Acetone

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-218.5 ± 0.59kJ/molCmWiberg, Crocker, et al., 1991ALS
Δfgas-217.1 ± 0.50kJ/molCmChao and Zwolinski, 1976ALS
Δfgas-217.5 ± 0.67kJ/molEqkBuckley and Herington, 1965ALS
Δfgas-216.4kJ/molCmPennington and Kobe, 1957ALS
Quantity Value Units Method Reference Comment
Δcgas-1821.4 ± 0.84kJ/molCcbMiles and Hunt, 1941Corresponding Δfgas = -216.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
51.73100.Chao J., 1986p=1 bar. Recommended values agree with results of statistical calculations [ Pennington R.E., 1957, Chao J., 1976] within 0.5-2.8 J/mol*K.; GT
56.18150.
61.20200.
71.09273.15
75.02 ± 0.11298.15
75.32300.
92.06400.
108.08500.
122.20600.
134.43700.
145.00800.
154.15900.
162.091000.
168.961100.
174.921200.
180.091300.
184.581400.
188.491500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
80.58 ± 0.81332.6Chao J., 1976Experimental data [ Vilcu R., 1975] differ substantially from data selected here. Their correctness seems to be doubtful (see [ Kabo G.J., 1995]). Please also see Bennewitz K., 1938, Collins B.T., 1949, Pennington R.E., 1957.; GT
80.96 ± 0.81334.
81.50 ± 0.16338.2
83.35 ± 0.83347.8
83.39 ± 0.83348.
87.03 ± 0.87363.
87.19 ± 0.17371.2
87.53 ± 0.88372.3
89.24 ± 0.89378.
91.84 ± 0.92393.
92.93 ± 0.19405.2
94.18 ± 0.94408.
93.30410.
96.8 ± 1.9422.6
99.4 ± 2.0428.
100.5 ± 2.0438.
98.66 ± 0.20439.2

Phase change data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil329.3 ± 0.3KAVGN/AAverage of 117 out of 129 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus178.7 ± 0.9KAVGN/AAverage of 11 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple178.5KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple176.6KN/AKelley, 1929Crystal phase 1 phase; Uncertainty assigned by TRC = 0.15 K; deduced from appearance of a small maximum in heat capacity; TRC
Ttriple177.6KN/AParks and Kelley, 1928Uncertainty assigned by TRC = 0.3 K; TRC
Ttriple177.6KN/AParks and Kelley, 1925Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc508. ± 2.KAVGN/AAverage of 19 values; Individual data points
Quantity Value Units Method Reference Comment
Pc48. ± 4.barAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
ρc4.63mol/lN/ACampbell and Chatterjee, 1969Uncertainty assigned by TRC = 0.05 mol/l; TRC
ρc4.03mol/lN/ACampbell and Chatterjee, 1968Uncertainty assigned by TRC = 0.026 mol/l; TRC
ρc4.79mol/lN/AKobe, Crawford, et al., 1955Uncertainty assigned by TRC = 0.17 mol/l; TRC
ρc4.70mol/lN/ARosenbaum, 1951Uncertainty assigned by TRC = 0.02 mol/l; TRC
ρc4.34mol/lN/AHerz and Neukirch, 1923Uncertainty assigned by TRC = 0.03 mol/l; TRC
Quantity Value Units Method Reference Comment
Δvap31.27kJ/molN/AMajer and Svoboda, 1985 
Δvap31.3kJ/molN/AAmbrose, Ellender, et al., 1975AC
Δvap29.7 ± 0.004kJ/molVMathews, 1926ALS

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
329.30.027Buckingham and Donaghy, 1982BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
29.1329.3N/AMajer and Svoboda, 1985 
32.1308.N/ASoni, Ramjugernath, et al., 2008Based on data from 298. to 318. K.; AC
29.9344.AStephenson and Malanowski, 1987Based on data from 329. to 488. K.; AC
32.9228.AStephenson and Malanowski, 1987Based on data from 178. to 243. K.; AC
33.8254.AStephenson and Malanowski, 1987Based on data from 203. to 269. K.; AC
30.6338.AStephenson and Malanowski, 1987Based on data from 323. to 379. K.; AC
29.5389.AStephenson and Malanowski, 1987Based on data from 374. to 464. K.; AC
29.7472.AStephenson and Malanowski, 1987Based on data from 457. to 508. K.; AC
32.8274.AStephenson and Malanowski, 1987Based on data from 259. to 351. K. See also Ambrose, Sprake, et al., 1974 and Ambrose, Ellender, et al., 1975.; AC
32.7276.A,EBStephenson and Malanowski, 1987Based on data from 261. to 328. K. See also Boublík and Aim, 1972.; AC
31.9300.EBBaliah and Gnanasekaran, 1986Based on data from 285. to 329. K.; AC
26.1373.CDmitriev, Kachurina, et al., 1986AC
21.7423.CDmitriev, Kachurina, et al., 1986AC
15.3473.CDmitriev, Kachurina, et al., 1986AC
9.2498.CDmitriev, Kachurina, et al., 1986AC
31.8319.N/ACastellari, Francesconi, et al., 1984Based on data from 305. to 333. K.; AC
32.6285.N/ASokolov, Zhilina, et al., 1963Based on data from 278. to 293. K.; AC
31.1319.N/ABrown and Smith, 1957Based on data from 310. to 329. K.; AC
29.09338.CPennington and Kobe, 1957ALS
35.253.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
32.1293.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC
30.7313.MGFelsing and Durban, 1926Based on data from 204. to 339. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
300. to 345.46.950.2826508.2Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
259.16 to 507.604.424481312.253-32.445Ambrose, Sprake, et al., 1974Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
5.715176.62Kelley, 1929, 2DH
5.72176.6Domalski and Hearing, 1996AC
5.690177.6Parks and Kelley, 1928, 2DH
4.770178.5Maass and Walbauer, 1925DH
5.690177.6Parks and Kelley, 1925, 2DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
32.36176.62Kelley, 1929, 2DH
32.0177.6Parks and Kelley, 1928, 2DH
26.7178.5Maass and Walbauer, 1925DH
32.03177.6Parks and Kelley, 1925, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C3H6O+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.703 ± 0.006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)812.kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity782.1kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
0.00152EFDDesfrancois, Abdoul-Carime, et al., 1994EA: 1.5 meV. Dipole-bound state.; B

