Pyridine
- Formula: C5H5N
- Molecular weight: 79.0999
- IUPAC Standard InChIKey: JUJWROOIHBZHMG-UHFFFAOYSA-N
- CAS Registry Number: 110-86-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Azabenzene; Azine; NCI-C55301; Piridina; Pirydyna; Pyridin; Rcra waste number U196; UN 1282; Pyr; CP 32; NSC 406123
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 33.50 | kcal/mol | Ccb | Hubbard, Frow, et al., 1961 | ALS |
ΔfH°gas | 33.61 ± 0.36 | kcal/mol | Cm | Andon, Cox, et al., 1957 | ALS |
ΔfH°gas | 33.63 ± 0.36 | kcal/mol | Ccb | Cox, Challoner, et al., 1954 | ALS |
ΔfH°gas | 26.31 | kcal/mol | N/A | Constam and White, 1903 | Value computed using ΔfHliquid° value of 69.9 kj/mol from Constam and White, 1903 and ΔvapH° value of 40.2 kj/mol from Hubbard, Frow, et al., 1961.; DRB |
Phase change data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 388.5 ± 0.6 | K | AVG | N/A | Average of 80 out of 84 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 232. ± 2. | K | AVG | N/A | Average of 26 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 231.48 | K | N/A | Helm, Lanum, et al., 1958 | Uncertainty assigned by TRC = 0.03 K; measured in calorimeter at USBM, Bartlesville, OK; TRC |
Ttriple | 231.480 | K | N/A | McCullough, Douslin, et al., 1957 | Uncertainty assigned by TRC = 0.05 K; by extrapolation of 1/f to zero; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 619. ± 2. | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 55.86 | atm | N/A | Brunner, 1987 | Uncertainty assigned by TRC = 0.0558 atm; Visual, optical cell 30cm high. P transducer cal. vs PB.; TRC |
Pc | 55.66 | atm | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 1.020 atm; TRC |
Pc | 60.000 | atm | N/A | Herz and Neukirch, 1923 | Uncertainty assigned by TRC = 0.8000 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.253 | l/mol | N/A | Kobe, Ravicz, et al., 1956 | Uncertainty assigned by TRC = 0.005 l/mol; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 9.63 ± 0.06 | kcal/mol | AVG | N/A | Average of 10 out of 11 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.387 | 388.4 | N/A | Majer and Svoboda, 1985 | |
9.39 | 324. | N/A | Ukraintseva, Soldatov, et al., 1997 | Based on data from 289. to 358. K.; AC |
8.99 | 354. | N/A | Blanco, Beltran, et al., 1994 | Based on data from 346. to 362. K.; AC |
9.54 | 310. | EB | Lencka, 1990 | Based on data from 295. to 388. K.; AC |
9.49 | 311. | A | Stephenson and Malanowski, 1987 | Based on data from 296. to 353. K.; AC |
8.91 | 363. | A | Stephenson and Malanowski, 1987 | Based on data from 348. to 434. K.; AC |
8.37 | 446. | A | Stephenson and Malanowski, 1987 | Based on data from 431. to 558. K.; AC |
8.13 | 567. | A | Stephenson and Malanowski, 1987 | Based on data from 552. to 620. K.; AC |
8.99 | 355. | EB | Stephenson and Malanowski, 1987 | Based on data from 340. to 426. K. See also McCullough, Douslin, et al., 1957, 2.; AC |
9.46 | 313. | C | Michou-Saucet, Jose, et al., 1986 | Based on data from 298. to 333. K.; AC |
9.42 | 313. | C | Majer, Svoboda, et al., 1984 | AC |
9.20 | 328. | C | Majer, Svoboda, et al., 1984 | AC |
9.01 | 343. | C | Majer, Svoboda, et al., 1984 | AC |
8.68 | 368. | N/A | Majer, Svoboda, et al., 1984 | AC |
8.96 ± 0.02 | 346. | C | McCullough, Douslin, et al., 1957, 2 | AC |
8.70 ± 0.02 | 366. | C | McCullough, Douslin, et al., 1957, 2 | AC |
8.39 ± 0.02 | 388. | C | McCullough, Douslin, et al., 1957, 2 | AC |
9.18 | 335. | MG | Herington and Martin, 1953 | Based on data from 320. to 388. K.; AC |
10.6 | 273. | N/A | Meulen and Mann, 1931 | Based on data from 258. to 389. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 388. | 13.25 | 0.2536 | 620. | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
