Anthracene
- Formula: C14H10
- Molecular weight: 178.2292
- IUPAC Standard InChIKey: MWPLVEDNUUSJAV-UHFFFAOYSA-N
- CAS Registry Number: 120-12-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Anthracin; Green Oil; Paranaphthalene; Tetra Olive N2G; Anthracene oil; p-Naphthalene; Anthracen; Coal tar pitch volatiles:anthracene; Sterilite hop defoliant
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 223. ± 10. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
41.38 | 50. | Dorofeeva O.V., 1988 | S(T) values calculated by [ Kudchadker S.A., 1979] are 3.6-4.1 J/mol*K greater than recommended ones. Cp(T) values from two calculations agree within 0.3 J/mol*K. Recommended values are also reproduced in the reference book [ Frenkel M., 1994].; GT |
61.44 | 100. | ||
87.80 | 150. | ||
118.55 | 200. | ||
167.75 | 273.15 | ||
184.7 ± 1.0 | 298.15 | ||
185.99 | 300. | ||
249.74 | 400. | ||
302.90 | 500. | ||
345.39 | 600. | ||
379.33 | 700. | ||
406.84 | 800. | ||
429.48 | 900. | ||
448.32 | 1000. | ||
464.17 | 1100. | ||
477.58 | 1200. | ||
489.01 | 1300. | ||
498.80 | 1400. | ||
507.22 | 1500. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C14H11+ + C14H10 = (C14H11+ • C14H10)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 66.9 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | N/A | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
26. | 352. | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; Entropy change calculated or estimated; M |
By formula: C28H20 = 2C14H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -67.0 | kJ/mol | Cm | Bendig, Buchwitz, et al., 1981 | liquid phase; solvent: Cyclohexane; Dimerization, see Bendig and Kreysig, 1981; ALS |
ΔrH° | 28.9 ± 6.1 | kJ/mol | Cm | Donati, Guarini, et al., 1981 | solid phase; ALS |
By formula: C14H10+ + C14H10 = (C14H10+ • C14H10)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.6 | kJ/mol | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | PHPMS | Meot-Ner (Mautner), 1980 | gas phase; M |
By formula: C4H2O3 + C14H10 = C18H12O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -93. ± 2. | kJ/mol | Cm | Kiselev, Mavrin, et al., 1982 | liquid phase; solvent: Benzene; ALS |
ΔrH° | -93.7 | kJ/mol | Eqk | Lenz, Hegedus, et al., 1982 | liquid phase; solvent: 1,2,4-C6H3Cl3; ALS |
By formula: C14H10 = C14H10
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -324. ± 1. | kJ/mol | Eqk | Dreeskamp, Kapahnke, et al., 1988 | liquid phase; solvent: Heptane; Isomerization; ALS |
+ = C21H18O3
By formula: C14H10 + C7H8O3 = C21H18O3
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -87.5 | kJ/mol | Eqk | Lenz, Hegedus, et al., 1982 | liquid phase; solvent: 1,2,4-C6H3Cl3; ALS |
By formula: C20H10N4 = C14H10 + C6N4
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 40.5 ± 2.1 | kJ/mol | Cm | Rogers, 1972 | solid phase; ALS |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
MM - Michael M. Meot-Ner (Mautner)
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
B - John E. Bartmess
View reactions leading to C14H10+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 7.439 ± 0.006 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 877.3 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 846.6 | kJ/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.530 ± 0.020 | LPES | Ando, Mitsui, et al., 2007 | B |
0.5300 ± 0.0050 | LPES | Scheidt and Weinkauf, 1997 | B |
0.60 ± 0.10 | TDEq | Heinis, Chowdhury, et al., 1993 | ΔGea(343 K) = -13.2 kcal/mol; ΔSea = -1.1 eu.; B |
0.660 ± 0.060 | ECD | Ruoff, Kadish, et al., 1995 | Revised data, work of Becker and Chen, 1966; B |
0.570 ± 0.020 | ECD | Lyons, Morris, et al., 1968 | B |
0.5560 ± 0.0080 | ECD | Becker and Chen, 1966 | B |
<0.481 ± 0.039 | ECD | Wojnarovits and Foldiak, 1981 | EA is an upper limit: Chen and Wentworth, 1989.; B |
0.41998 | ECD | Wentworth and Becker, 1962 | B |
