Ethylene

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Henry's Law data

Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0048 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0049 QN/ASeveral references are given in the list of Henry's law constants but not assigned to specific species.
0.0047 LN/A 
0.00471800.LN/A 
0.0047 VN/A 
0.0049 XN/AThe value is taken from the compilation of solubilities by W. Asman (unpublished).

Gas phase ion energetics data

Go To: Top, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C2H4+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)10.5138 ± 0.0006eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)680.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity651.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Δf(+) ion1067. ± 0.8kJ/molN/AN/A 
Quantity Value Units Method Reference Comment
ΔfH(+) ion,0K1080.kJ/molN/AN/A 

Ionization energy determinations

IE (eV) Method Reference Comment
10.51CIOhno, Okamura, et al., 1995LL
10.5138 ± 0.0006LSWilliams and Cool, 1991LL
10.51 ± 0.015EIPlessis and Marmet, 1986LBLHLM
10.509 ± 0.005EVALPlessis and Marmet, 1986LBLHLM
10.51PEKimura, Katsumata, et al., 1981LLK
10.50 ± 0.02PIWood and Taylor, 1979LLK
10.514 ± 0.007PECarlier and Botter, 1979LLK
10.51PESell, Mintz, et al., 1978LLK
10.51 ± 0.02PEBieri, Burger, et al., 1977LLK
~10.5EIVan Veen, 1976LLK
10.517 ± 0.002TEStockbauer and Inghram, 1975LLK
10.517 ± 0.003TEStockbauer and Inghram, 1975, 2LLK
10.51PIRabalais, Debies, et al., 1974LLK
10.5EIMaeda, Suzuki, et al., 1974LLK
10.507 ± 0.004PIKnowles and Nicholson, 1974LLK
10.51 ± 0.01EIGordon, Krige, et al., 1974LLK
10.515 ± 0.003PEMasclet, Grosjean, et al., 1973LLK
10.51PEBeez, Bieri, et al., 1973LLK
10.51PEMason, Kuppermann, et al., 1972LLK
10.51PEBrundle, Robin, et al., 1972LLK
10.56PEFrost and Sandhu, 1971LLK
10.51 ± 0.02PEBranton, Frost, et al., 1970RDSH
10.51 ± 0.05PEEland, 1969RDSH
10.50 ± 0.05EIWilliams and Hamill, 1968RDSH
10.51PEBaker, Baker, et al., 1968RDSH
10.511 ± 0.005PIBrehm, 1966RDSH
10.50 ± 0.01PIBotter, Dibeler, et al., 1966RDSH
10.507 ± 0.004PINicholson, 1965RDSH
10.50 ± 0.02PIMomigny, 1963RDSH
10.52 ± 0.01PIWatanabe, 1954RDSH
10.51 ± 0.03SPrice and Tutte, 1940RDSH
10.80 ± 0.05EIKusch, Hustrulid, et al., 1937RDSH
10.68PEBieri and Asbrink, 1980Vertical value; LLK
10.50 ± 0.01PEKrause, Taylor, et al., 1978Vertical value; LLK
10.5PEKobayashi, 1978Vertical value; LLK
10.5PEWhite, Carlson, et al., 1974Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+≤18.30 ± 0.16CH4EIPlessis and Marmet, 1986LBLHLM
C+24.4?EIMaeda, Suzuki, et al., 1974LLK
C+24.6 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH+17.68 ± 0.16CH3EIPlessis and Marmet, 1986LBLHLM
CH+22.1?EIMaeda, Suzuki, et al., 1974LLK
CH+22.9 ± 0.5?EIKusch, Hustrulid, et al., 1937RDSH
CH2+17.82 ± 0.06CH2EIPlessis and Marmet, 1986LBLHLM
CH2+18.04 ± 0.04CH2TEStockbauer and Inghram, 1975, 2LLK
CH2+18.4CH2EIMaeda, Suzuki, et al., 1974LLK
CH2+18.05CH2PIChupka, Berkowitz, et al., 1969RDSH
CH2+19.2 ± 0.3?EIKusch, Hustrulid, et al., 1937RDSH
CH3+15.60 ± 0.20CH-EIPlessis and Marmet, 1986LBLHLM
CH3+16.95 ± 0.15CHEIPlessis and Marmet, 1986LBLHLM
CH3+19.3?EIMaeda, Suzuki, et al., 1974LLK
CH4+18.66C-EIPlessis and Marmet, 1986LBLHLM
C2+24.5?EIMaeda, Suzuki, et al., 1974LLK
C2+26.4 ± 1.02H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H+18.7H+H2EIMaeda, Suzuki, et al., 1974LLK
C2H+19.2 ± 1.0H+H2EIKusch, Hustrulid, et al., 1937RDSH
C2H2+13.14 ± 0.03H2EIPlessis and Marmet, 1986LBLHLM
C2H2+13.2 ± 0.1H2PIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H2+13.55H2PIWood and Taylor, 1979LLK
C2H2+13.13 ± 0.04H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.0 ± 0.1H2EIGordon, Harvey, et al., 1977LLK
C2H2+13.14 ± 0.01H2TEStockbauer and Inghram, 1975, 2LLK
C2H2+13.1H2EIMaeda, Suzuki, et al., 1974LLK
C2H2+13.11 ± 0.02H2EIGordon, Krige, et al., 1974LLK
C2H2+13.13 ± 0.02H2PIChupka, Berkowitz, et al., 1969RDSH
C2H2+12.96 ± 0.02H2PIBrehm, 1966RDSH
C2H2+13.12 ± 0.03H2PIBotter, Dibeler, et al., 1966RDSH
C2H2+13.4 ± 0.2H2EIKusch, Hustrulid, et al., 1937RDSH
C2H3+12.35 ± 0.10H-EIPlessis and Marmet, 1986LBLHLM
C2H3+13.10 ± 0.08HEIPlessis and Marmet, 1986LBLHLM
C2H3+13.3 ± 0.1HPIPECOBombach, Dannacher, et al., 1984T = 0K; LBLHLM
C2H3+13.55HPIWood and Taylor, 1979LLK
C2H3+13.22 ± 0.02HTEStockbauer and Inghram, 1975, 2LLK
C2H3+13.6HEIMaeda, Suzuki, et al., 1974LLK
C2H3+13.31 ± 0.03HEIGordon, Krige, et al., 1974LLK
C2H3+13.52 ± 0.04HEIFinney and Harrison, 1972LLK
C2H3+13.25 ± 0.05HPIChupka, Berkowitz, et al., 1969RDSH
C2H3+13.37 ± 0.03HPIBrehm, 1966RDSH
C2H3+14.1 ± 0.1HEIKusch, Hustrulid, et al., 1937RDSH
H+18.66 ± 0.05C2H3C2H3Shiromaru, Achiba, et al., 1987LBLHLM
H+26.2 ± 1.5C2H3EIKusch, Hustrulid, et al., 1937RDSH
H2+22.4 ± 1.5?EIKusch, Hustrulid, et al., 1937RDSH