Proton affinity at 298K

Proton affinity (kJ/mol) Reference Comment
>815.2Bouchoux, Buisson, et al., 2003MM
>814.3Bouchoux, Buisson, et al., 2003MM
>812.6 ± 0.2Bouchoux, Buisson, et al., 2003MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
811.5 ± 3.4Bouchoux and Salpin, 1999T = 298K; MM

Gas basicity at 298K

Gas basicity (review) (kJ/mol) Reference Comment
784.7Bouchoux, Buisson, et al., 2003MM
782.2Bouchoux, Buisson, et al., 2003MM
782.0 ± 0.2Bouchoux, Buisson, et al., 2003MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM
782.1 ± 1.5Bouchoux and Salpin, 1999T = 298K; MM

Ionization energy determinations

IE (eV) Method Reference Comment
9.70PITraeger, McLouglin, et al., 1982LBLHLM
9.694 ± 0.006PITrott, Blais, et al., 1978LLK
9.68PIStaley, Wieting, et al., 1977LLK
9.709 ± 0.005PEHernandez, Masclet, et al., 1977LLK
9.71 ± 0.03EIMouvier and Hernandez, 1975LLK
9.71 ± 0.01PEMouvier and Hernandez, 1975LLK
9.71PETam, Yee, et al., 1974LLK
9.71SOgata, Kitayama, et al., 1974LLK
9.700 ± 0.001PIKnowles and Nicholson, 1974LLK
9.705SHuebner, Celotta, et al., 1973LLK
9.71 ± 0.01PIPotapov and Sorokin, 1972LLK
9.75 ± 0.025PEJohnstone and Mellon, 1972LLK
9.72PEBrundle, Robin, et al., 1972LLK
9.74EIJohnstone, Mellon, et al., 1971LLK
9.71 ± 0.01PECocksey, Eland, et al., 1971LLK
9.74 ± 0.03EIJohnstone, Mellon, et al., 1970RDSH
9.68PEDewar and Worley, 1969RDSH
9.71 ± 0.01PIPotapov, Filyugina, et al., 1968RDSH
9.7 ± 0.1EIDorman, 1965RDSH
9.68 ± 0.02PIMurad and Inghram, 1964RDSH
9.67PEAl-Joboury and Turner, 1964RDSH
9.71 ± 0.03PIVilesov, 1960RDSH
9.71 ± 0.03PIVilesov and Terenin, 1957RDSH
9.69 ± 0.01PIWatanabe, 1954RDSH
9.705SWatanabe, 1954RDSH
9.8PEBieri, Asbrink, et al., 1982Vertical value; LBLHLM
9.72PEKobayashi, 1978Vertical value; LLK
9.68PEBenoit and Harrison, 1977Vertical value; LLK
9.71 ± 0.02PEYoung and Cheng, 1976Vertical value; LLK
9.5PERao, 1975Vertical value; LLK
9.70PEKimura, Katsumata, et al., 1975Vertical value; LLK
9.709PEAue, Webb, et al., 1975Vertical value; LLK
9.71PEKelder, Cerfontain, et al., 1974Vertical value; LLK
9.72PEHentrich, Gunkel, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+15.61?PEPowis and Danby, 1979LLK
CH3+15.2?EIMajer, Olavesen, et al., 1971LLK
CH3+14.93?EIPotzinger and Bunau, 1969RDSH
CH3+15.36?EIHaney and Franklin, 1969RDSH
C2H2O+10.7 ± 0.1CH4EIShigorin, Filyugina, et al., 1966RDSH
C2H3+16.9?EIKanomata, 1961RDSH
C2H3O+10.38CH3PITraeger, McLouglin, et al., 1982LBLHLM
C2H3O+12.22CH3PEPowis and Danby, 1979LLK
C2H3O+10.52 ± 0.02CH3PITrott, Blais, et al., 1978LLK
C2H3O+10.36CH3PIStaley, Wieting, et al., 1977LLK
C2H3O+10.30CH3EIMouvier and Hernandez, 1975LLK
C2H3O+10.42 ± 0.03CH3PIPotapov and Sorokin, 1972LLK
C2H3O+10.28 ± 0.05CH3EIJohnstone and Mellon, 1972LLK
C2H3O+11.3CH3EIMajer, Olavesen, et al., 1971LLK
C2H3O+10.28CH3EIJohnstone, Mellon, et al., 1970RDSH
C2H3O+10.42CH3PIPotapov, Filyugina, et al., 1968RDSH
C2H3O+10.2 ± 0.1CH3EIDorman, 1965RDSH
C2H3O+10.37CH3PIMurad and Inghram, 1964, 2RDSH
C3H4O+15.2 ± 0.15H2EIShigorin, Filyugina, et al., 1966RDSH
C3H5O+13.1 ± 0.2HEIPotapov and Shigorin, 1966RDSH

