1-Butanol

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-277. ± 5.kJ/molAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
gas361.98J/mol*KN/AChao J., 1986Other values of S(298.15 K) based on low-temperature thermal measurements are (in J/mol*K): 363.17 [65COU/HAL], 362.33 [ Chermin H.A.G., 1961], and 361.9 [ Buckley E., 1967].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
42.5450.Thermodynamics Research Center, 1997p=1 bar. Recommended S(T) and Cp(T) values agree with those calculated by [ Chermin H.A.G., 1961] within 1.5 J/mol*K. S(T) values calculated by [ Dyatkina M.E., 1954] are different from values given here by 12-30 J/mol*K. Please also see Chao J., 1986.; GT
58.33100.
70.10150.
81.28200.
100.68273.15
108.03 ± 0.25298.15
108.58300.
138.16400.
164.42500.
186.38600.
204.83700.
220.56800.
234.15900.
245.931000.
256.181100.
265.101200.
272.861300.
279.631400.
285.541500.
297.31750.
305.82000.
312.22250.
316.92500.
320.52750.
323.23000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
140.93 ± 0.79395.25Stromsoe E., 1970Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 0.79 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%.; GT
137.88398.15
143.00 ± 0.79404.15
144.16 ± 0.79409.15
142.06413.15
146.58 ± 0.79419.55
149.26 ± 0.79431.05
147.42433.15
151.60 ± 0.79441.15
152.66453.15
155.88 ± 0.79459.55
162.55 ± 0.79488.25
169.95 ± 0.79520.05
175.97 ± 0.79545.95
181.20 ± 0.79568.45
189.31 ± 0.79603.35