Proton affinity at 298K
Proton affinity (kJ/mol) | Reference | Comment |
---|---|---|
869.4 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Gas basicity at 298K
Gas basicity (review) (kJ/mol) | Reference | Comment |
---|---|---|
842.7 | Aue, Guidoni, et al., 2000 | Experimental literature data re-evaluated by the authors using ab initio protonation entropies; MM |
Ionization energy determinations
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 132 |
NIST MS number | 228201 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Ferguson, Reeves, et al., 1957 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 1240 |
Instrument | Beckman DU |
Melting point | 215 |
Boiling point | 339.9 |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Kudchadker S.A., 1979
Kudchadker S.A.,
Chemical thermodynamic properties of anthracene and phenathrene,
J. Chem. Thermodyn., 1979, 11, 1051-1059. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Meot-Ner (Mautner), 1980
Meot-Ner (Mautner), M.,
Dimer Cations of Polycyclic Aromatics: Experimental Bonding Energies and Resonance Stabilization,
J. Phys. Chem., 1980, 84, 21, 2724, https://doi.org/10.1021/j100458a012
. [all data]
Bendig, Buchwitz, et al., 1981
Bendig, J.; Buchwitz, W.; Fischer, J.; Kreysig, D.,
Deactivation behavior of arenes and heteroarenes. XXXII. Effect of endo- and exocyclic substitution on the reversible dimerization behavior of anthracenes,
J. Prakt. Chem., 1981, 323, 485-498. [all data]
Bendig and Kreysig, 1981
Bendig, J.; Kreysig, D.,
Deactivation behavior of arenes and heteroarenes. XXXI. A model of the reversible photodimerization of anthracene and 9-methylanthracene,
J. Prakt. Chem., 1981, 323, 471-484. [all data]
Donati, Guarini, et al., 1981
Donati, D.; Guarini, G.G.T.; Sarti-Fantoni, P.,
Evaluation of the enthalpic change during the monomerization reaction of crystalline anthracene photodimer (AD),
Mol. Cryst. Liq. Cryst., 1981, 69, 241-243. [all data]
Kiselev, Mavrin, et al., 1982
Kiselev, V.D.; Mavrin, G.V.; Konovalov, A.I.,
Thermodynamic principles of the occurrence of a Diels-Alder reaction in the presence of a Lewis acid,
Zh. Org. Khim., 1982, 18, 2505-2510. [all data]
Lenz, Hegedus, et al., 1982
Lenz, T.G.; Hegedus, L.S.; Vaughan, J.D.,
Liquid phase thermochemical energy conversion systems - an application of Diels-Alder chemistry,
Int. J. Energy Res., 1982, 6, 357-365. [all data]
Dreeskamp, Kapahnke, et al., 1988
Dreeskamp, H.; Kapahnke, P.; Tochtermann, W.,
Photo valence isomerization of sterically strained aromatic hydrocarbons: 8,9-dicarbethoxy[6]paracyclophane,
Radiat. Phys. Chem., 1988, 32, 537-539. [all data]
Rogers, 1972
Rogers, F.E.,
Thermochemistry of the Diels-Alder reactions. II. Heat of addition of several dienes to tetracyanoethylene,
J. Phys. Chem., 1972, 76, 106-109. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Ando, Mitsui, et al., 2007
Ando, N.; Mitsui, M.; Nakajima, A.,
Comprehensive photoelectron spectroscopic study of anionic clusters of anthracene and its alkyl derivatives: Electronic structures bridging molecules to bulk,
J. Chem. Phys., 2007, 127, 23, 234305, https://doi.org/10.1063/1.2805185
. [all data]
Scheidt and Weinkauf, 1997
Scheidt, J.; Weinkauf, R.,
Photodetachment photoelectron spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster,
Chem. Phys. Lett., 1997, 266, 1-2, 201, https://doi.org/10.1016/S0009-2614(96)01512-6
. [all data]
Heinis, Chowdhury, et al., 1993
Heinis, T.; Chowdhury, S.; Kebarle, P.,
Electron Affinities of Naphthalene, Anthracene and Substituted Naphthalenes and Anthracenes,
Org. Mass Spectrom., 1993, 28, 4, 358, https://doi.org/10.1002/oms.1210280416
. [all data]
Ruoff, Kadish, et al., 1995
Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M.,
The relationship between the electron affinities and half-wave reduction potentials of fullerenes, aromatic hydrocarbons, and metal complexes,