De-protonation reactions

C3H5O- + Hydrogen cation = Acetone

By formula: C3H5O- + H+ = C3H6O

Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molD-EABrinkman, Berger, et al., 1993gas phase; B
Δr1544. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1546. ± 11.kJ/molG+TSCumming and Kebarle, 1978gas phase; B
Δr1538. ± 7.5kJ/molEIAEMuftakhov, Vasil'ev, et al., 1999gas phase; B
Quantity Value Units Method Reference Comment
Δr1514. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1516. ± 8.4kJ/molIMRECumming and Kebarle, 1978gas phase; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Acetone = (Silver ion (1+) • Acetone)

By formula: Ag+ + C3H6O = (Ag+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr160. ± 19.kJ/molRAKHo, Yang, et al., 1997RCD

(Aluminum ion (1+) • Acetone) + Acetone = (Aluminum ion (1+) • 2Acetone)

By formula: (Al+ • C3H6O) + C3H6O = (Al+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr118.kJ/molHPMSBauschlicher, Bouchard, et al., 1991gas phase; laser desorption; M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KHPMSBauschlicher, Bouchard, et al., 1991gas phase; laser desorption; M

CH6N+ + Acetone = (CH6N+ • Acetone)

By formula: CH6N+ + C3H6O = (CH6N+ • C3H6O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr100.kJ/molPHPMSMeot-Ner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KPHPMSMeot-Ner, 1984gas phase; M

CN- + Acetone = (CN- • Acetone)

By formula: CN- + C3H6O = (CN- • C3H6O)

Quantity Value Units Method Reference Comment
Δr62. ± 15.kJ/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr94.1J/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr33. ± 9.6kJ/molIMRELarson and McMahon, 1987gas phase; B,M

C2H3O+ + Acetone = (C2H3O+ • Acetone)

By formula: C2H3O+ + C3H6O = (C2H3O+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr52.3kJ/molPITrott, Blais, et al., 1978gas phase; M

MeCO2 anion + Acetone = (MeCO2 anion • Acetone)

By formula: C2H3O2- + C3H6O = (C2H3O2- • C3H6O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr65.7 ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B,M
Quantity Value Units Method Reference Comment
Δr91.6J/mol*KPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr38. ± 4.2kJ/molTDAsMeot-ner, 1988gas phase; B

(MeCO2 anion • Acetone) + Acetone = (MeCO2 anion • 2Acetone)

By formula: (C2H3O2- • C3H6O) + C3H6O = (C2H3O2- • 2C3H6O)

Bond type: Hydrogen bonds of deprotonated acids to ketones/

Quantity Value Units Method Reference Comment
Δr45.2kJ/molPHPMSMeot-ner, 1988gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSMeot-ner, 1988gas phase; M

C2H7OS+ + Acetone = (C2H7OS+ • Acetone)

By formula: C2H7OS+ + C3H6O = (C2H7OS+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr101.kJ/molPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KPHPMSLau, Saluja, et al., 1980gas phase; M

C3H5O+ + Acetone = (C3H5O+ • Acetone)

By formula: C3H5O+ + C3H6O = (C3H5O+ • C3H6O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
35.295.FAMackay, Rakshit, et al., 1982gas phase; M

C3H5O- + Acetone = (C3H5O- • Acetone)

By formula: C3H5O- + C3H6O = (C3H5O- • C3H6O)

Quantity Value Units Method Reference Comment
Δr>108.4kJ/molIMRBSheldon and Bowie, 1983gas phase; MeOH..F- + Me2CO ->; B
Quantity Value Units Method Reference Comment
Δr>82.42kJ/molIMRBSheldon and Bowie, 1983gas phase; MeOH..F- + Me2CO ->; B

C3H6O+ + Acetone = (C3H6O+ • Acetone)

By formula: C3H6O+ + C3H6O = (C3H6O+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr51.9kJ/molPITrott, Blais, et al., 1978gas phase; ΔrH>; M

C3H7O+ + Acetone = (C3H7O+ • Acetone)

By formula: C3H7O+ + C3H6O = (C3H7O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr128.kJ/molPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr126.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr124.kJ/molPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr132.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr126.kJ/molPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KPHPMSMeot-Ner (Mautner) and Sieck, 1991gas phase; M
Δr128.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr123.J/mol*KPHPMSHiraoka and Takimoto, 1986gas phase; M
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr127.J/mol*KPHPMSLau, Saluja, et al., 1980gas phase; M
Quantity Value Units Method Reference Comment
Δr93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

(C3H7O+ • Acetone) + Acetone = (C3H7O+ • 2Acetone)

By formula: (C3H7O+ • C3H6O) + C3H6O = (C3H7O+ • 2C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr51.0kJ/molPHPMSHiraoka, Morise, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr96.2J/mol*KPHPMSHiraoka, Morise, et al., 1986gas phase; M

(C3H7O+ • 2Acetone) + Acetone = (C3H7O+ • 3Acetone)

By formula: (C3H7O+ • 2C3H6O) + C3H6O = (C3H7O+ • 3C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr36.kJ/molPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr71.1J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M