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-328. ± 4.kJ/molAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δcliquid-2670. ± 20.kJ/molAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
liquid225.73J/mol*KN/ACounsell, Hales, et al., 1965DH
liquid228.0J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 46.02 J/mol*K. Revision of previous data.; DH
liquid251.9J/mol*KN/AParks, 1925Extrapolation below 90 K, 73.81 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
176.86298.15Andreoli-Ball, Patterson, et al., 1988DH
176.67298.15Gates, Wood, et al., 1986T = 298.15 to 368.15 K.; DH
177.7298.Korolev, Kukharenko, et al., 1986DH
192.2321.05Naziev, Bashirov, et al., 1986T = 321.05, 349.20, 373.35 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.5934 kJ/kg*K.; DH
177.18298.15Ogawa and Murakami, 1986DH
175.97298.15Roux-Dexgranges, Grolier, et al., 1986DH
176.69298.15Tanaka, Toyama, et al., 1986DH
177.08298.15Zegers and Somsen, 1984DH
174.3293.15Arutyunyan, Bagdasaryan, et al., 1981T = 293 to 373 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.351 kJ/kg*K. Cp given from 293.15 to 533.15 for pressure range 10 to 60 MPa.; DH
181.6303.5Griigo'ev, Yanin, et al., 1979T = 303 to 462 K. p = 0.98 bar.; DH
179.5301.2Paz Andrade, Paz, et al., 1970T = 28, 40°C.; DH
177.03298.15Counsell, Hales, et al., 1965T = 11 to 323 K.; DH
189.1323.Swietoslawski and Zielenkiewicz, 1960Mean value 21 to 78°C.; DH
215.5302.6Phillip, 1939DH
183.3298.Trew and Watkins, 1933DH
175.3294.0Parks, 1925T = 90 to 294 K. Value is unsmoothed experimental datum.; DH
180.3303.Willams and Daniels, 1924T = 303 to 343 K. Equation only.; DH
174.5298.von Reis, 1881T = 290 to 390 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil390.6 ± 0.8KAVGN/AAverage of 137 out of 146 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus188. ± 9.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple184.54KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple184.51KN/ACounsell, Hales, et al., 1965, 2Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple183.9KN/AParks, 1925, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc562. ± 2.KAVGN/AAverage of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Pc45. ± 4.barAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.274l/molN/AGude and Teja, 1995 
Quantity Value Units Method Reference Comment
ρc3.65 ± 0.06mol/lAVGN/AAverage of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap52. ± 3.kJ/molAVGN/AAverage of 15 out of 16 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
43.29390.9N/AMajer and Svoboda, 1985 
46.0372.EBMuñoz and Krähenbühl, 2001Based on data from 357. to 389. K.; AC
38.2423.N/AWormald and Fennell, 2000AC
29.6473.N/AWormald and Fennell, 2000AC
20.8523.N/AWormald and Fennell, 2000AC
49.9330.N/ADejoz, Cruz Burguet, et al., 1995Based on data from 315. to 390. K.; AC
45.3379.N/ASusial and Ortega, 1993Based on data from 364. to 403. K.; AC
45.3387.AStephenson and Malanowski, 1987Based on data from 376. to 399. K.; AC
50.1338.AStephenson and Malanowski, 1987Based on data from 323. to 413. K.; AC
41.9428.AStephenson and Malanowski, 1987Based on data from 413. to 550. K.; AC
51.6236.AStephenson and Malanowski, 1987Based on data from 209. to 251. K.; AC
45.4386.AStephenson and Malanowski, 1987Based on data from 376. to 397. K.; AC
43.8406.AStephenson and Malanowski, 1987Based on data from 391. to 429. K.; AC
41.9430.AStephenson and Malanowski, 1987Based on data from 415. to 501. K.; AC
37.4512.AStephenson and Malanowski, 1987Based on data from 497. to 563. K.; AC
47.2366.EBStephenson and Malanowski, 1987Based on data from 351. to 397. K. See also Ambrose, Counsell, et al., 1970.; AC
49.0344.N/ASachek, Peshchenko, et al., 1982Based on data from 329. to 391. K.; AC
49.5 ± 0.1333.CSvoboda, Veselý, et al., 1973AC
48.6 ± 0.1343.CSvoboda, Veselý, et al., 1973AC
47.5 ± 0.1353.CSvoboda, Veselý, et al., 1973AC
46.4 ± 0.1363.CSvoboda, Veselý, et al., 1973AC
55.0303.N/AWilhoit and Zwolinski, 1973Based on data from 288. to 404. K.; AC
53.0310.DTAKemme and Kreps, 1969Based on data from 295. to 391. K.; AC
47.2 ± 0.1356.CCounsell, Hales, et al., 1965, 2AC
45.4 ± 0.1381.CCounsell, Hales, et al., 1965, 2AC
43.1 ± 0.1391.CCounsell, Hales, et al., 1965, 2AC
42.1434.N/AAmbrose and Townsend, 1963Based on data from 419. to 563. K.; AC
46.6377.EBBiddiscombe, Collerson, et al., 1963Based on data from 362. to 398. K.; AC
48.3352.N/ABrown and Smith, 1959Based on data from 337. to 390. K. See also Boublik, Fried, et al., 1984.; AC
48.3352.N/AKahlbaum, 1898Based on data from 314. to 390. K. See also Boublik, Fried, et al., 1984.; AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 298. to 410.
A (kJ/mol) 62.53
α -0.6584
β 0.696
Tc (K) 562.9
ReferenceMajer and Svoboda, 1985

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
295.8 to 391.04.546071351.555-93.34Kemme and Kreps, 1969 
391. to 479.4.390311254.502-105.246Hessel and Geiseler, 1965Coefficents calculated by NIST from author's data.
419.34 to 562.984.429211305.001-94.676Ambrose and Townsend, 1963, 2Coefficents calculated by NIST from author's data.
362.36 to 398.844.503931313.878-98.789Biddiscombe, Collerson, et al., 1963, 2Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
9.372184.5Counsell, Hales, et al., 1965DH
9.28183.9Acree, 1991AC
9.280183.9Parks, 1925DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
50.79184.5Counsell, Hales, et al., 1965DH
50.46183.9Parks, 1925DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1570. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1569. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1541. ± 12.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