De-protonation reactions

C2H3- + Hydrogen cation = Ethylene

By formula: C2H3- + H+ = C2H4

Quantity Value Units Method Reference Comment
Δr1704. ± 9.kJ/molAVGN/AAverage of 5 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr1677.8 ± 2.1kJ/molIMREErvin, Gronert, et al., 1990gas phase; B
Δr1670. ± 8.8kJ/molH-TSDePuy, Gronert, et al., 1989gas phase; B
Δr1668. ± 21.kJ/molH-TSPeerboom, Rademaker, et al., 1992gas phase; B
Δr>1661.0kJ/molIMRBFroelicher, Freiser, et al., 1986gas phase; B

Ion clustering data

Go To: Top, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Silver ion (1+) + Ethylene = (Silver ion (1+) • Ethylene)

By formula: Ag+ + C2H4 = (Ag+ • C2H4)

Quantity Value Units Method Reference Comment
Δr141.kJ/molHPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KN/AGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
71.5750.HPMSGuo and Castleman, 1991gas phase; Entropy change calculated or estimated; M

(Silver ion (1+) • Ethylene) + Ethylene = (Silver ion (1+) • 2Ethylene)

By formula: (Ag+ • C2H4) + C2H4 = (Ag+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr136.kJ/molHPMSGuo and Castleman, 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KHPMSGuo and Castleman, 1991gas phase; M

Aluminum ion (1+) + Ethylene = (Aluminum ion (1+) • Ethylene)

By formula: Al+ + C2H4 = (Al+ • C2H4)

Quantity Value Units Method Reference Comment
Δr54.4 ± 8.4kJ/molCIDC,EqGStockigt, Schwarz, et al., 1996Anchored to theory; RCD

