Heptane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-44.89 ± 0.19kcal/molCcbProsen and Rossini, 1945ALS
Δfgas-45.24kcal/molN/ADavies and Gilbert, 1941Value computed using ΔfHliquid° value of -225.9±1.3 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 36.6 kj/mol from Prosen and Rossini, 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
30.509200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a better agreement with experimental data than the statistical thermodynamics calculation [ Pitzer K.S., 1944, Pitzer K.S., 1946].; GT
36.960273.15
39.48 ± 0.07298.15
39.670300.
50.349400.
60.251500.
68.700600.
75.801700.
81.800800.
86.900900.
91.2001000.
94.9001100.
98.1001200.
101.001300.
104.001400.
106.001500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
45.770 ± 0.045357.10Waddington G., 1947GT
47.510 ± 0.048373.15
50.370 ± 0.050400.40
53.850 ± 0.055434.35
57.000 ± 0.057466.10

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Manganese, tricarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C14H21MnO2 (solution) + Carbon monoxide (solution)

By formula: C8H5MnO3 (solution) + C7H16 (solution) = C14H21MnO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr47. ± 2.kcal/molAVGN/AAverage of 18 values; Individual data points

Chromium hexacarbonyl (solution) + Heptane (solution) = C12H16CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) + C7H16 (solution) = C12H16CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.1 ± 0.8kcal/molAVGN/AAverage of 13 values; Individual data points

C12H16CrO5 (solution) = Heptane (solution) + C5CrO5 (solution)

By formula: C12H16CrO5 (solution) = C7H16 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr9.61kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 27.20 kcal/mol Morse, Parker, et al., 1989; MS
Δr9.8kcal/molN/AYang, Vaida, et al., 1988solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 36.81 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 26.98 kcal/mol Yang, Peters, et al., 1986; MS

Hydrogen + 1-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-29.8 ± 0.5kcal/molAVGN/AAverage of 6 values; Individual data points

C12H16MoO5 (solution) = C5MoO5 (solution) + Heptane (solution)

By formula: C12H16MoO5 (solution) = C5MoO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr8.70kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Mo-CO bond in Mo(CO)6, 40.51 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Mo(CO)6(solution) + n-C7H16(solution) = Mo(CO)5(n-C7H16)(solution) + CO(solution), 31.81 kcal/mol Morse, Parker, et al., 1989; MS

C12H16O5W (solution) = C5O5W (solution) + Heptane (solution)

By formula: C12H16O5W (solution) = C5O5W (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr13.4kcal/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of W-CO bond in W(CO)6, 46.01 kcal/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction W(CO)6(solution) + n-C7H16(solution) = W(CO)5(n-C7H16)(solution) + CO(solution), 32.60 kcal/mol Morse, Parker, et al., 1989; MS

Molybdenum hexacarbonyl (solution) + Heptane (solution) = C12H16MoO5 (solution) + Carbon monoxide (solution)

By formula: C6MoO6 (solution) + C7H16 (solution) = C12H16MoO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.3 ± 2.9kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation.; MS
Δr31.8 ± 1.3kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.67 for the quantum yield of CO dissociation; MS

Hydrogen + (Z)-3-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-28.32 ± 0.07kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS
Δr-28.01 ± 0.68kcal/molChydRogers and Siddiqui, 1975liquid phase; solvent: n-Hexane; ALS

Heptane = Pentane, 3-ethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-0.14 ± 0.23kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-0.52 ± 0.27kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,2-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-3.42 ± 0.28kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-4.45 ± 0.32kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,3-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.18 ± 0.26kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-2.80 ± 0.30kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 2,4-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.54 ± 0.16kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-3.40 ± 0.22kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Pentane, 3,3-dimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-2.44 ± 0.15kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-3.24 ± 0.21kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Heptane = Butane, 2,2,3-trimethyl-

By formula: C7H16 = C7H16

Quantity Value Units Method Reference Comment
Δr-3.00 ± 0.22kcal/molCcbProsen and Rossini, 1941liquid phase; Heat of Isomerization; ALS
Δr-4.17 ± 0.27kcal/molCcbProsen and Rossini, 1941gas phase; Heat of Isomerization; ALS

Tungsten hexacarbonyl (solution) + Heptane (solution) = C12H16O5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C7H16 (solution) = C12H16O5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.60 ± 0.41kcal/molPACMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Benzenechromiumtricarbonyl (solution) + Heptane (solution) = C15H22CrO2 (solution) + Carbon monoxide (solution)

By formula: C9H6CrO3 (solution) + C7H16 (solution) = C15H22CrO2 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr32.79 ± 0.31kcal/molPACBurkey, 1990solvent: Heptane; The reaction enthalpy relies on 0.72 for the quantum yield of CO dissociation; MS

Vanadium, tetracarbonyl(η5-2,4-cyclopentadien-1-yl)- (solution) + Heptane (solution) = C15H21O3V (solution) + Carbon monoxide (solution)