C4H11O+ + 1-Butanol = (C4H11O+ • 1-Butanol)

By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr132.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

C3H9Si+ + 1-Butanol = (C3H9Si+ • 1-Butanol)

By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr185.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
124.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + 1-Butanol = (C3H9Sn+ • 1-Butanol)

By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr153.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr136.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
81.6525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

CH6N+ + 1-Butanol = (CH6N+ • 1-Butanol)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr98.3kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
44.4495.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Fluorine anion + 1-Butanol = (Fluorine anion • 1-Butanol)

By formula: F- + C4H10O = (F- • C4H10O)

Quantity Value Units Method Reference Comment
Δr135. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Chlorine anion + 1-Butanol = (Chlorine anion • 1-Butanol)

By formula: Cl- + C4H10O = (Cl- • C4H10O)

Quantity Value Units Method Reference Comment
Δr73.6 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr44.8 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

Sodium ion (1+) + 1-Butanol = (Sodium ion (1+) • 1-Butanol)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr109. ± 5.0kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
82.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

Butanal + Hydrogen = 1-Butanol

By formula: C4H8O + H2 = C4H10O

Quantity Value Units Method Reference Comment
Δr-81.88 ± 0.75kJ/molCmWiberg, Crocker, et al., 1991liquid phase; ALS
Δr-70.5 ± 1.3kJ/molChydBuckley and Cox, 1967gas phase; ALS

thiophenoxide anion + 1-Butanol = (thiophenoxide anion • 1-Butanol)

By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)

Quantity Value Units Method Reference Comment
Δr61.1kJ/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Benzene, isocyanato- + 1-Butanol = Carbamic acid, phenyl-, butyl ester

By formula: C7H5NO + C4H10O = C11H15NO2

Quantity Value Units Method Reference Comment
Δr-83.9 ± 4.4kJ/molCmPannone and Macosko, 1987liquid phase; ALS
Δr-105. ± 1.kJ/molCmLovering and Laidler, 1962solid phase; ALS

Fluorine anion + 1-Butanol = C4H9D10FO-

By formula: F- + C4H10O = C4H9D10FO-

Quantity Value Units Method Reference Comment
Δr101. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Magnesium ion (1+) + 1-Butanol = (Magnesium ion (1+) • 1-Butanol)

By formula: Mg+ + C4H10O = (Mg+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

1-Butanol + Chloridosulfuric acid = Butyl sulfuric acid + Hydrogen chloride

By formula: C4H10O + ClHO3S = C4H10O4S + HCl

Quantity Value Units Method Reference Comment
Δr58. ± 1.kJ/molCmMarkitanova, Barsukov, et al., 1981liquid phase; solvent: Dichloromethane; Sulfation; ALS

1-Butanol + 2-Propenoic acid = 2-Propenoic acid, butyl ester + Water

By formula: C4H10O + C3H4O2 = C7H12O2 + H2O

Quantity Value Units Method Reference Comment
Δr16.kJ/molEqkSelyakova, Vytnov, et al., 1976liquid phase; Heat of esterification 60-180 C; ALS

Acetic acid, butyl ester + Water = Acetic acid + 1-Butanol

By formula: C6H12O2 + H2O = C2H4O2 + C4H10O

Quantity Value Units Method Reference Comment
Δr3.3 ± 0.2kJ/molCmWadso, 1958liquid phase; Heat of hydrolysis; ALS

Maleic anhydride + 1-Butanol = 2-Butenedioic acid (Z)-, monobutyl ester

By formula: C4H2O3 + C4H10O = C8H12O4

Quantity Value Units Method Reference Comment
Δr-39.kJ/molKinMerca, Poraicu, et al., 1978solid phase; solvent: n-Butanol; DTA; ALS