C2H4+ + Ethylene = (C2H4+ • Ethylene)

By formula: C2H4+ + C2H4 = (C2H4+ • C2H4)

Quantity Value Units Method Reference Comment
Δr66.1kJ/molPIOno, Linn, et al., 1984gas phase; M
Δr76.1kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

(C2H4+ • Ethylene) + Ethylene = (C2H4+ • 2Ethylene)

By formula: (C2H4+ • C2H4) + C2H4 = (C2H4+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr18.kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C3H5+ + Ethylene = (C3H5+ • Ethylene)

By formula: C3H5+ + C2H4 = (C3H5+ • C2H4)

Quantity Value Units Method Reference Comment
Δr69.9kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C3H9Si+ + Ethylene = (C3H9Si+ • Ethylene)

By formula: C3H9Si+ + C2H4 = (C3H9Si+ • C2H4)

Quantity Value Units Method Reference Comment
Δr98.7kJ/molPHPMSLi and Stone, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr161.J/mol*KPHPMSLi and Stone, 1989gas phase; M

C4H7+ + Ethylene = (C4H7+ • Ethylene)

By formula: C4H7+ + C2H4 = (C4H7+ • C2H4)

Quantity Value Units Method Reference Comment
Δr36.kJ/molPICeyer, Tiedemann, et al., 1979gas phase; M

C6HCrO6+ + Ethylene = (C6HCrO6+ • Ethylene)

By formula: C6HCrO6+ + C2H4 = (C6HCrO6+ • C2H4)

Quantity Value Units Method Reference Comment
Δr59.8 ± 5.0kJ/molICRCDHop and McMahon, 1991gas phase; Ar collision gas; M

Cobalt ion (1+) + Ethylene = (Cobalt ion (1+) • Ethylene)

By formula: Co+ + C2H4 = (Co+ • C2H4)

Quantity Value Units Method Reference Comment
Δr186. ± 9.2kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
179. (+7.1,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
27. (+13.,-0.) CIDHaynes and Armentrout, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Cobalt ion (1+) • Ethylene) + Ethylene = (Cobalt ion (1+) • 2Ethylene)

By formula: (Co+ • C2H4) + C2H4 = (Co+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr152. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Chromium ion (1+) + Ethylene = (Chromium ion (1+) • Ethylene)

By formula: Cr+ + C2H4 = (Cr+ • C2H4)

Quantity Value Units Method Reference Comment
Δr96. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
125. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Chromium ion (1+) • Ethylene) + Ethylene = (Chromium ion (1+) • 2Ethylene)

By formula: (Cr+ • C2H4) + C2H4 = (Cr+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr108. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Copper ion (1+) + Ethylene = (Copper ion (1+) • Ethylene)

By formula: Cu+ + C2H4 = (Cu+ • C2H4)

Quantity Value Units Method Reference Comment
Δr176. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95. (+11.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Copper ion (1+) • Ethylene) + Ethylene = (Copper ion (1+) • 2Ethylene)

By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr174. ± 13.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Fluorine anion + Ethylene = (Fluorine anion • Ethylene)

By formula: F- + C2H4 = (F- • C2H4)

Quantity Value Units Method Reference Comment
Δr25. ± 13.kJ/molIMRBSullivan and Beauchamp, 1976gas phase; Structure: Roy and McMahon, 1985; B

Iron ion (1+) + Ethylene = (Iron ion (1+) • Ethylene)

By formula: Fe+ + C2H4 = (Fe+ • C2H4)

Quantity Value Units Method Reference Comment
Δr145. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
145. (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

(Iron ion (1+) • Ethylene) + Ethylene = (Iron ion (1+) • 2Ethylene)

By formula: (Fe+ • C2H4) + C2H4 = (Fe+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr151. ± 15.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

NH4+ + Ethylene = (NH4+ • Ethylene)

By formula: H4N+ + C2H4 = (H4N+ • C2H4)

Quantity Value Units Method Reference Comment
Δr42.kJ/molPHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/ADeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
15.294.PHPMSDeakyne and Meot-Ner (Mautner), 1985gas phase; Entropy change calculated or estimated; M

Lanthanum ion (1+) + Ethylene = (Lanthanum ion (1+) • Ethylene)

By formula: La+ + C2H4 = (La+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
90.0 CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Manganese ion (1+) + Ethylene = (Manganese ion (1+) • Ethylene)

By formula: Mn+ + C2H4 = (Mn+ • C2H4)