By formula: C9H5O4V (solution) + C7H16 (solution) = C15H21O3V (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr25.6 ± 3.1kcal/molPACJohnson, Popov, et al., 1991solvent: Heptane; The reaction enthalpy relies on 0.80 for the quantum yield of CO dissociation.; MS

C12H16CrO5 (solution) + 1,3-Diazine (solution) = Heptane (solution) + C10H5CrNO5 (solution)

By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)

Quantity Value Units Method Reference Comment
Δr-20.1 ± 0.41kcal/molPACYang, Vaida, et al., 1988solvent: Heptane; MS

Hydrogen + 2-Heptene, (E)- = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.3 ± 0.1kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

Hydrogen + 3-Heptene, (E)- = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.41 ± 0.07kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

C14H21MnO2 (solution) + Tetrahydrofuran (solution) = C11H13MnO3 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + C4H8O (solution) = C11H13MnO3 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-16.1 ± 1.4kcal/molPACKlassen, Selke, et al., 1990solvent: Heptane; MS

Hydrogen + (Z)-2-Heptene = Heptane

By formula: H2 + C7H14 = C7H16

Quantity Value Units Method Reference Comment
Δr-27.63 ± 0.1kcal/molChydRogers and Dejroongruang, 1988liquid phase; solvent: Hydrocarbone; ALS

C12H16CrO5 (solution) + Tetrahydrofuran (solution) = C9H8CrO6 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C4H8O (solution) = C9H8CrO6 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.4 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Acetone (solution) = Heptane (solution) + C8H6CrO6 (solution)

By formula: C12H16CrO5 (solution) + C3H6O (solution) = C7H16 (solution) + C8H6CrO6 (solution)

Quantity Value Units Method Reference Comment
Δr-13.5 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Tributylamine (solution) = C17H27CrNO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C12H27N (solution) = C17H27CrNO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + 1-Hexene (solution) = C11H12CrO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C6H12 (solution) = C11H12CrO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C14H21MnO2 (solution) + Acetone (solution) = C10H11MnO3 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + C3H6O (solution) = C10H11MnO3 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-17.4 ± 1.0kcal/molPACKlassen, Selke, et al., 1990solvent: Heptane; MS

C14H21MnO2 (solution) + Methylene chloride (solution) = C8H7Cl2MnO2 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + CH2Cl2 (solution) = C8H7Cl2MnO2 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-9.0 ± 1.0kcal/molPACYang and Yang, 1992solvent: Heptane; MS

C14H21MnO2 (solution) + Methane, dibromo- (solution) = C8H7Br2MnO2 (solution) + Heptane (solution)

By formula: C14H21MnO2 (solution) + CH2Br2 (solution) = C8H7Br2MnO2 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-12.2 ± 1.2kcal/molPACYang and Yang, 1992solvent: Heptane; MS

C12H16CrO5 (solution) + Ethanol (solution) = C7H5CrO6 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C2H6O (solution) = C7H5CrO6 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-13.8 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

C12H16CrO5 (solution) + Acetonitrile (solution) = C8H6CrNO5 (solution) + Heptane (solution)

By formula: C12H16CrO5 (solution) + C2H3N (solution) = C8H6CrNO5 (solution) + C7H16 (solution)

Quantity Value Units Method Reference Comment
Δr-18.2 ± 1.2kcal/molPACYang, Peters, et al., 1986solvent: Heptane; MS

2-Heptyne + 2Hydrogen = Heptane

By formula: C7H12 + 2H2 = C7H16

Quantity Value Units Method Reference Comment
Δr-65.11 ± 0.31kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 3-Heptyne = Heptane

By formula: 2H2 + C7H12 = C7H16

Quantity Value Units Method Reference Comment
Δr-64.63 ± 0.36kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

2Hydrogen + 1-Heptyne = Heptane

By formula: 2H2 + C7H12 = C7H16

Quantity Value Units Method Reference Comment
Δr-69.65 ± 0.39kcal/molChydRogers, Dagdagan, et al., 1979liquid phase; solvent: Hexane; ALS