C3H7O2+ + Acetone = (C3H7O2+ • Acetone)

By formula: C3H7O2+ + C3H6O = (C3H7O2+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr126.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr89.5kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9Si+ + Acetone = (C3H9Si+ • Acetone)

By formula: C3H9Si+ + C3H6O = (C3H9Si+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr188.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
131.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + Acetone = (C3H9Sn+ • Acetone)

By formula: C3H9Sn+ + C3H6O = (C3H9Sn+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr156.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr88.7kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

pyrrolide anion + Acetone = (pyrrolide anion • Acetone)

By formula: C4H4N- + C3H6O = (C4H4N- • C3H6O)

Quantity Value Units Method Reference Comment
Δr54.8 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr85.8J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

(pyrrolide anion • Acetone) + Acetone = (pyrrolide anion • 2Acetone)

By formula: (C4H4N- • C3H6O) + C3H6O = (C4H4N- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr44.8kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C4H9O+ + Acetone = (C4H9O+ • Acetone)

By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr130.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr128.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr91.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C4H9O+ + Acetone = (C4H9O+ • Acetone)

By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr122.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr86.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

cyclopentadienide anion + Acetone = (cyclopentadienide anion • Acetone)

By formula: C5H5- + C3H6O = (C5H5- • C3H6O)

Quantity Value Units Method Reference Comment
Δr56.5 ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B,M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr29. ± 4.2kJ/molTDAsMeot-ner, 1988, 2gas phase; B

(cyclopentadienide anion • Acetone) + Acetone = (cyclopentadienide anion • 2Acetone)

By formula: (C5H5- • C3H6O) + C3H6O = (C5H5- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr41.kJ/molPHPMSMeot-ner, 1988, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr68.6J/mol*KPHPMSMeot-ner, 1988, 2gas phase; M

C5H11O+ + Acetone = (C5H11O+ • Acetone)

By formula: C5H11O+ + C3H6O = (C5H11O+ • C3H6O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr119.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr121.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr83.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H5NO2- + Acetone = (C6H5NO2- • Acetone)

By formula: C6H5NO2- + C3H6O = (C6H5NO2- • C3H6O)

Quantity Value Units Method Reference Comment
Δr59.41 ± 0.84kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr26.8 ± 1.7kJ/molTDAsSieck, 1985gas phase; B

Chlorine anion + Acetone = (Chlorine anion • Acetone)

By formula: Cl- + C3H6O = (Cl- • C3H6O)

Quantity Value Units Method Reference Comment
Δr56. ± 6.kJ/molAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr76.1J/mol*KPHPMSSieck, 1985gas phase; M
Δr82.0J/mol*KPHPMSFrench, Ikuta, et al., 1982gas phase; M
Δr71.5J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Δr82.4J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr33.8 ± 0.84kJ/molTDAsBofdanov and McMahon, 2002gas phase; B
Δr30.5kJ/molTDAsHiraoka, Morise, et al., 1986gas phase; B
Δr36.8 ± 1.3kJ/molTDAsSieck, 1985gas phase; B
Δr34. ± 8.4kJ/molIMRELarson and McMahon, 1984, 2gas phase; B,M
Δr33. ± 8.4kJ/molTDAsFrench, Ikuta, et al., 1982gas phase; B

(Chlorine anion • Acetone) + Acetone = (Chlorine anion • 2Acetone)

By formula: (Cl- • C3H6O) + C3H6O = (Cl- • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr48.1 ± 4.2kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; B,M
Quantity Value Units Method Reference Comment
Δr84.9J/mol*KPHPMSHiraoka, Takimoto, et al., 1986gas phase; M
Quantity Value Units Method Reference Comment
Δr23. ± 9.2kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; B

(Chlorine anion • 2Acetone) + Acetone = (Chlorine anion • 3Acetone)

By formula: (Cl- • 2C3H6O) + C3H6O = (Cl- • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr43.5 ± 8.4kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; Entropy estimated; B,M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Takimoto, et al., 1986gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr16. ± 19.kJ/molTDAsHiraoka, Takimoto, et al., 1986gas phase; Entropy estimated; B

Chromium ion (1+) + Acetone = (Chromium ion (1+) • Acetone)

By formula: Cr+ + C3H6O = (Cr+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr175. ± 14.kJ/molRAKLin, Chen, et al., 1997RCD

Copper ion (1+) + Acetone = (Copper ion (1+) • Acetone)

By formula: Cu+ + C3H6O = (Cu+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr199. ± 4.2kJ/molCIDTChu, 2002RCD
Δr62.3kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr31.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Copper ion (1+) • Acetone) + Acetone = (Copper ion (1+) • 2Acetone)

By formula: (Cu+ • C3H6O) + C3H6O = (Cu+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr210. ± 7.1kJ/molCIDTChu, 2002RCD
Δr64.9kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M
Quantity Value Units Method Reference Comment
Δr33.kJ/molHPMSEl-Shall, Schriver, et al., 1989gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M

(Copper ion (1+) • 2Acetone) + Acetone = (Copper ion (1+) • 3Acetone)

By formula: (Cu+ • 2C3H6O) + C3H6O = (Cu+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr64. ± 2.kJ/molCIDTChu, 2002RCD

(Copper ion (1+) • 3Acetone) + Acetone = (Copper ion (1+) • 4Acetone)

By formula: (Cu+ • 3C3H6O) + C3H6O = (Cu+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr61.1 ± 5.0kJ/molCIDTChu, 2002RCD