1-Propene, 2-methyl- + 1-Butanol = 1-Tert-butoxybutane

By formula: C4H8 + C4H10O = C8H18O

Quantity Value Units Method Reference Comment
Δr-34.8 ± 2.7kJ/molEqkSharonov, Mishentseva, et al., 1991liquid phase; ALS

Ketene + 1-Butanol = Acetic acid, butyl ester

By formula: C2H2O + C4H10O = C6H12O2

Quantity Value Units Method Reference Comment
Δr-146.9kJ/molCmRice and Greenberg, 1934liquid phase; ALS

Lithium ion (1+) + 1-Butanol = (Lithium ion (1+) • 1-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr178. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Ion clustering data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)9.99 ± 0.05eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)789.2kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity758.9kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
10.10 ± 0.05EIHolmes and Lossing, 1991LL
9.99 ± 0.05PIPECOShao, Baer, et al., 1988LL
10.64 ± 0.07EIBowen and Maccoll, 1984LBLHLM
10.09 ± 0.02PECocksey, Eland, et al., 1971LLK
10.37PEBaker, Betteridge, et al., 1971LLK
10.37PEBaker, Betteridge, et al., 1971LLK
10.04PIWatanabe, Nakayama, et al., 1962RDSH
10.43PEBenoit and Harrison, 1977Vertical value; LLK
10.44 ± 0.03PEPeel and Willett, 1975Vertical value; LLK
10.37PEKatsumata, Iwai, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
CH3O+11.36 ± 0.06n-C3H7EISelim and Helal, 1981LLK
CH3O+11.46?EILambdin, Tuffly, et al., 1959RDSH
C2H2O+11.23?EILambdin, Tuffly, et al., 1959RDSH
C4H8+10.18 ± 0.05H2OPIPECOShao, Baer, et al., 1988LL
C4H8+10.20 ± 0.10H2OEIBowen and Maccoll, 1984LBLHLM

De-protonation reactions

C4H9O- + Hydrogen cation = 1-Butanol

By formula: C4H9O- + H+ = C4H10O

Quantity Value Units Method Reference Comment
Δr1570. ± 8.4kJ/molCIDCHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1571. ± 8.8kJ/molG+TSBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1569. ± 12.kJ/molG+TSBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr1543. ± 8.8kJ/molH-TSHaas and Harrison, 1993gas phase; Both metastable and 50 eV collision energy.; B
Δr1543. ± 8.4kJ/molIMREBartmess, Scott, et al., 1979gas phase; value altered from reference due to change in acidity scale; B
Δr1541. ± 12.kJ/molCIDCBoand, Houriet, et al., 1983gas phase; value altered from reference due to change in acidity scale; B

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

CH6N+ + 1-Butanol = (CH6N+ • 1-Butanol)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr98.3kJ/molPHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr110.J/mol*KN/AMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
44.4495.PHPMSMeot-Ner, 1984gas phase; Entropy change calculated or estimated; M

C3H9Si+ + 1-Butanol = (C3H9Si+ • 1-Butanol)

By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr185.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr130.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
124.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C3H9Sn+ + 1-Butanol = (C3H9Sn+ • 1-Butanol)

By formula: C3H9Sn+ + C4H10O = (C3H9Sn+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr153.kJ/molPHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr136.J/mol*KN/AStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
81.6525.PHPMSStone and Splinter, 1984gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M

C4H11O+ + 1-Butanol = (C4H11O+ • 1-Butanol)

By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr132.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr93.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984; M

thiophenoxide anion + 1-Butanol = (thiophenoxide anion • 1-Butanol)

By formula: C6H5S- + C4H10O = (C6H5S- • C4H10O)

Quantity Value Units Method Reference Comment
Δr61.1kJ/molPHPMSSieck and Meot-ner, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSSieck and Meot-ner, 1989gas phase; M

Chlorine anion + 1-Butanol = (Chlorine anion • 1-Butanol)