340.5 to 426.04 | 4.15701 | 1371.358 | -58.496 | McCullough, Douslin, et al., 1957, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.9786 | 231.49 | McCullough, Douslin, et al., 1957, 2 | Includes energy of anomaly at about 210 K.; DH |
1.98 | 231.5 | Domalski and Hearing, 1996 | AC |
1.977 | 231.1 | Parks, Todd, et al., 1936 | DH |
0.7409 | 230.38 | Pearce and Bakke, 1936 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.547 | 231.49 | McCullough, Douslin, et al., 1957, 2 | Includes; DH |
8.554 | 231.1 | Parks, Todd, et al., 1936 | DH |
3.217 | 230.38 | Pearce and Bakke, 1936 | DH |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Phase change data, Ion clustering data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.26 ± 0.01 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 222. | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 214.7 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
223.8 ± 2.0 | Wind, Papp, et al., 2005 | T = 298K; MM |
Protonation entropy at 298K
Protonation entropy (cal/mol*K) | Reference | Comment |
---|---|---|
-0.2 ± 2.4 | Wind, Papp, et al., 2005 | T = 298K; MM |
Ionization energy determinations
Appearance energy determinations
Ion | AE (eV) | Other Products | Method | Reference | Comment |
---|---|---|---|---|---|
C3H3+ | 14.00 ± 0.10 | ? | EI | Momigny, Urbain, et al., 1965 | RDSH |
C3H3N+ | 13.84 ± 0.10 | C2H2 | EI | Momigny, Urbain, et al., 1965 | RDSH |
C4H2+ | 16.17 ± 0.10 | HCN+H2 | EI | Momigny, Urbain, et al., 1965 | RDSH |
C4H3+ | 16.61 ± 0.10 | HCN+H | EI | Momigny, Urbain, et al., 1965 | RDSH |
C4H4+ | 11.84 ± 0.05 | HCN | TRPI | Lifshitz and Malinovich, 1984 | LBLHLM |
C4H4+ | 12.6 ± 0.1 | HCN | EI | Burgers and Holmes, 1984 | LBLHLM |
C4H4+ | 12.34 ± 0.05 | HCN | EI | Burgers and Holmes, 1984 | LBLHLM |
C4H4+ | 12.0 ± 0.2 | HCN | TRPI | Lifshitz, 1982 | LBLHLM |
C4H4+ | 12.15 ± 0.02 | HCN | PIPECO | Rosenstock, Stockbauer, et al., 1981 | LLK |
C4H4+ | 11.8 | HCN | PI | Eland, Berkowitz, et al., 1978 | LLK |
C4H4+ | 12.3 ± 0.1 | HCN | EI | Rosenstock, McCulloh, et al., 1977 | LLK |
C4H4+ | 13.41 ± 0.05 | HCN | EI | Zaretskii, Oren, et al., 1976 | LLK |
C4H4+ | 13.28 | HCN | EI | Beynon, Hopkinson, et al., 1969 | RDSH |
C5H3N+ | 12.42 ± 0.10 | H2 | EI | Momigny, Urbain, et al., 1965 | RDSH |
C5H4N+ | 14.00 ± 0.10 | H | EI | Momigny, Urbain, et al., 1965 | RDSH |
De-protonation reactions
C5H4N- + =
By formula: C5H4N- + H+ = C5H5N
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 389.9 ± 2.0 | kcal/mol | IMRE | Schafman and Wenthold, 2007 | gas phase; B |
ΔrH° | 391.0 ± 2.5 | kcal/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 382.7 ± 2.0 | kcal/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 384.0 ± 3.0 | kcal/mol | IMRB | DePuy, Kass, et al., 1988 | gas phase; Comparable to water in acidity; B |
ΔrG° | <376.3 ± 2.0 | kcal/mol | IMRB | Bruins, Ferrer-Correia, et al., 1978 | gas phase; O- deprotonates; B |
Ion clustering data
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: (Ag+ • 2C5H5N) + C5H5N = (Ag+ • 3C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.7 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.0 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Ag+ • 3C5H5N) + C5H5N = (Ag+ • 4C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.9 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 40.3 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: Al+ + C5H5N = (Al+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.5 ± 2.5 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: C5H6N+ + C5H5N = (C5H6N+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.2 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrH° | 24.6 | kcal/mol | PHPMS | Meot-Ner M. and Sieck, 1983 | gas phase; M |