NH4+ + Acetone = (NH4+ • Acetone)

By formula: H4N+ + C3H6O = (H4N+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr118.kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • Acetone) + Acetone = (NH4+ • 2Acetone)

By formula: (H4N+ • C3H6O) + C3H6O = (H4N+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr84.9kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 2Acetone) + Acetone = (NH4+ • 3Acetone)

By formula: (H4N+ • 2C3H6O) + C3H6O = (H4N+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr109.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 3Acetone) + Acetone = (NH4+ • 4Acetone)

By formula: (H4N+ • 3C3H6O) + C3H6O = (H4N+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr54.8kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M
Quantity Value Units Method Reference Comment
Δr102.J/mol*KPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; M

(NH4+ • 4Acetone) + Acetone = (NH4+ • 5Acetone)

By formula: (H4N+ • 4C3H6O) + C3H6O = (H4N+ • 5C3H6O)

Quantity Value Units Method Reference Comment
Δr42.3kJ/molPHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KN/AMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
19.215.PHPMSMeot-Ner (Mautner), Sieck, et al., 1996gas phase; Entropy change calculated or estimated; M

Iodide + Acetone = (Iodide • Acetone)

By formula: I- + C3H6O = (I- • C3H6O)

Quantity Value Units Method Reference Comment
Δr50.2 ± 4.2kJ/molTDAsCaldwell, Masucci, et al., 1989gas phase; B,M

Potassium ion (1+) + Acetone = (Potassium ion (1+) • Acetone)

By formula: K+ + C3H6O = (K+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr102.kJ/molCIDTKlassen, Anderson, et al., 1996RCD
Δr110.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • Acetone) + Acetone = (Potassium ion (1+) • 2Acetone)

By formula: (K+ • C3H6O) + C3H6O = (K+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr88.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KHPMSSunner, 1984gas phase; M

(Potassium ion (1+) • 2Acetone) + Acetone = (Potassium ion (1+) • 3Acetone)

By formula: (K+ • 2C3H6O) + C3H6O = (K+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr67.kJ/molHPMSSunner, 1984gas phase; M
Quantity Value Units Method Reference Comment
Δr100.J/mol*KHPMSSunner, 1984gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
38.293.ES/HPMSBlades, Klassen, et al., 1995gas phase; M

(Potassium ion (1+) • 3Acetone) + Acetone = (Potassium ion (1+) • 4Acetone)

By formula: (K+ • 3C3H6O) + C3H6O = (K+ • 4C3H6O)

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
25.293.ES/HPMSBlades, Klassen, et al., 1995gas phase; M

Lithium ion (1+) + Acetone = (Lithium ion (1+) • Acetone)

By formula: Li+ + C3H6O = (Li+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr186.kJ/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Magnesium ion (1+) + Acetone = (Magnesium ion (1+) • Acetone)

By formula: Mg+ + C3H6O = (Mg+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr280. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Manganese ion (1+) + Acetone = (Manganese ion (1+) • Acetone)

By formula: Mn+ + C3H6O = (Mn+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr159. ± 14.kJ/molRAKLin, Chen, et al., 1997RCD

Nitric oxide anion + Acetone = (Nitric oxide anion • Acetone)

By formula: NO- + C3H6O = (NO- • C3H6O)

Quantity Value Units Method Reference Comment
Δr172.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Nitrogen oxide anion + Acetone = (Nitrogen oxide anion • Acetone)

By formula: NO2- + C3H6O = (NO2- • C3H6O)

Quantity Value Units Method Reference Comment
Δr66.53 ± 0.42kJ/molTDAsSieck, 1985gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KPHPMSSieck, 1985gas phase; M
Quantity Value Units Method Reference Comment
Δr34.3 ± 0.84kJ/molTDAsSieck, 1985gas phase; B

Sodium ion (1+) + Acetone = (Sodium ion (1+) • Acetone)

By formula: Na+ + C3H6O = (Na+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr131. ± 4.2kJ/molCIDTArmentrout and Rodgers, 2000RCD
Δr129. ± 2.kJ/molHPMSHoyau, Norrman, et al., 1999See 96KLA/AND?; RCD
Δr102.kJ/molCIDTKlassen, Anderson, et al., 1996RCD
Δr140. ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr87900.J/mol*KHPMSHoyau, Norrman, et al., 1999See 96KLA/AND?; RCD
Δr109.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
101.298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

(Sodium ion (1+) • Acetone) + Acetone = (Sodium ion (1+) • 2Acetone)

By formula: (Na+ • C3H6O) + C3H6O = (Na+ • 2C3H6O)

Quantity Value Units Method Reference Comment
Δr105. ± 0.4kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • 2Acetone) + Acetone = (Sodium ion (1+) • 3Acetone)

By formula: (Na+ • 2C3H6O) + C3H6O = (Na+ • 3C3H6O)

Quantity Value Units Method Reference Comment
Δr86.6 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • 3Acetone) + Acetone = (Sodium ion (1+) • 4Acetone)

By formula: (Na+ • 3C3H6O) + C3H6O = (Na+ • 4C3H6O)

Quantity Value Units Method Reference Comment
Δr61.5 ± 0.8kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr114.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Chao and Zwolinski, 1976
Chao, J.; Zwolinski, B.J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G., Equilibria in some secondary alcohol + hydrogen + ketone systems, Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]