By formula: Cl- + C4H10O = (Cl- • C4H10O)

Quantity Value Units Method Reference Comment
Δr73.6 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr97.1J/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)CH3OH, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr44.8 ± 8.4kJ/molIMRELarson and McMahon, 1984gas phase; B,M

Fluorine anion + 1-Butanol = C4H9D10FO-

By formula: F- + C4H10O = C4H9D10FO-

Quantity Value Units Method Reference Comment
Δr101. ± 8.4kJ/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Fluorine anion + 1-Butanol = (Fluorine anion • 1-Butanol)

By formula: F- + C4H10O = (F- • C4H10O)

Quantity Value Units Method Reference Comment
Δr135. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M
Quantity Value Units Method Reference Comment
Δr108.J/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr103. ± 8.4kJ/molIMRELarson and McMahon, 1983gas phase; B,M

Lithium ion (1+) + 1-Butanol = (Lithium ion (1+) • 1-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr178. ± 7.9kJ/molCIDTRodgers and Armentrout, 2000RCD

Magnesium ion (1+) + 1-Butanol = (Magnesium ion (1+) • 1-Butanol)

By formula: Mg+ + C4H10O = (Mg+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr270. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

Sodium ion (1+) + 1-Butanol = (Sodium ion (1+) • 1-Butanol)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr109. ± 5.0kJ/molCIDTRodgers and Armentrout, 1999RCD

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
82.4298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Chermin H.A.G., 1961
Chermin H.A.G., Thermo data for petrochemicals. Part 28. Gaseous normal alcohols. The important thermo properties are presented for all the gaseous normal alcohols from methanol through n-decanol, Petrol. Refiner, 1961, 40 (4), 127-130. [all data]

Buckley E., 1967
Buckley E., Chemical equilibria. Part 2. Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Dyatkina M.E., 1954
Dyatkina M.E., Thermodynamic functions of normal alcohols (propanol, butanol, ethylene glycol), Zh. Fiz. Khim., 1954, 28, 377. [all data]

Stromsoe E., 1970
Stromsoe E., Heat capacity of alcohol vapors at atmospheric pressure, J. Chem. Eng. Data, 1970, 15, 286-290. [all data]

Counsell, Hales, et al., 1965
Counsell, J.F.; Hales, J.L.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part 16. Butyl alcohol, Trans. Faraday Soc., 1965, 61, 1869-1875. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks, 1925
Parks, G.S., Thermal data on organic compounds I. The heat capacities and free energies of methyl, ethyl and normal-butyl alcohols, J. Am. Chem. Soc., 1925, 47, 338-345. [all data]

Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M., Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc., Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]

Gates, Wood, et al., 1986
Gates, J.A.; Wood, R.H.; Cobos, J.C.; Casanova, C.; Roux, A.H.; Roux-Desgranges, G.; Grolier, J.-P.E., Densities and heat capacities of 1-butanol + n-decane from 298 K to 400 K, Fluid Phase Equilib., 1986, 27, 137-151. [all data]

Korolev, Kukharenko, et al., 1986
Korolev, V.P.; Kukharenko, V.A.; Krestov, G.A., Specific heat of binary mixtures of aliphatic alcohols with N,N-dimethylformamide and dimethylsulphoxide, Zhur. Fiz. Khim., 1986, 60, 1854-1857. [all data]

Naziev, Bashirov, et al., 1986
Naziev, Ya.M.; Bashirov, M.M.; Badalov, Yu.A., Experimental device for measurement of isobaric specific heat of electrolytes at elevated pressures, Inzh-Fiz. Zhur., 1986, 51(5), 789-795. [all data]

Ogawa and Murakami, 1986
Ogawa, H.; Murakami, S., Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K, Thermochim. Acta, 1986, 109, 145-154. [all data]