ΔrH° | 26.3 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
ΔrH° | 23.7 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
ΔrH° | 23.7 | kcal/mol | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.6 | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1992 | gas phase; M |
ΔrS° | 28.2 | cal/mol*K | PHPMS | Meot-Ner M. and Sieck, 1983 | gas phase; M |
ΔrS° | 32.1 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
ΔrS° | 28. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
ΔrS° | 28. | cal/mol*K | PHPMS | Meot-Ner (Mautner), 1979 | gas phase; M |
By formula: (C5H6N+ • C5H5N) + C5H5N = (C5H6N+ • 2C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.6 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.7 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (C5H6N+ • 2C5H5N) + C5H5N = (C5H6N+ • 3C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.6 | kcal/mol | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 37.9 | cal/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; Entropy change is questionable; M |
By formula: Cl- + C5H5N = (Cl- • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.7 ± 2.0 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.7 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.8 ± 2.6 | kcal/mol | TDAs | Hiraoka, Mizuse, et al., 1988 | gas phase; B |
By formula: (Cl- • C5H5N) + C5H5N = (Cl- • 2C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 | kcal/mol | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.6 | cal/mol*K | PHPMS | Hiraoka, Mizuse, et al., 1988 | gas phase; M |
By formula: Co+ + C5H5N = (Co+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 ± 3.0 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Cr+ + C5H5N = (Cr+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.1 ± 2.8 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Cu+ + C5H5N = (Cu+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.7 ± 2.5 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Fe+ + C5H5N = (Fe+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.4 ± 2.2 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: H2O3- + C5H5N + H2O = C5H7NO3-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 32.7 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: K+ + C5H5N = (K+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.6 ± 0.9 | kcal/mol | CIDT | Amunugama and Rodgers, 2000 | RCD |
ΔrH° | 20.7 | kcal/mol | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.6 | cal/mol*K | HPMS | Davidson and Kebarle, 1976 | gas phase; M |
By formula: Li+ + C5H5N = (Li+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.2 ± 3.5 | kcal/mol | CIDT | Amunugama and Rodgers, 2000 | RCD |
ΔrH° | 44. | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: Mg+ + C5H5N = (Mg+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.8 ± 1.6 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Mn+ + C5H5N = (Mn+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.4 ± 2.1 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
+ = C5H5N2O-
By formula: NO- + C5H5N = C5H5N2O-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.6 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: Na+ + C5H5N = (Na+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.3 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2000 | RCD |
By formula: Ni+ + C5H5N = (Ni+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60.9 ± 3.7 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