Quantity Value Units Method Reference Comment
Δr91. ± 12.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

(Manganese ion (1+) • Ethylene) + Ethylene = (Manganese ion (1+) • 2Ethylene)

By formula: (Mn+ • C2H4) + C2H4 = (Mn+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr88. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Sodium ion (1+) + Ethylene = (Sodium ion (1+) • Ethylene)

By formula: Na+ + C2H4 = (Na+ • C2H4)

Quantity Value Units Method Reference Comment
Δr43.1 ± 4.6kJ/molCIDTArmentrout and Rodgers, 2000RCD

Nickel ion (1+) + Ethylene = (Nickel ion (1+) • Ethylene)

By formula: Ni+ + C2H4 = (Ni+ • C2H4)

Quantity Value Units Method Reference Comment
Δr182. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
138. (+19.,-0.) CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Nickel ion (1+) • Ethylene) + Ethylene = (Nickel ion (1+) • 2Ethylene)

By formula: (Ni+ • C2H4) + C2H4 = (Ni+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr173. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Rh+ + Ethylene = (Rh+ • Ethylene)

By formula: Rh+ + C2H4 = (Rh+ • C2H4)

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
161. (+3.,-0.) CIDChen and Armetrout, 1995gas phase; guided ion beam CID; M

Scandium ion (1+) + Ethylene = (Scandium ion (1+) • Ethylene)

By formula: Sc+ + C2H4 = (Sc+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
131. CIDArmentrout and Kickel, 1994gas phase; ΔrH >=, guided ion beam CID; M

Titanium ion (1+) + Ethylene = (Titanium ion (1+) • Ethylene)

By formula: Ti+ + C2H4 = (Ti+ • C2H4)

Quantity Value Units Method Reference Comment
Δr146. ± 11.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

Vanadium ion (1+) + Ethylene = (Vanadium ion (1+) • Ethylene)

By formula: V+ + C2H4 = (V+ • C2H4)

Quantity Value Units Method Reference Comment
Δr125. ± 7.9kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
117. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

(Vanadium ion (1+) • Ethylene) + Ethylene = (Vanadium ion (1+) • 2Ethylene)

By formula: (V+ • C2H4) + C2H4 = (V+ • 2C2H4)

Quantity Value Units Method Reference Comment
Δr127. ± 14.kJ/molCIDTSievers, Jarvis, et al., 1998RCD

Yttrium ion (1+) + Ethylene = (Yttrium ion (1+) • Ethylene)

By formula: Y+ + C2H4 = (Y+ • C2H4)

Quantity Value Units Method Reference Comment
Δr220. ± 10.kJ/molPDissRanashinge and Freiser, 1992gas phase; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
109. CIDArmentrout and Kickel, 1994gas phase; ΔrH>=, guided ion beam CID; M

IR Spectrum

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty


Mass spectrum (electron ionization)

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 18814

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Platt and Price, 1949
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 11951
Instrument n.i.g.
Melting point - 169
Boiling point - 103.7

Vibrational and/or electronic energy levels

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   D2h     Symmetry Number σ = 4


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

ag 1 CH2 s-str 3026  B  ia 3026.4 p gas
ag 2 CC str 1623  D  ia 1622.6 p gas FR(2ν10)
ag 3 CH2 scis 1342  B  ia 1342.2 p gas
au 4 CH2 twist 1023  E  ia  ia OC46)
b1g 5 CH2 a-str 3103  B  ia 3102.5 dp gas
b1g 6 CH2 rock 1236  C  ia 1236 dp liq.
b1u 7 CH2 wag 949  A 949.3 M gas  ia
b2g 8 CH2 wag 943  C  ia 943 dp liq.
b2u 9 CH2 a-str 3106  B 3105.5 S gas  ia
b2u 10 CH2 rock 826  A 826.0 W gas  ia
b3u 11 CH2 s-str 2989  A 2988.66 S gas  ia
b3u 12 CH2 scis 1444  B 1443.5 S gas  ia

Source: Shimanouchi, 1972

Notes

SStrong
MMedium
WWeak
iaInactive
pPolarized
dpDepolarized
FRFermi resonance with an overtone or a combination tone indicated in the parentheses.
OCFrequency estimated from an overtone or a combination tone indicated in the parentheses.
A0~1 cm-1 uncertainty
B1~3 cm-1 uncertainty
C3~6 cm-1 uncertainty
D6~15 cm-1 uncertainty
E15~30 cm-1 uncertainty

