association of CO+ with CO and of N2+ with N2 between 120 and 650 K,
J. Chem. Phys., 1974, 61, 9, 3742, https://doi.org/10.1063/1.1682560
. [all data]
Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T.,
Gas Phase Stabilities of the Cluster Ions H+(CO)2(CO)n, H+(N2)2(N2)n and H+(O2)2(O2)n with n = 1 - 14,
Chem. Phys., 1989, 137, 1-3, 345, https://doi.org/10.1016/0301-0104(89)87119-8
. [all data]
Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C.,
Laser photoelectron spectroscopy of the Formylf anion,
J. Chem. Phys., 1986, 84, 2520. [all data]
Stevens, Feigerle, et al., 1982
Stevens, A.E.; Feigerle, C.S.; Lineberger, W.C.,
Laser Photoelectron Spectrometry of Ni(CO)n-, n=1-3,
J. Am. Chem. Soc., 1982, 104, 19, 5026, https://doi.org/10.1021/ja00383a004
. [all data]
Norwood, Guo, et al., 1988
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y.,
A Photoion - Photoelectron Coincidence Study of (CO)2,
J. Chem. Phys., 1988, 88, 6, 4098, https://doi.org/10.1063/1.453814
. [all data]
Linn, Ono, et al., 1981
Linn, S.H.; Ono, Y.; Ng, C.Y.,
Molecular Beam Photoionization Study of CO, N2, and NO Dimers and Clusters,
J. Chem. Phys., 1981, 74, 6, 3342, https://doi.org/10.1063/1.441486
. [all data]
Munson and Franlin, 1962
Munson, M.S.B. Field; Franlin, J.L.,
High-Pressure Mass Spectrometric Study of Reactions of Rare Gases with N2 and CO,
J. Chem. Phys., 1962, 37, 8, 1790, https://doi.org/10.1063/1.1733370
. [all data]
Chong and Franklin, 1971
Chong, S.L.; Franklin, J.L.,
High-Pressure Ion-Molecule Reactions in Carbon Monoxide and Carbon Monoxide - Methane Mixtures,
J. Chem. Phys., 1971, 54, 4, 1487, https://doi.org/10.1063/1.1675043
. [all data]
Hiraoka and Mori, 1991
Hiraoka, K.; Mori, T.,
On the formation of the Isomeric Cluster Ions (CO)n+,
J. Chem. Phys., 1991, 94, 4, 2697, https://doi.org/10.1063/1.459844
. [all data]
Grushow and Ervin, 1997
Grushow, A.; Ervin, K.M.,
Ligand and Metal Binding Energies in Platinum Carbonyl Cluster Anions: Collision Induced Dissociation of PtM- and Ptm(CO)n-,
J. Chem. Phys., 1997, 106, 23, 9580, https://doi.org/10.1063/1.474116
. [all data]
Shi, Spasov, et al., 2001
Shi, Y.; Spasov, V.A.; Ervin, K.M.,
Photodesorption of carbonyl from Pt-3(CO)(n)(-) (n=1-6),
Int. J. Mass Spectrom., 2001, 204, 1-3, 197-208, https://doi.org/10.1016/S1387-3806(00)00364-X
. [all data]
Sunderlin, Wang, et al., 1993
Sunderlin, L.S.; Wang, D.N.; Squires, R.R.,
Bond Strengths in 1st-Row-Metal Carbonyl Anions,
J. Am. Chem. Soc., 1993, 115, 25, 12060, https://doi.org/10.1021/ja00078a051
. [all data]
Sunderlin and Squires, 1999
Sunderlin, L.S.; Squires, R.R.,
Bond strengths in cyclopentadienyl metal carbonyl anions,
Int. J. Mass Spectrom., 1999, 183, 149-161, https://doi.org/10.1016/S1387-3806(98)14230-6
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Carpenter, van Koppen, et al., 1995
Carpenter, C.J.; van Koppen, P.A.M.; Bowers, M.T.,
Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone,
J. Am. Chem. Soc., 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021
. [all data]
Goebel, Haynes, et al., 1995
Goebel, S.; Haynes, C.L.; Khan, F.A.; Armentrout, P.B.,
Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4,
J. Am. Chem. Soc., 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Khan, Clemmer, et al., 1993
Khan, F.A.; Clemmer, D.E.; Schultz, R.H.; Armentrout, P.B.,
Sequential Bond Energies of Cr(CO)x+, x=1-6,
J. Phys. Chem., 1993, 97, 30, 7978, https://doi.org/10.1021/j100132a029