+ = C5H5NO2-
By formula: O2- + C5H5N = C5H5NO2-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.7 ± 2.3 | kcal/mol | N/A | Le Barbu, Schiedt, et al., 2002 | gas phase; Affinity is difference in EAs of lesser solvated species; B |
By formula: Sc+ + C5H5N = (Sc+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.3 ± 2.5 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Ti+ + C5H5N = (Ti+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 51.9 ± 2.3 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: V+ + C5H5N = (V+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.2 ± 3.2 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Zn+ + C5H5N = (Zn+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.0 ± 1.7 | kcal/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Hubbard, Frow, et al., 1961
Hubbard, W.N.; Frow, F.R.; Waddington, G.,
The heats of combustion and formation of pyridine and hippuric acid,
J. Phys. Chem., 1961, 65, 1326-1328. [all data]
Andon, Cox, et al., 1957
Andon, R.J.L.; Cox, J.D.; Herington, E.F.G.; Martin, J.F.,
The second virial coefficients of pyridine and benzene, and certain of their methyl homologues,
Trans. Faraday Soc., 1957, 53, 1074. [all data]
Cox, Challoner, et al., 1954
Cox, J.D.; Challoner, A.R.; Meetham, A.R.,
The heats of combustion of pyridine and certain of its derivatives,
J. Chem. Soc., 1954, 265-271. [all data]
Constam and White, 1903
Constam, E.J.; White, J.,
Physico-chemical investigations in the pyridine series,
Am. Chem. J., 1903, 29, 1-49. [all data]
Helm, Lanum, et al., 1958
Helm, R.V.; Lanum, W.J.; Cook, G.L.; Ball, J.S.,
Purification and Properties of Pyrrole, Pyrrolidine, Pyridine and 2-Methylpyridine,
J. Phys. Chem., 1958, 62, 858. [all data]
McCullough, Douslin, et al., 1957
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G.,
Pyridine: Experimental and Calculated Chemical Thermodynamic Prop- erties Between 0 and 1500 K; A Revised Vibrational Assignment,
J. Am. Chem. Soc., 1957, 79, 4289. [all data]
Brunner, 1987
Brunner, E.,
Fluid mixtures at high pressures VI. Phase separation and critical phenomina in 18 binary mixtures containing either pyridine or ethanoic acid,
J. Chem. Thermodyn., 1987, 19, 823. [all data]
Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P.,
Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds,
J. Chem. Eng. Data, 1956, 1, 50. [all data]
Herz and Neukirch, 1923
Herz, W.; Neukirch, E.,
On Knowldge of the Critical State,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1923, 104, 433-50. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Ukraintseva, Soldatov, et al., 1997
Ukraintseva, E.A.; Soldatov, D.V.; Dyadin, Yu.A.,
Pyridine vapor pressure and thermodynamic parameters of clathrate and complex formation in the pyridine-zinc nitrate system,
Zh. Neorg. Khim., 1997, 42, 2, 283. [all data]
Blanco, Beltran, et al., 1994
Blanco, Beatriz; Beltran, Sagrario; Cabezas, Jose Luis; Coca, Jose,
Vapor-liquid equilibria of coal-derived liquids. 3. Binary systems with tetralin at 200 mm mercury,
J. Chem. Eng. Data, 1994, 39, 1, 23-26, https://doi.org/10.1021/je00013a007
. [all data]
Lencka, 1990
Lencka, Malgorzata,
Measurements of the vapour pressures of pyridine, 2-methylpyridine, 2,4-dimethylpyridine, 2,6-dimethylpyridine, and 2,4,6-trimethylpyridine from 0.1 kPa to atmospheric pressure using a modified Swietoslawski ebulliometer,
The Journal of Chemical Thermodynamics, 1990, 22, 5, 473-480, https://doi.org/10.1016/0021-9614(90)90139-H
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
McCullough, Douslin, et al., 1957, 2
McCullough, J.P.; Douslin, D.R.; Messerly, J.F.; Hossenlopp, I.A.; Kincheloe, T.C.; Waddington, G.,