Roux-Dexgranges, Grolier, et al., 1986
Roux-Dexgranges, G.; Grolier, J.-P.E.; Villamanan, M.A.; Casanova, C., Role of alcohol in microemulsions. III. Volumes and heat capacities in the continuious phase water-n-butanol-toluene of reverse micelles, Fluid Phase Equilibria, 1986, 25, 209-230. [all data]

Tanaka, Toyama, et al., 1986
Tanaka, R.; Toyama, S.; Murakami, S., Heat capacities of {xCnH2n+1OH+(1-x)C7H16} for n = 1 to 6 at 298.15 K, J. Chem. Thermodynam., 1986, 18, 63-73. [all data]

Zegers and Somsen, 1984
Zegers, H.C.; Somsen, G., Partial molar volumes and heat capacities in (dimethylformamide + an n-alkanol), J. Chem. Thermodynam., 1984, 16, 225-235. [all data]

Arutyunyan, Bagdasaryan, et al., 1981
Arutyunyan, G.S.; Bagdasaryan, S.S.; Kerimov, A.M., Experimental investigation of the isobaric heat capacity of n-propyl, n-butyl and n-amyl alcohols at different temperatures and pressures, Izv. Akad. Nauk Azerb. SSr, 1981, (6), 94-97. [all data]

Griigo'ev, Yanin, et al., 1979
Griigo'ev, B.A.; Yanin, G.S.; Rastorguev, Yu.L.; Thermophysical parameters of alcohols, Tr. GIAP, 54, 1979, 57-64. [all data]

Paz Andrade, Paz, et al., 1970
Paz Andrade, M.I.; Paz, J.M.; Recacho, E., Contribucion a la microcalorimetria de los calores especificos de solidos y liquidos, An. Quim., 1970, 66, 961-967. [all data]

Swietoslawski and Zielenkiewicz, 1960
Swietoslawski, W.; Zielenkiewicz, A., Mean specific heat in homologous series of binary and ternary positive azeotropes, Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1960, 8, 651-653. [all data]

Phillip, 1939
Phillip, N.M., Adiabatic and isothermal compressibilities of liquids, Proc. Indian Acad. Sci., 1939, A9, 109-120. [all data]

Trew and Watkins, 1933
Trew, V.C.G.; Watkins, G.M.C., Some physical properties of mixtures of certain organic liquids, Trans. Faraday Soc., 1933, 29, 1310-1318. [all data]

Willams and Daniels, 1924
Willams, J.W.; Daniels, F., The specific heats of certain organic liquids at elevated temperatures, J. Am. Chem. Soc., 1924, 46, 903-917. [all data]

von Reis, 1881
von Reis, M.A., Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht, Ann. Physik [3], 1881, 13, 447-464. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Counsell, Hales, et al., 1965, 2
Counsell, J.F.; Hales, J.L.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part 16.?Butyl alcohol, Trans. Faraday Soc., 1965, 61, 1869, https://doi.org/10.1039/tf9656101869 . [all data]

Parks, 1925, 2
Parks, G.S., Thermal data on organic compounds: I the heat capacities and free energies of methyl, ethyl and n-butyl alcohol, J. Am. Chem. Soc., 1925, 47, 338-45. [all data]

Gude and Teja, 1995
Gude, M.; Teja, A.S., Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols, J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina, Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid, J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u . [all data]

Wormald and Fennell, 2000
Wormald, C.J.; Fennell, D.P., Organometallics, 2000, 21, 3, 767-779, https://doi.org/10.1023/A:1006648903706 . [all data]

Dejoz, Cruz Burguet, et al., 1995
Dejoz, Ana; Cruz Burguet, M.; Munoz, Rosa; Sanchotello, Margarita, Isobaric Vapor-Liquid Equilibria of Tetrachloroethylene with 1-Butanol and 2-Butanol at 6 and 20 kPa, J. Chem. Eng. Data, 1995, 40, 1, 290-292, https://doi.org/10.1021/je00017a064 . [all data]