. [all data]
Tecklenberg, Bricker, et al., 1988
Tecklenberg, R.E.; Bricker, D.L.; Russel, D.H.,
Laser - Ion Beam Photodissociation Studies of Ionic Cluster Fragments of Iron Carbonyls: Fe(x)(CO)y+ (x = 1 - 3; y = 0 - 6),
Organometallics, 1988, 7, 12, 2506, https://doi.org/10.1021/om00102a013
. [all data]
Praxmarer, Jordan, et al., 1993
Praxmarer, C. Hansel; Jordan, A.; Kraus, H.; Lindinger, W.,
Reactions of Kr2+ with Various Neutrals,
Int.J. Mass Spectrom. Ion. Proc., 1993, 129, 121, https://doi.org/10.1016/0168-1176(93)87036-R
. [all data]
Wadt, 1978
Wadt, W.R.,
The Electronic States of Ar2+, Kr2+, Xe2+. I. Potential Curves with and without Spin-Orbit Coupling,
J. Chem. Phys., 1978, 68, 2, 402, https://doi.org/10.1063/1.435773
. [all data]
Radzig and Smirnov, 1985
Radzig, R.; Smirnov, B.M.,
Reference Data on Atoms in Molecules and Ions, Springer, Berlin, 1985. [all data]
Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B.,
Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO),
Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8
. [all data]
Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B.,
Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6,
J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t
. [all data]
Dearden, Hayashibara, et al., 1989
Dearden, D.V.; Hayashibara, K.; Beauchamp, J.L.; Kirschner, N.J.; Van Koppen, P.A.M.; Bowers, M.T.,
Fundamental Studies of the Energetics and Dynamics of Ligand Dissociation and Exchange Processes at Transition - Metal Centers in the Gas Phase: Mn(COx)+, x = 1 - 6,
J. Am. Chem. Soc., 1989, 111, 7, 2401, https://doi.org/10.1021/ja00189a005
. [all data]
Castleman, Peterson, et al., 1983
Castleman, A.W.; Peterson, K.I.; Upschulte, B.L.; Schelling, F.J.,
Energetics and Structure of Na+ Cluster Ions,
Int. J. Mass Spectrom. Ion Phys., 1983, 47, 203, https://doi.org/10.1016/0020-7381(83)87171-X
. [all data]
Khan, Steele, et al., 1995
Khan, F.A.; Steele, D.L.; Armentrout, P.B.,
Ligand effects in organometallic thermochemistry: The sequential bond energies of Ni(CO)x+ and Ni(N2)x+ (x = 1-4) and Ni(NO)x+ (x = 1-3) [Data derived from reported bond energies taking value of 8.273±0.046 eV for IE[Ni(CO)4]],
J. Phys. Chem., 1995, 99, 7819. [all data]
Adams and Bohme, 1970
Adams, N.G.; Bohme, D.,
Flowing Afterglow Studies of Formation and Reactions of Cluster Ions of O2+, O2-, and O-,
J. Chem. Phys., 1970, 52, 6, 3133, https://doi.org/10.1063/1.1673449
. [all data]
Zhang and Armentrout, 2001
Zhang, X.-G.; Armentrout, P.B.,
Sequential Bond Energies of Pt(CO)x, (x=1-4) Determined by Collision-Induced Dissociation,
Organometallics, 2001, 20, 20, 4266, https://doi.org/10.1021/om010390d
. [all data]
Meyer and Armentrout, 1996
Meyer, F.; Armentrout, P.B.,
Sequential Bond Energies of Ti(CO)x+, x=1-7,
Molec. Phys., 1996, 88, 187. [all data]
Sievers and Armentrout, 1995
Sievers, M.R.; Armentrout, P.B.,
Collision-Induced Dissociation Studies of V(CO)x+, x = 1-7: Sequential Bond Energies and the Heat of Formation of V(CO)6,
J. Phys. Chem., 1995, 99, 20, 8135, https://doi.org/10.1021/j100020a041
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas,1 bar Entropy of gas at standard conditions (1 bar) T Temperature Tboil Boiling point Tc Critical temperature Ttriple Triple point temperature ΔfH(+) ion,0K Enthalpy of formation of positive ion at 0K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.