Pyridine: experimental and calculated chemical thermodynamic properties between 0 and 1500 K., a revised vibrational assignment,
J. Am. Chem. Soc., 1957, 79, 4289-4295. [all data]
Michou-Saucet, Jose, et al., 1986
Michou-Saucet, Marie-Annie; Jose, Jacques; Michou-Saucet, Christian,
Equilibre liquide-vapeur isotherme des systemes pyridine-n-hexane et pyridine-n-heptane,
Thermochimica Acta, 1986, 102, 271-279, https://doi.org/10.1016/0040-6031(86)85335-7
. [all data]
Majer, Svoboda, et al., 1984
Majer, V.; Svoboda, V.; Lencka, M.,
Enthalpies of vaporization and cohesive energies of pyridine and isomeric methylpyridines,
J. Chem. Thermodyn., 1984, 16, 1019-1024. [all data]
Herington and Martin, 1953
Herington, E.F.G.; Martin, J.F.,
Vapour pressures of pyridine and its homologues,
Trans. Faraday Soc., 1953, 49, 154, https://doi.org/10.1039/tf9534900154
. [all data]
Meulen and Mann, 1931
Meulen, P.A. van der.; Mann, Russell F.,
THE VAPOR PRESSURE OF PYRIDINE,
J. Am. Chem. Soc., 1931, 53, 2, 451-453, https://doi.org/10.1021/ja01353a006
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Parks, Todd, et al., 1936
Parks, G.S.; Todd, S.S.; Moore, W.A.,
Thermal data on organic compounds. XVI. Some heat capacity, entropy and free energy data for typical benzene derivatives and heterocyclic compounds,
J. Am. Chem. Soc., 1936, 58, 398-401. [all data]
Pearce and Bakke, 1936
Pearce, J.N.; Bakke, H.M.,
The heat capacity and the free energy of formation of pyridine,
Proc. Iowa Acad. Sci., 1936, 43, 171-174. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Wind, Papp, et al., 2005
Wind, J.J.; Papp, L.; Happel, M.; Hahn, K.; Andriole, E.J.; Poutsma, J.C.,
Proton Affinity of beta-Oxalylaminoalanine (BOAA): Incorporation of Direct Entropy Correction into the Single-Reference Kinetic Method,
J. Am. Soc. Mass Spectrom., 2005, 16, 1151. [all data]
Arimura and Yoshikawa, 1984
Arimura, M.; Yoshikawa, Y.,
Ionization efficiency and ionization energy of cyclic compounds by electron impact,
Mass Spectrosc. (Tokyo), 1984, 32, 375. [all data]
Lifshitz, 1982
Lifshitz, C.,
Time-dependent mass spectra and breakdown graphs. 2. The kinetic shift in pyridine,
J. Phys. Chem., 1982, 86, 606. [all data]
Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.,
Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules
in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]
Utsunomiya, Kobayashi, et al., 1978
Utsunomiya, C.; Kobayashi, T.; Nagakura, S.,
Photoelectron angular distribution measurements for some pyridines,
Bull. Chem. Soc. Jpn., 1978, 451, 3482. [all data]
Eland, Berkowitz, et al., 1978
Eland, J.H.D.; Berkowitz, J.; Schulte, H.; Frey, R.,
Rates of unimolecular pyridine ion decay and the heat of formation of C4H4+,
Int. J. Mass Spectrom. Ion Phys., 1978, 28, 297. [all data]
Zaretskii, Oren, et al., 1976
Zaretskii, Z.V.I.; Oren, D.; Kelner, L.,
Automatic method for the measurement of the electron impact ionization and appearance potentials,
Appl. Spectrosc., 1976, 30, 366. [all data]
Van Veen and Plantenga, 1975
Van Veen, E.H.; Plantenga, F.L.,
Threshold electron-impact excitation spectrum of pyridine,
Chem. Phys. Lett., 1975, 30, 28. [all data]
Stefanovic and Grutzmacher, 1974
Stefanovic, D.; Grutzmacher, H.F.,
The ionisation potential of some substituted pyridines,
Org. Mass Spectrom., 1974, 9, 1052. [all data]
King, Murrell, et al., 1972
King, G.H.; Murrell, J.N.; Suffolk, R.J.,
The vacuum-ultraviolet photoelectron spectra of fluoropyridines,
J. Chem. Soc. Dalton Trans., 1972, 564. [all data]
Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A.,
