Lead monofluoride


Gas phase thermochemistry data

Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-80.27kJ/molReviewChase, 1998Data last reviewed in December, 1973
Quantity Value Units Method Reference Comment
gas,1 bar249.99J/mol*KReviewChase, 1998Data last reviewed in December, 1973

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 36.81757
B 0.363126
C 0.528389
D -0.064373
E -0.225817
F -92.01662
G 293.1415
H -80.26627
ReferenceChase, 1998
Comment Data last reviewed in December, 1973

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to FPb+ (ion structure unspecified)

Ionization energy determinations

IE (eV) Method Reference Comment
7.5 ± 0.3EIZmbov, Hastie, et al., 1968RDSH

Constants of diatomic molecules

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Klaus P. Huber and Gerhard H. Herzberg

Data collected through July, 1977

Symbols used in the table of constants
SymbolMeaning
State electronic state and / or symmetry symbol
Te minimum electronic energy (cm-1)
ωe vibrational constant – first term (cm-1)
ωexe vibrational constant – second term (cm-1)
ωeye vibrational constant – third term (cm-1)
Be rotational constant in equilibrium position (cm-1)
αe rotational constant – first term (cm-1)
γe rotation-vibration interaction constant (cm-1)
De centrifugal distortion constant (cm-1)
βe rotational constant – first term, centrifugal force (cm-1)
re internuclear distance (Å)
Trans. observed transition(s) corresponding to electronic state
ν00 position of 0-0 band (units noted in table)
Diatomic constants for 208Pb19F
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
Strong absorption continuum with maximum at ~41000 cm-1; emission continuum with maximum at ~32800 cm-1.
Rochester, 1936
F (47866) [628] H         F ← X1 (V) 47927 H
Rochester, 1936
E (45400) (565) H         E → X2 V 
Singh, 1967
           E ← X1 V 45430 H
Rochester, 1936
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
D (43818) [597] H         D ← X1 (V) 43863 H
Rochester, 1936
C 38046 594.0 H 2.50 1        C ← X1 V 38089 H
Rochester, 1936
B 2Σ+ 35644.4 [605.75] Z 3.42 HQ  0.24810 2 3 0.001479  1.63E-7  1.9756 B ↔ X2 V 27420.91 Z
missing citation; missing citation; Lumley and Barrow, 1977
           B ↔ X1 V 35696.79 Z
missing citation; Lumley and Barrow, 1977
StateTeωeωexeωeyeBeαeγeDeβereTrans.ν00
A 1/2 (2Σ+) 22556.5 [394.73] Z 1.77 H  0.20762 4 0.001430  2.22E-7  2.1597 A → X2 R 14226.21
Barrow, Butler, et al., 1959
           A ↔ X1 R 22502.09 Z
Morgan, 1936; missing citation; Lumley and Barrow, 1977
X2 2Π3/2 8263.5 [528.75] Z 1.50 HQ  0.23403 0.001450  1.78E-7  2.0342 (X2-X1) 8275.88
X1 2Π1/2 0 [502.73] Z 2.28 5  0.22875 6 0.001473  1.83E-7  2.0575  

Notes

1Diffuse bands 9
2Spin splitting constant γ = +0.0027.
3Breaking off in emission above v'=1 (predissociation).
4Ω-type doubling Δνfe(v=0) = +0.6185(J+1/2) -10.2E-7(J+1/2)3.
5Determined from head-origin calculations.
6Λ-type doubling Δνfe(v=0)= -0.1388(J+1/2).
7Thermochemica1 value (mass-spectrometry) Zmbov, Hastie, et al., 1968. See also Wieland and Newburgh, 1952 who consider the possibilities D00 = 4.54, 3.57, or 3.22 eV.
8Electron impact appearance potential Zmbov, Hastie, et al., 1968.
9 Wieland and Newburgh, 1952 consider it possible that the observed C state levels (v=1... 5) are actually higher vibrational levels of B 2Σ+ (v=5...9).

References

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Zmbov, Hastie, et al., 1968
Zmbov, K.F.; Hastie, J.W.; Margrave, J.L., Mass spectrometric studies at high temperatures. Part 24. Thermodynamics of vaporization of SnF, and PbF, and the dissociation energies of SnF and PbF, J. Chem. Soc. Faraday Trans., 1968, 64, 861. [all data]

Rochester, 1936
Rochester, G.D., The band spectra of the lead halides, PbF and PbCl, Proc. R. Soc. London A, 1936, 153, 407. [all data]

Singh, 1967
Singh, S.P., Emission spectrum of PbF molecule, Indian J. Pure Appl. Phys., 1967, 5, 292. [all data]

Lumley and Barrow, 1977
Lumley, D.J.W.; Barrow, R.F., Rotational analysis of the B-X2, B-X1 and A-X1 systems of gaseous PbF, J. Phys. B:, 1977, 10, 1537. [all data]

Barrow, Butler, et al., 1959
Barrow, R.F.; Butler, D.; Johns, J.W.C.; Powell, J.L., Some observations on the spectra of the diatomic fluorides of silicon, germanium, tin, and lead, Proc. Phys. Soc. London, 1959, 73, 317. [all data]

Morgan, 1936
Morgan, F., Absorption spectra of PbF, PbCl and PbBr, Phys. Rev., 1936, 49, 47. [all data]

Wieland and Newburgh, 1952
Wieland, K.; Newburgh, R., Uber einige neue Bandenspektren der Radikale PbCl, PbBr und PbJ, Helv. Phys. Acta, 1952, 25, 87. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References