Pennington and Kobe, 1957
Pennington, R.E.; Kobe, K.A., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Miles and Hunt, 1941
Miles, C.B.; Hunt, H., Heats of combustion. I. The heat of combustion of acetone, J. Phys. Chem., 1941, 45, 1346-1359. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Pennington R.E., 1957
Pennington R.E., The thermodynamic properties of acetone, J. Am. Chem. Soc., 1957, 79, 300-305. [all data]

Chao J., 1976
Chao J., Ideal gas thermodynamic properties of propanone and 2-butanone, J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]

Vilcu R., 1975
Vilcu R., Determination of heat capacities of some alcohols and ketones in vapor phase, Rev. Roum. Chim., 1975, 20, 603-609. [all data]

Kabo G.J., 1995
Kabo G.J., Thermodynamic properties, conformation, and phase transitions of cyclopentanol, J. Chem. Thermodyn., 1995, 27, 953-967. [all data]

Bennewitz K., 1938
Bennewitz K., Molar heats of vapor organic compounds, Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]

Collins B.T., 1949
Collins B.T., The heat capacity of organic vapors. VI. Acetone, J. Am. Chem. Soc., 1949, 71, 2929-2930. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Kelley, 1929
Kelley, K.K., The heat capacities of isopropyl alcohol and acetone from 16 to 298 K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-51. [all data]

Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-50. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds, J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]

Campbell and Chatterjee, 1969
Campbell, A.N.; Chatterjee, R.M., The critical constants and orthobaric densities of acetone, chloroform benzene, and carbon tetrachloride, Can. J. Chem., 1969, 47, 3893-8. [all data]

Campbell and Chatterjee, 1968
Campbell, A.N.; Chatterjee, R.M., Orthobaric Data of Certain Pure Liquids in the Neighborhood of the Critical Point, Can. J. Chem., 1968, 46, 575-81. [all data]

Kobe, Crawford, et al., 1955
Kobe, K.A.; Crawford, H.R.; Stephenson, R.W., Critical Properties and Vapor Pressures of Some Ketones, Ind. Eng. Chem., 1955, 47, 1767-72. [all data]

Rosenbaum, 1951
Rosenbaum, M., , M.S. Thesis, Univ. Tex., Austin, TX, 1951. [all data]

Herz and Neukirch, 1923
Herz, W.; Neukirch, E., On Knowldge of the Critical State, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ambrose, Ellender, et al., 1975
Ambrose, D.; Ellender, J.H.; Lees, E.B.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXVIII. Vapour pressures of some aliphatic ketones, The Journal of Chemical Thermodynamics, 1975, 7, 5, 453-472, https://doi.org/10.1016/0021-9614(75)90275-X . [all data]

Mathews, 1926
Mathews, J.H., The accurate measurement of heats of vaporization of liquids, J. Am. Chem. Soc., 1926, 48, 562-576. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Soni, Ramjugernath, et al., 2008
Soni, Minal; Ramjugernath, Deresh; Raal, J. David, Vapor--Liquid Equilibrium for Binary Systems of 2,3-Pentanedione with Diacetyl and Acetone, J. Chem. Eng. Data, 2008, 53, 3, 745-749, https://doi.org/10.1021/je7005924 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Sprake, et al., 1974
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone, The Journal of Chemical Thermodynamics, 1974, 6, 7, 693-700, https://doi.org/10.1016/0021-9614(74)90119-0 . [all data]

Boublík and Aim, 1972
Boublík, T.; Aim, K., Heats of vaporization of simple non-spherical molecule compounds, Collect. Czech. Chem. Commun., 1972, 37, 11, 3513-3521, https://doi.org/10.1135/cccc19723513 . [all data]

Baliah and Gnanasekaran, 1986
Baliah, V.; Gnanasekaran, K., Search for hydrogen bonding in thiophenols through heats of vaporization measurements, Indian J. Chem., Sect A, 1986, 25, 7, 673. [all data]

Dmitriev, Kachurina, et al., 1986
Dmitriev, Yu.G.; Kachurina, N.S.; Wang, C.H.; Kochubei, V.V., Thermochemical properties of complex glycidol esters, Vestn. L'vov. Politekh. Inst., 1986, 201, 29. [all data]

Castellari, Francesconi, et al., 1984
Castellari, Carlo; Francesconi, Romolo; Comelli, Fabio; Ottani, Stefano, Vapor-liquid equilibria in binary systems containing 1,3-dioxolane at isobaric conditions. 6. Binary mixtures of 1,3-dioxolane with acetone, J. Chem. Eng. Data, 1984, 29, 3, 283-284, https://doi.org/10.1021/je00037a016 . [all data]

Sokolov, Zhilina, et al., 1963
Sokolov, V.V.; Zhilina, L.P.; Mischenko, K.P., Zh. Prikl. Khim. (Leningrad), 1963, 36, 750. [all data]

Brown and Smith, 1957
Brown, I.; Smith, F., Liquid-vapour equilibria viii. The systems acetoke +benzene and acetone +carbon tetrachloride at 45«65533»C, Aust. J. Chem., 1957, 10, 4, 423-621, https://doi.org/10.1071/CH9570423 . [all data]

Felsing and Durban, 1926
Felsing, W.A.; Durban, S.A., THE VAPOR PRESSURES, DENSITIES, AND SOME DERIVED QUANTITIES FOR ACETONE, J. Am. Chem. Soc., 1926, 48, 11, 2885-2893, https://doi.org/10.1021/ja01690a020 . [all data]