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.93 ± 0.10eVN/AN/AL

Ionization energy determinations

IE (eV) Method Reference Comment
10.15ESTLuo and Pacey, 1992LL
9.93 ± 0.10EVALLias, 1982LBLHLM
9.83 ± 0.15EQMautner(Meot-Ner), Sieck, et al., 1981LLK
9.91EQLias, Ausloos, et al., 1976LLK
9.90 ± 0.05PIBrehm, 1966RDSH
10.16PETurner and Al-Joboury, 1964RDSH
10.08PIWatanabe, Nakayama, et al., 1962RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3+27.9 ± 0.2?EIOlmsted, Street, et al., 1964RDSH
C2H5+12.89?EIPotzinger and Bunau, 1969RDSH
C3H5+12.7 ± 0.1?PIBrehm, 1966RDSH
C3H6+10.7 ± 0.1C4H10PIBrehm, 1966RDSH
C3H6+10.97 ± 0.08C4H10PISteiner, Giese, et al., 1961RDSH
C3H7+11.58?EIPotzinger and Bunau, 1969RDSH
C3H7+11.05 ± 0.05?PIBrehm, 1966RDSH
C4H7+11.5 ± 0.1?PIBrehm, 1966RDSH
C4H8+10.56 ± 0.05C3H8PIBrehm, 1966RDSH
C4H8+10.97 ± 0.03C3H8PISteiner, Giese, et al., 1961RDSH
C4H9+10.72C3H7EIPotzinger and Bunau, 1969RDSH
C4H9+10.56 ± 0.05C3H7PIBrehm, 1966RDSH
C4H9+11.19 ± 0.07C3H7PISteiner, Giese, et al., 1961RDSH
C5H10+10.33C2H6EILewis and Hamill, 1970RDSH
C5H10+10.40 ± 0.05C2H6PIBrehm, 1966RDSH
C5H10+11.035 ± 0.025C2H6PISteiner, Giese, et al., 1961RDSH
C5H11+10.66C2H5EIPotzinger and Bunau, 1969RDSH
C5H11+10.43 ± 0.05C2H5PIBrehm, 1966RDSH
C5H11+10.96 ± 0.085C2H5PISteiner, Giese, et al., 1961RDSH
C6H12+11.145 ± 0.035CH4PISteiner, Giese, et al., 1961RDSH
C6H13+10.7 ± 0.1CH3PIBrehm, 1966RDSH
C6H13+10.93 ± 0.11CH3PISteiner, Giese, et al., 1961RDSH

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61276

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C., Heats of combustion and formation of the nine isomeric heptanes in the liquid state, J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Pitzer K.S., 1944
Pitzer K.S., Thermodynamics of gaseous paraffins. Specific heat and related properties, Ind. Eng. Chem., 1944, 36, 829-831. [all data]

Pitzer K.S., 1946
Pitzer K.S., The entropies and related properties of branched paraffin hydrocarbons, Chem. Rev., 1946, 39, 435-447. [all data]

Waddington G., 1947
Waddington G., An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane, J. Am. Chem. Soc., 1947, 69, 22-30. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S., Polyhedron, 1988, 7, 1619. [all data]

Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V., Chem. Phys. Lett., 1986, 125, 566. [all data]

Johnson, Popov, et al., 1991
Johnson, F.P.A.; Popov, V.K.; George, M.W.; Bagratashvili, V.N.; Poliakoff, M.; Turner, J.J., Mendeleev Commun., 1991, 145.. [all data]

Rogers and Dejroongruang, 1988
Rogers, D.W.; Dejroongruang, K., Enthalpies of hydrogenation of the n-heptenes and the methylhexenes, J. Chem. Thermodyn., 1988, 20, 675-680. [all data]

Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A., Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids, J. Phys. Chem., 1975, 79, 574-577. [all data]

Prosen and Rossini, 1941
Prosen, E.J.R.; Rossini, F.D., Heats of isomerization of the nine heptanes, J. Res. NBS, 1941, 27, 519-528. [all data]

Burkey, 1990
Burkey, T.J., J. Am. Chem. Soc., 1990, 112, 8329. [all data]

Klassen, Selke, et al., 1990
Klassen, J.K.; Selke, M.; Sorensen, A.A.; Yang, G.K., J. Am. Chem. Soc., 1990, 112, 1267. [all data]

Yang and Yang, 1992
Yang, P.-F.; Yang, K.G., J. Am. Chem. Soc., 1992, 114, 6937. [all data]

Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L., Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation, J. Am. Chem. Soc., 1979, 101, 671-676. [all data]

Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D., Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes, Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]

Lias, 1982
Lias, S.G., Thermochemical information from ion-molecule rate constants, Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]

Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P., Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects, J. Am. Chem. Soc., 1981, 103, 5342. [all data]

Lias, Ausloos, et al., 1976
Lias, S.G.; Ausloos, P.; Horvath, Z., Charge transfer reactions in alkane and cycloalkane systems. Estimated ionization potentials, Int. J. Chem. Kinet., 1976, 8, 725. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Turner and Al-Joboury, 1964
Turner, D.W.; Al-Joboury, M.I., Molecular photoelectron spectroscopy, Bull. Soc. Chim. Belges, 1964, 73, 428. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Olmsted, Street, et al., 1964
Olmsted, J., III; Street, K., Jr.; Newton, A.S., Excess-kinetic-energy ions in organic mass spectra, J. Chem. Phys., 1964, 40, 2114. [all data]

Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v., Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]

Steiner, Giese, et al., 1961
Steiner, B.; Giese, C.F.; Inghram, M.G., Photoionization of alkanes. Dissociation of excited molecular ions, J. Chem. Phys., 1961, 34, 189. [all data]

Lewis and Hamill, 1970
Lewis, D.; Hamill, W.H., Excited states of neutral molecular fragments from appearance potentials by electron impact in a mass spectrometer, J. Chem. Phys., 1970, 52, 6348. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), References