Electron-impact ionization and appearance potentials,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]
Distefano, Foffani, et al., 1971
Distefano, G.; Foffani, A.; Innorta, G.; Pignataro, S.,
Mass spectrometric study of transition metal complexes with ligands having nitrogen or sulphur as donor atom,
Adv. Mass Spectrom., 1971, 5, 696. [all data]
Distefano, Foffani, et al., 1971, 2
Distefano, G.; Foffani, A.; Innorta, G.; Pignataro, S.,
Electron impact ionization potentials of some manganese, chromium and tungsten organometallic derivatives,
Int. J. Mass Spectrom. Ion Phys., 1971, 7, 383. [all data]
Potapov and Sorokin, 1970
Potapov, V.K.; Sorokin, V.V.,
Investigation of ionic molecular reactions proceeding during photoionization of aromatic compounds and alcohols,
Dokl. Akad. Nauk SSSR, 1970, 195, 616, In original 848. [all data]
Goffart, Momigny, et al., 1969
Goffart, C.; Momigny, J.; Natalis, P.,
Photoionization studies by total ionization measurements and photoelectron spectra. II.Pyridine,
Intern. J. Mass Spectrom. lon Phys., 1969, 3, 371. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. II.The ionization potentials of azabenzenes and azanaphthalenes,
J. Chem. Phys., 1969, 51, 263. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Akopyan and Vilesov, 1964
Akopyan, M.E.; Vilesov, F.I.,
Excited states of positive ions and dissociative photoionization of aromatic amines,
Dokl. Akad. Nauk SSSR, 1964, 158, 1386, In original 965. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
El-Sayed, Kaaba, et al., 1961
El-Sayed, M.F.A.; Kaaba, M.; Tanaka, Y.,
Ionization potentials of benzene, hexadeuterobenzene, and pyridine from their observed Rydberg series in the region 600-2000 A,
J. Chem. Phys., 1961, 34, 334. [all data]
Watanabe, 1957
Watanabe, K.,
Ionization potentials of some molecules,
J. Chem. Phys., 1957, 26, 542. [all data]
Hustrulid, Kusch, et al., 1938
Hustrulid, A.; Kusch, P.; Tate, J.T.,
The dissociation of benzene (C6H6), pyridine (C5H5N) and cyclohexane (C6H12) by electron impact,
Phys. Rev., 1938, 54, 1037. [all data]
Klasinc, Novak, et al., 1978
Klasinc, L.; Novak, I.; Scholz, M.; Kluge, G.,
Photoelektronenspektren substituierter Pyridine und Benzole und ihre Interpretation durch die CNDO/SWW-Methode,
Croat. Chem. Acta, 1978, 51, 43. [all data]
Kobayashi and Nagakura, 1974
Kobayashi, T.; Nagakura, S.,
Photoelectron spectra of aminopyridines and cyanopyridines,
J. Electron Spectrosc. Relat. Phenom., 1974, 4, 207. [all data]
Batich, Heilbronner, et al., 1973
Batich, C.; Heilbronner, E.; Hornung, V.; Ashe, A.J.; Clark, D.T.; Cobley, U.T.; Kilcast, D.; Scanlan, I.,
Photoelectron spectra of phosphabenzen, arsabenzene, and stibabenzene,
J. Am. Chem. Soc., 1973, 95, 928. [all data]
Heilbronner, Hornung, et al., 1972
Heilbronner, E.; Hornung, V.; Pinkerton, F.H.; Thames, S.F.,
31. Photoelectron spectra of azabenzenes and azanaphthalenes: III. The orbital sequence in methyl- and trimethylsilyl- substituted pyridines,
Helv. Chim. Acta, 1972, 55, 289. [all data]
Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V.,
Lone pair interaction in pyridazine, pyrimidine, and pyrazine,
Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]
Momigny, Urbain, et al., 1965
Momigny, J.; Urbain, J.; Wankenne, H.,
Les effets de l'impact electronique sur la pyridine et les diazines isomeres,
Bull. Soc. Roy. Sci. Liege, 1965, 34, 337. [all data]
Lifshitz and Malinovich, 1984
Lifshitz, C.; Malinovich, Y.,
Time resolved photoionization mass spectrometry in the millisecond range,
Int. J. Mass Spectrom. Ion Processes, 1984, 60, 99. [all data]
Burgers and Holmes, 1984
Burgers, P.C.; Holmes, J.L.,