J. Phys. Chem., 1995, 99, 21, 8843, https://doi.org/10.1021/j100021a060
. [all data]
Becker and Chen, 1966
Becker, R.S.; Chen, E.,
Extension of Electron Affinities and Ionization Potentials of Aromatic Hydrocarbons,
J. Chem. Phys., 1966, 45, 7, 2403, https://doi.org/10.1063/1.1727954
. [all data]
Lyons, Morris, et al., 1968
Lyons, L.E.; Morris, G.C.; Warren, L.J.,
Electron Affinities and the Electron Capture Method for Aromatic Hydrocarbons,
J. Phys. Chem., 1968, 72, 10, 3677, https://doi.org/10.1021/j100856a056
. [all data]
Wojnarovits and Foldiak, 1981
Wojnarovits, L.; Foldiak, G.,
Electron capture detection of aromatic hydrocarbons,
J. Chromatogr. Sci., 1981, 206, 511. [all data]
Chen and Wentworth, 1989
Chen, E.C.M.; Wentworth, W.E.,
Experimental Determination of Electron Affinities of Organic Molecules,
Mol. Cryst. Liq. Cryst., 1989, 171, 271. [all data]
Wentworth and Becker, 1962
Wentworth, W.E.; Becker, R.S.,
Potential Method for the Determination of Electron Affinities of Molecules: Application to Some Aromatic Hydrocarbons.,
J. Am. Chem. Soc., 1962, 84, 22, 4263, https://doi.org/10.1021/ja00881a014
. [all data]
Aue, Guidoni, et al., 2000
Aue, D.H.; Guidoni, M.; Betowski, L.D.,
Ab initio calculated gas-phase basicities of polynuclear aromatic hydrocarbons,
Int. J. Mass Spectrom., 2000, 201, 283. [all data]
Hager and Wallace, 1988
Hager, J.W.; Wallace, S.C.,
Two-laser photoionization supersonic jet mass spectrometry of aromatic molecules,
Anal. Chem., 1988, 60, 5. [all data]
Stahl and Maquin, 1984
Stahl, D.; Maquin, F.,
Charge-stripping mass spectrometry of molecular ions from polyacenes and molecular orbital theory,
Chem. Phys. Lett., 1984, 108, 613. [all data]
Klasinc, Kovac, et al., 1983
Klasinc, L.; Kovac, B.; Gusten, H.,
Photoelectron spectra of acenes. Electronic structure and substituent effects,
Pure Appl. Chem., 1983, 55, 289. [all data]
Mautner(Meot-Ner), 1980
Mautner(Meot-Ner), M.,
Ion thermochemistry of low volatility compounds in the gas phase. 3. Polycyclic aromatics: Ionization energies, proton, and hydrogen affinities. Extrapolations to graphite,
J. Phys. Chem., 1980, 84, 2716. [all data]
Streets and Williams, 1974
Streets, D.G.; Williams, T.A.,
Photoelectron spectroscopy of 9,10-dihaloanthracenes,
J. Electron Spectrosc. Relat. Phenom., 1974, 3, 71. [all data]
Koch, Otto, et al., 1973
Koch, E.E.; Otto, A.; Radler, K.,
The absorption spectrum of the anthracene molecule in the vacuum ultraviolet,
Chem. Phys. Lett., 1973, 21, 501. [all data]
Aihara and Inokuchi, 1973
Aihara, J.; Inokuchi, H.,
Ionization potentials of anthracene,
Chem. Lett., 1973, 421. [all data]
Eland, 1972
Eland, J.H.D.,
Photoelectron spectra and ionization potentials of aromatic hydrocarbons,
Int. J. Mass Spectrom. Ion Phys., 1972, 9, 214. [all data]
Dewar and Goodman, 1972
Dewar, M.J.S.; Goodman, D.W.,
Photoelectron spectra of molecules. Part 5.--Polycyclic aromatic hydrocarbons,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1784. [all data]
Clark, Brogli, et al., 1972
Clark, P.A.; Brogli, F.; Heilbronner, E.,
The π-orbital energies of the acenes,
Helv. Chim. Acta, 1972, 55, 1415. [all data]
Boschi, Murrell, et al., 1972
Boschi, R.; Murrell, J.N.; Schmidt, W.,
Photoelectron spectra of polycyclic aromatic hydrocarbons,
Faraday Discuss. Chem. Soc., 1972, 54, 116. [all data]
Rowland, 1971
Rowland, C.G.,
Kinetic energy distributions of C12H8 fragment ions in the mass spectra of anthracene, phenanthrene and diphenylacetylene,
Intern. J. Mass Spectrom. Ion Phys., 1971, 7, 79. [all data]
Kitagawa, 1968
Kitagawa, T.,
Absorption spectra and photoionization of polycyclic aromatics in vacuum ultraviolet region,
J. Mol. Spectry., 1968, 26, 1. [all data]
Angus and Morris, 1966
Angus, J.A.; Morris, G.C.,