Susial and Ortega, 1993
Susial, Pedro; Ortega, Juan, Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol, J. Chem. Eng. Data, 1993, 38, 4, 647-649, https://doi.org/10.1021/je00012a044 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Sachek, Peshchenko, et al., 1982
Sachek, A.I.; Peshchenko, A.D.; Markovnik, V.S.; Ral'ko, O.V.; Andreevskii, D.N.; Leont'eva, A.A., Termodin. Org. Soedin., 1982, 94. [all data]

Svoboda, Veselý, et al., 1973
Svoboda, V.; Veselý, F.; Holub, R.; Pick, J., Enthalpy data of liquids. II. The dependence of heats of vaporization of methanol, propanol, butanol, cyclohexane, cyclohexene, and benzene on temperature, Collect. Czech. Chem. Commun., 1973, 38, 12, 3539-3543, https://doi.org/10.1135/cccc19733539 . [all data]

Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J., Physical and thermodynamic properties of aliphatic alcohols, J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]

Kemme and Kreps, 1969
Kemme, Herbert R.; Kreps, Saul I., Vapor pressure of primary n-alkyl chlorides and alcohols, J. Chem. Eng. Data, 1969, 14, 1, 98-102, https://doi.org/10.1021/je60040a011 . [all data]

Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R., 681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols, J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., 364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols, J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954 . [all data]

Brown and Smith, 1959
Brown, I.; Smith, F., Liquid-Vapour Equilibria. IX. The Systems n-Propanol + Benzene and n-Butanol + Benzene at 45°C, Aust. J. Chem., 1959, 12, 3, 407-621, https://doi.org/10.1071/CH9590407 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Kahlbaum, 1898
Kahlbaum, G.W.A., Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1898, 26, 577. [all data]

Hessel and Geiseler, 1965
Hessel, D.; Geiseler, G., Uber die Druckabhangigkeit des heteroazeotropen Systems n-Butanol/Wasser, Z. Phys. Chem. (Leipzig), 1965, 229, 199-209. [all data]

Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R., Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols, J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614 . [all data]

Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S., Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols, J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954 . [all data]

Acree, 1991
Acree, William E., Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation, Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H . [all data]

Haas and Harrison, 1993
Haas, M.J.; Harrison, A.G., The Fragmentation of Proton-Bound Cluster Ions and the Gas-Phase Acidities of Alcohols, Int. J. Mass Spectrom. Ion Proc., 1993, 124, 2, 115, https://doi.org/10.1016/0168-1176(93)80003-W . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Boand, Houriet, et al., 1983
Boand, G.; Houriet, R.; Baumann, T., The gas phase acidity of aliphatic alcohols, J. Am. Chem. Soc., 1983, 105, 2203. [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E., A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase, Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

Rodgers and Armentrout, 1999
Rodgers, M.T.; Armentrout, P.B., Absolute Binding Energies of Sodium Ions to Short-Chain Alcohols, CnH2n+2O, n=1-4, Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, 1999, 4955. [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M., Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups, J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]

Buckley and Cox, 1967
Buckley, E.; Cox, J.D., Chemical equilibria. Part 2.-Dehydrogenation of propanol and butanol, Trans. Faraday Soc., 1967, 63, 895-901. [all data]

Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M., Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities., J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079 . [all data]

Pannone and Macosko, 1987
Pannone, M.C.; Macosko, C.W., Kinetics of isocyanate amine reactions, J. Appl. Polym. Sci., 1987, 34, 2409-2432. [all data]

Lovering and Laidler, 1962
Lovering, E.G.; Laidler, K.J., Thermochemical studies of some alcohol-isocyanate reactions, Can. J. Chem., 1962, 40, 26-30. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Markitanova, Barsukov, et al., 1981
Markitanova, L.I.; Barsukov, I.I.; Passet, B.V., Determination of heat of sulfation by calorimetric titration, J. Gen. Chem. USSR, 1981, 51, 1286-1289. [all data]