Fragmentation rate constants and appearance energies for reactions having a large kinetic shift and the energy partitioning in their metastable decomposition,
Int. J. Mass Spectrom. Ion Processes, 1984, 58, 15. [all data]
Rosenstock, Stockbauer, et al., 1981
Rosenstock, H.M.; Stockbauer, R.; Parr, A.C.,
Unimolecular kinetis of pyridine ion fragmentation,
Int. J. Mass Spectrom. Ion Phys., 1981, 38, 323. [all data]
Rosenstock, McCulloh, et al., 1977
Rosenstock, H.M.; McCulloh, K.E.; Lossing, F.P.,
On the mechanisms of C6H6 ionization fragmentation,
Int. J. Mass Spectrom. Ion Phys., 1977, 25, 327. [all data]
Beynon, Hopkinson, et al., 1969
Beynon, J.H.; Hopkinson, J.A.; Lester, G.R.,
Mass spectrometry-the appearance potentials of "meta-stable peaks" in some aromatic nitro compounds - a chemical reaction in the mass spectrometer,
Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 291. [all data]
Schafman and Wenthold, 2007
Schafman, B.S.; Wenthold, P.G.,
Regioselectivity of pyridine deprotonation in the gas phase,
J. Org. Chem., 2007, 72, 5, 1645-1651, https://doi.org/10.1021/jo062117x
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
DePuy, Kass, et al., 1988
DePuy, C.H.; Kass, S.R.; Bean, G.P.,
Formation and Reactions of Heteroaromatic Anions in the Gas Phase,
J. Org. Chem., 1988, 53, 19, 4427, https://doi.org/10.1021/jo00254a001
. [all data]
Bruins, Ferrer-Correia, et al., 1978
Bruins, A.P.; Ferrer-Correia, A.J.; Harrison, A.G.; Jennings, K.R.; Mithcum, R.K.,
Negative ion chemical ionization mass spectrometry of some aromatic compounds using O-. as the reagent ion,
Adv. Mass Spectrom., 1978, 7, 355. [all data]
Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W.,
The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes,
J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497
. [all data]
Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R.,
Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923
. [all data]
Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M.,
Intermolecular Forces in Organic Clusters,
J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024
. [all data]
Meot-Ner M. and Sieck, 1983
Meot-Ner M.; Sieck, L.W.,
The Ionic Hydrogen Bond. 1. Sterically Hindered Bonds. Solvation and Clustering of Sterically Hindered Amines and Pyridines,
J. Am. Chem. Soc., 1983, 105, 10, 2956, https://doi.org/10.1021/ja00348a005
. [all data]
Meot-Ner (Mautner), 1979
Meot-Ner (Mautner), M.,
Ion Thermochemistry of Low Volatility Compounds in the Gas Phase. II. Intrinsic Basicities and Hydrogen Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases,
J. Am. Chem. Soc., 1979, 101, 9, 2396, https://doi.org/10.1021/ja00503a027
. [all data]
Hiraoka, Mizuse, et al., 1988
Hiraoka, K.; Mizuse, S.; Yamabe, S.,
Determination of the Stabilities and Structures of X-(C6H6) Clusters (X = Cl, Br, and I),
Chem. Phys. Lett., 1988, 147, 2-3, 174, https://doi.org/10.1016/0009-2614(88)85078-4
. [all data]
Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H.,
Microsolvation of small anions by aromatic molecules: An exploratory study,
J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750
. [all data]
Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T.,
Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory,
Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1
. [all data]
Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P.,
Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M,
J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, References
- Symbols used in this document:
AE Appearance energy IE (evaluated) Recommended ionization energy Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.