Ionization potential of the anthracene molecule from Rydberg absorption bands,
J.Mol. Spectry., 1966, 21, 310. [all data]
Kuroda, 1964
Kuroda, H.,
Ionization potentials of polycyclic aromatic hydrocarbons,
Nature, 1964, 201, 1214. [all data]
Finch, 1964
Finch, A.C.M.,
Charge-transfer spectra and the ionization energy of azulene,
J. Chem. Soc., 1964, 2272. [all data]
Briegleb, 1964
Briegleb, G.,
Electron affinity of organic molecules,
Angew. Chem. Intern. Ed., 1964, 3, 617. [all data]
Kinoshita, 1962
Kinoshita, M.,
The absorption spectra of the molecular complexes of aromatic compounds with p-bromanil,
Bull. Chem. Soc. Japan, 1962, 35, 1609. [all data]
Terenin, 1961
Terenin, A.,
Charge transfer in organic solids, induced by light,
Proc. Chem. Soc., London, 1961, 321. [all data]
Briegleb, Czekalla, et al., 1961
Briegleb, G.; Czekalla, J.; Reuss, G.,
Mesomeriemomente und Elektronenuberfuhrungsbanden von Elektronen-donator-akzeptor-komplexen des Chloranils und Tetracyanathylens mit aromatischen Kohlenwasserstoffen,
Z. Phys. Chem. (Neue Folge), 1961, 30, 333. [all data]
Birks and Stifkin, 1961
Birks, J.B.; Stifkin, M.A.,
π-Electronic excitation and ionization energies of condensed ring aromatic hydrocarbons,
Nature, 1961, 191, 761. [all data]
Wacks and Dibeler, 1959
Wacks, M.E.; Dibeler, V.H.,
Electron impact studies of aromatic hydrocarbons. I. Benzene, naphthalene, anthracene, and phenanthrene,
J. Chem. Phys., 1959, 31, 1557. [all data]
Foster, 1959
Foster, R.,
Ionization potentials of electron donors,
Nature (London), 1959, 183, 1253. [all data]
Briegleb and Czekalla, 1959
Briegleb, G.; Czekalla, J.,
Die Bestimmung von lonisierungsenergien aus den Spektren von Elektronenubergangskomplexen,
Z.Elektrochem., 1959, 63, 6. [all data]
Matsen, 1956
Matsen, F.A.,
Electron affinities, methyl affinities, and ionization energies of condensed ring aromatic hydrocarbons,
J. Chem. Phys., 1956, 24, 602. [all data]
Klasinc, Kovac, et al., 1978
Klasinc, L.; Kovac, B.; Schoof, S.; Gusten, H.,
Photoelectron spectroscopy of 9-substituted anthracenes,
Croat. Chem. Acta., 1978, 51, 307. [all data]
Schmidt, 1977
Schmidt, W.,
Photoelectron spectra of polynuclear aromatics. V. Correlations with ultraviolet absorption spectra in the catacondensed series,
J. Chem. Phys., 1977, 66, 828. [all data]
Clar and Schmidt, 1976
Clar, E.; Schmidt, W.,
Correlations between photoelectron and phosphorescence spectra of polycyclic hydrocarbons,
Tetrahedron, 1976, 32, 2563. [all data]
Jongsma, Vermeer, et al., 1975
Jongsma, C.; Vermeer, H.; Bickelhaupt, F.; Schafer, W.; Schweig, A.,
10-methyl-9-phosphaanthracene,
Tetrahedron, 1975, 31, 2931. [all data]
Hush, Cheung, et al., 1975
Hush, N.S.; Cheung, A.S.; Hilton, P.R.,
Binding energies of π- and "lone pair"-levels in mono- and diaza-phenanthrenes and anthracenes: an He(I) photoelectron spectroscopic study,
J. Electron Spectrosc. Relat. Phenom., 1975, 7, 385. [all data]
Marschner and Goetz, 1974
Marschner, F.; Goetz, H.,
Korrelation zwischen photoelektronen- und elektronen-spektren. II. Untersuchung aromatischer π-systeme mit modifizierten PPP-SCF-CI-parametern,
Tetrahedron, 1974, 30, 3159. [all data]
Schafer, Schweig, et al., 1972
Schafer, W.; Schweig, A.; Bickelhaupt, F.; Vermeer, H.,
Photoelectron spectroscopy and conjugation. Direct proof of the unusual sequence of the two highest occupied π-molecular orbitals in the phosphorin (phosphabenzene) and the arsenin (arsabenzene) system,
Angew. Chem. Int. Ed. Engl., 1972, 11, 924. [all data]
Ferguson, Reeves, et al., 1957
Ferguson, J.; Reeves, L.W.; Schneider, W.G.,
Vapor absorption spectra and oscillator strengths of naphthalene, anthracene, and pyrene,
Can. J. Chem., 1957, 35, 1117-1123. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas EA Electron affinity IE (evaluated) Recommended ionization energy T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.