Kelley, 1929, 2
Kelley, K.K., The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies, J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Parks and Kelley, 1928, 2
Parks, G.S.; Kelley, K.K., The application of the third law of thermodynamics to some organic reactions, J. Phys. Chem., 1928, 32, 734-750. [all data]

Maass and Walbauer, 1925
Maass, O.; Walbauer, L.J., The specific heats and latent heats of fusion of ice and of several organic compounds, J. Am. Chem. Soc., 1925, 47, 1-9. [all data]

Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P., Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules, Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436 . [all data]

Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M., Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments, Int. J. Mass Spectrom., 2003, 228, 1035. [all data]

Bouchoux and Salpin, 1999
Bouchoux, J.; Salpin, J.Y., Re-evaluated gas-phase basicity and proton affinity data from the thermokinetic method, Rapid Com. Mass Spectrom., 1999, 13, 932. [all data]

Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C., Heat of formation for acetyl cation in the gas phase, J. Am. Chem. Soc., 1982, 104, 5318. [all data]

Trott, Blais, et al., 1978
Trott, W.M.; Blais, N.C.; Walters, E.A., Molecular beam photoionization study of acetone and acetone-d6, J. Chem. Phys., 1978, 69, 3150. [all data]

Staley, Wieting, et al., 1977
Staley, R.H.; Wieting, R.D.; Beauchamp, J.L., Carbenium ion stabilities in the gas phase and solution. An ion cyclotron resonance study of bromide transfer reactions involving alkali ions, alkyl carbenium ions, acyl cations and cyclic halonium ions, J. Am. Chem. Soc., 1977, 99, 5964. [all data]

Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G., Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques, J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]

Mouvier and Hernandez, 1975
Mouvier, G.; Hernandez, R., Ionisation and appearance potentials of alkylketones, Org. Mass Spectrom., 1975, 10, 958. [all data]

Tam, Yee, et al., 1974
Tam, W.-C.; Yee, D.; Brion, C.E., Photoelectron spectra of some aldehydes and ketones, J. Electron Spectrosc. Relat. Phenom., 1974, 4, 77. [all data]

Ogata, Kitayama, et al., 1974
Ogata, H.; Kitayama, J.; Koto, M.; Kojima, S.; Nihei, Y.; Kamada, H., Vacuum ultraviolet absorption and photoelectron spectra of aliphatic ketones, Bull. Chem. Soc. Jpn., 1974, 47, 958. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Huebner, Celotta, et al., 1973
Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.; Kuyatt, C.E., Electron energy loss spectroscopy of acetone vapor, J. Chem. Phys., 1973, 59, 5434. [all data]

Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V., Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols, Khim. Vys. Energ., 1972, 6, 387. [all data]

Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A., Electron-impact ionization and appearance potentials, J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., On-line computer methods used in conjunction with the measurement of ionization appearance potentials, Adv. Mass Spectrom., 1971, 5, 334. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D., Online acquisition of ionization efficiency data, Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation, J. Chem. Phys., 1969, 50, 654. [all data]

Potapov, Filyugina, et al., 1968
Potapov, V.K.; Filyugina, A.D.; Shigorin, D.N.; Ozerova, G.A., Photoionization of some compounds containing the carbonyl and amino groups, Dokl. Akad. Nauk SSSR, 1968, 180, 398, In original 352. [all data]

Dorman, 1965
Dorman, F.H., Fragment ions from CH3CHO and (CH3)2CO by electron impact, J. Chem. Phys., 1965, 42, 65. [all data]

Murad and Inghram, 1964
Murad, E.; Inghram, M.G., Photoionization of aliphatic ketones, J. Chem. Phys., 1964, 40, 3263. [all data]

Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W., Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials, J. Chem. Soc., 1964, 4434. [all data]

Vilesov, 1960
Vilesov, F.I., The photoionization of vapors of compounds whose molecules contain carbonyl groups, Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]

Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N., The photoionization of the vapors of certain organic compounds, Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]

Kobayashi, 1978
Kobayashi, T., A new rule for photoelectron angular distributions of molecules, Phys. Lett. A, 1978, 69, 31. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Young and Cheng, 1976
Young, V.Y.; Cheng, K.L., The photoelectron spectra of halogen substituted acetones, J. Chem. Phys., 1976, 65, 3187. [all data]

Rao, 1975
Rao, C.N.R., Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules, Indian J. Chem., 1975, 13, 950. [all data]

Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H., UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure, J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]

Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T., Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects, J. Am. Chem. Soc., 1975, 97, 4137. [all data]

Kelder, Cerfontain, et al., 1974
Kelder, J.; Cerfontain, H.; Higginson, B.R.; Lloyd, D.R., Photoelectron and ultraviolet absorption spectra of cyclopropyl conjugated 1,2-diketones, Tetrahedron Lett., 1974, 739. [all data]

Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M., Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen, J. Mol. Struct., 1974, 21, 231. [all data]

Powis and Danby, 1979
Powis, I.; Danby, C.J., The unimolecular fragmentation of energy-selected acetone ions, Int. J. Mass Spectrom. Ion Phys., 1979, 32, 27. [all data]

Majer, Olavesen, et al., 1971
Majer, J.R.; Olavesen, C.; Robb, J.C., Wavelength effect in the photolysis of halogenated ketones, J. Chem. Soc. B, 1971, 48. [all data]

Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v., Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]

Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L., Excess energies in mass spectra of some oxygen-containing organic compounds, J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]

Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K., Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact, Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]

Kanomata, 1961
Kanomata, I., Mass-spectrometric study on ionization and dissociation of formaldehyde, acetaldehyde, acetone and ethyl methyl ketone by electron impact, Bull. Chem. Soc. Japan, 1961, 34, 1864. [all data]

Murad and Inghram, 1964, 2
Murad, E.; Inghram, M.G., Thermodynamic properties of the acetyl radical and bond dissociation energies in aliphatic carbonyl compounds, J. Chem. Phys., 1964, 41, 404. [all data]

Potapov and Shigorin, 1966
Potapov, V.K.; Shigorin, D.N., Relation between nature of electronic states of the acetone molecule and mechanism of its breakdown on electron bombardment, Zh. Fiz. Khim., 1966, 40, 200, In original 101. [all data]

Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I., Molecular Rotation and the Observation of Dipole-Bound States of Anions, J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A., Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry, Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C . [all data]

Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C., Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics, J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284 . [all data]

Bauschlicher, Bouchard, et al., 1991
Bauschlicher, C.W.; Bouchard, F.; Hepburn, J.W.; McMahon, T.B.; Surjasasmita, I.; Roth, L.M.; Gord, J.R., On the Structure of Al(Acetone)2+, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 15, https://doi.org/10.1016/0168-1176(91)85094-3 . [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Meot-ner, 1988
Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-, J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022 . [all data]

Lau, Saluja, et al., 1980
Lau, Y.K.; Saluja, P.P.S.; Kebarle, P., The Proton in Dimethyl Sulfoxide and Acetone. Results from Gas - Phase Ion Equilibria Involving (Me2SO)nH+ and (Me2CO)nH+, J. Am. Chem. Soc., 1980, 102, 25, 7429, https://doi.org/10.1021/ja00545a004 . [all data]

Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K., An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent, Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373 . [all data]

Sheldon and Bowie, 1983
Sheldon, J.C.; Bowie, J.H., The Reactions of {F-..HOMe} and {MeCO2-..HF} Negative Ions with Acetaldehyde and Acetone., Aust. J. Chem., 1983, 36, 2, 289, https://doi.org/10.1071/CH9830289 . [all data]

Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W., Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range, J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012 . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Hiraoka and Takimoto, 1986
Hiraoka, K.; Takimoto, H., Gas-Phase Stabilities of Symmetric Proton-Held Dimer Cations, J. Phys. Chem., 1986, 90, 22, 5910, https://doi.org/10.1021/j100280a090 . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Hiraoka, Morise, et al., 1986
Hiraoka, K.; Morise, K.; Nishijima, T.; Nakamura, S.; Nakazato, M.; Ohkuma, K., Gas Phase Ion Equilibria Studies of Protons and Chloride Ions in Propanol and Acetone, Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 99, https://doi.org/10.1016/0168-1176(86)87071-9 . [all data]

Hiraoka, Takimoto, et al., 1986
Hiraoka, K.; Takimoto, H.; Morise, K.; Shoda, T.; Nakamura, S., Ion-Molecule Reactions in Gaseous Acetone, Bull. Chem. Soc. Japan, 1986, 59, 7, 2247, https://doi.org/10.1246/bcsj.59.2247 . [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-ner, 1988, 2
Meot-ner, M., The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules, J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022 . [all data]

Sieck, 1985
Sieck, L.W., Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure., J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049 . [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Bofdanov and McMahon, 2002
Bofdanov, B.; McMahon, T.B., Structures, Thermochemistry, and Infrared Spectra of Chloride Ion-Fluorinated Acetone Complexes and Neutral Fluorinated Acetones in the Gas Phase: Experiment and Theory, Int. J. Mass Spectrom., 2002, 219, 3, 593-613, https://doi.org/10.1016/S1387-3806(02)00745-5 . [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S., Bond Dissociation Energy Determinations for MOC(CH3)2+ and MOC(CD3)2+ (M=Cr, Mn) Using Continuous Ejection and Radiative Association Methods, Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 713, https://doi.org/10.1016/S0168-1176(97)00131-6 . [all data]

Chu, 2002
Chu, Y., Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x=1-4 From Collision-Induced Dissociation and Theoretical Studies, J. Am. Soc. Mass Spectrom., 2002, 13, 5, 453, https://doi.org/10.1016/S1044-0305(02)00355-0 . [all data]

El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M., Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry, J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002 . [all data]

Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S., Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations, J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943 . [all data]

Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G., Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions, Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103 . [all data]

Klassen, Anderson, et al., 1996
Klassen, J.S.; Anderson, S.G.; Blades, A.T.; Kebarle, P., Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds, J. Phys. Chem., 1996, 100, 33, 14218, https://doi.org/10.1021/jp9608382 . [all data]

Sunner, 1984
Sunner, J. Kebarle, Ion - Solvent Molecule Interactions in the Gas Phase. The Potassium Ion and Me2SO, DMA, DMF, and Acetone, J. Am. Chem. Soc., 1984, 106, 21, 6135, https://doi.org/10.1021/ja00333a002 . [all data]

Blades, Klassen, et al., 1995
Blades, A.T.; Klassen, J.S.; Kebarle, P., Free Energies of Hydration in the Gas Phase on the Anions of Some Oxo Acids of C, N, S, P, Cl and I, J. Am. Chem. Soc., 1995, 117, 42, 10563, https://doi.org/10.1021/ja00147a019 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G., A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase, J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198 . [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References