Selyakova, Vytnov, et al., 1976
Selyakova, V.A.; Vytnov, G.F.; Sineokov, A.P., Study of the esterification of acrylic acid by butyl alcohol, Russ. J. Phys. Chem. (Engl. Transl.), 1976, 50, 1692-1694. [all data]

Wadso, 1958
Wadso, I., The heats of hydrolysis of some alkyl acetates, Acta Chem. Scand., 1958, 12, 630-633. [all data]

Merca, Poraicu, et al., 1978
Merca, E.; Poraicu, M.; Tribunescu, P., Kinetics of maleic monoester formation with n-butanol, Bull. Stiint. Teh. Inst. Politeh. "Traian Vuia" Timisoara, Ser. Chim., 1978, 23, 160-163. [all data]

Sharonov, Mishentseva, et al., 1991
Sharonov, K.G.; Mishentseva, Y.B.; Rozhnov, A.M.; Miroshnichenko, E.A.; Korchatova, L.I., Molar enthalpies of formation and vaporizqation of t-butoxybutanes and thermodynamics of their synthesis from a butanol and 2-methylpropene I. Equilibria of synthesis reactions of t-butoxybutanes in the liquid phase, J. Chem. Thermodyn., 1991, 23, 141-145. [all data]

Rice and Greenberg, 1934
Rice, F.O.; Greenberg, J., Ketene. III. Heat of formation and heat of reaction with alcohols, J. Am. Chem. Soc., 1934, 38, 2268-2270. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Holmes and Lossing, 1991
Holmes, J.L.; Lossing, F.P., Ionization energies of homologous organic compounds and correlation with molecular size, Org. Mass Spectrom., 1991, 26, 537. [all data]

Shao, Baer, et al., 1988
Shao, J.D.; Baer, T.; Lewis, D.K., Dissociation dynamics of energy-selected ion-dipole complexes. 2. Butyl alcohol ions, J. Phys. Chem., 1988, 92, 5123. [all data]

Bowen and Maccoll, 1984
Bowen, R.D.; Maccoll, A., Low energy, low temperature mass spectra, Org. Mass Spectrom., 1984, 19, 379. [all data]

Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J., The effect of alkyl substitution on ionisation potential, J. Chem. Soc., 1971, (B), 790. [all data]

Baker, Betteridge, et al., 1971
Baker, A.D.; Betteridge, D.; Kemp, N.R.; Kirby, R.E., Application of photoelectron spectrometry to pesticide analysis. II.Photoelectron spectra of hydroxy-, and halo-alkanes and halohydrins, Anal. Chem., 1971, 43, 375. [all data]

Watanabe, Nakayama, et al., 1962
Watanabe, K.; Nakayama, T.; Mottl, J., Ionization potentials of some molecules, J. Quant. Spectry. Radiative Transfer, 1962, 2, 369. [all data]

Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G., Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules, J. Am. Chem. Soc., 1977, 99, 3980. [all data]

Peel and Willett, 1975
Peel, J.B.; Willett, G.D., Photoelectron spectroscopic studies of the higher alcohols, Aust. J. Chem., 1975, 28, 2357. [all data]

Katsumata, Iwai, et al., 1973
Katsumata, S.; Iwai, T.; Kimura, K., Photoelectron spectra and sum rule consideration. Higher alkyl amines and alcohols, Bull. Chem. Soc. Jpn., 1973, 46, 3391. [all data]

Selim and Helal, 1981
Selim, E.T.M.; Helal, A.I., Heat of formation of CH2=OH+ fragment ion, Indian J. Pure Appl. Phys., 1981, 19, 977. [all data]

Lambdin, Tuffly, et al., 1959
Lambdin, W.J.; Tuffly, B.L.; Yarborough, V.A., Appearance potentials as obtained with an analytical mass spectrometer, Appl. Spectry., 1959, 13, 71. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, References