Gas Chromatography

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-120.166.Nijs and Jacobs, 1981He; Column length: 150. m; Column diameter: 0.50 mm
CapillarySqualane40.175.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm
PackedSqualane27.177.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.177.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.178.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.178.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH-100178.1Haagen-Smit Laboratory, 1997He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min)
CapillaryDB-1164.Hoekman, 199360. m/0.32 mm/1.0 μm, He; Program: -40 C for 12 min; -40 - 125 C at 3 deg.min; 125-185 C at 6 deg/min; 185 - 220 C at 20 deg/min; hold 220 C for 2 min

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryChromosorb 101183.Voorhees, Hileman, et al., 197510. K/min; Tstart: 0. C; Tend: 220. C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryPetrocol DH158.Supelco, 2012100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min
CapillaryOV-101166.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C
CapillaryOV-101165.Chupalov and Zenkevich, 1996N2, 3. K/min; Column length: 52. m; Column diameter: 0.26 mm; Tstart: 50. C; Tend: 220. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryMethyl Silicone178.Chen and Feng, 2007Program: not specified
CapillaryPorapack Q180.Zenkevich and Rodin, 2004Program: not specified
CapillaryMethyl Silicone166.Zenkevich, 2000Program: not specified
CapillarySPB-1165.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes165.Zenkevich, 1997Program: not specified
CapillaryPolydimethyl siloxanes165.Zenkevich, Chupalov, et al., 1996Program: not specified
CapillarySPB-1165.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
PackedSE-30188.Robinson and Odell, 1971N2, Chromosorb W; Column length: 6.1 m; Program: 50C910min) => 20C/min => 90(6min) => 10C/min => 150C(hold)
PackedSqualane180.Robinson and Odell, 1971N2, Embacel; Column length: 3.0 m; Program: 25C(5min) => 2C/min => 35 => 4C/min => 95C(hold)

References

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Ohno, Okamura, et al., 1995
Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.; Yamauchi, M., Penning ionization of HCHO, CH2CH2, and CH2CHCHO by collision with He*(2 3S) metastable atoms, J. Phys. Chem., 1995, 99, 14247. [all data]

Williams and Cool, 1991
Williams, B.A.; Cool, T.A., Two-photon spectroscopy of Rydberg states of jet-cooled C2H4 and C2D4, J. Am. Chem. Soc., 1991, 94, 6358. [all data]

Plessis and Marmet, 1986
Plessis, P.; Marmet, P., Electroionization study of ethylene: Ionization and appearance energies, ion-pair formations, and negative ions, Can. J. Phys., 1986, 65, 165. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Wood and Taylor, 1979
Wood, K.V.; Taylor, J.W., A photoionization mass spectrometric study of autoionization in ethylene and trans-2-butene, Int. J. Mass Spectrom. Ion Phys., 1979, 30, 307. [all data]

Carlier and Botter, 1979
Carlier, J.; Botter, R., Photoelectron spectra of ethylene of the six deuterated derivatives, J. Electron Spectrosc. Relat. Phenom., 1979, 17, 91. [all data]

Sell, Mintz, et al., 1978
Sell, J.A.; Mintz, D.M.; Kupperman, A., Photoelectron angular distributions of carbon-carbon π electrons in ethylene, benzene, and their fluorinated derivatives, Chem. Phys. Lett., 1978, 58, 601. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Van Veen, 1976
Van Veen, E.H., Low-energy electron-impact spectroscopy on ethylene, Chem. Phys. Lett., 1976, 41, 540. [all data]

Stockbauer and Inghram, 1975
Stockbauer, R.; Inghram, M.G., Vibrational structure in the ground state of ethylene ethylene-d4 molecular ions investigated by threshold photoelectron spectroscopy, J. Electron Spectrosc. Relat. Phenom., 1975, 7, 492. [all data]

Stockbauer and Inghram, 1975, 2
Stockbauer, R.; Inghram, M.G., Threshold photoelectron-photoion coincidence mass spectrometric study of ethylene and ethylene-d4, J. Chem. Phys., 1975, 62, 4862. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Maeda, Suzuki, et al., 1974
Maeda, K.; Suzuki, I.H.; Koyama, Y., Ionization efficiency curves of ethylene by electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 273. [all data]

Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C., Ionization energies of formic and acetic acid monomers, J. Chem. Phys., 1974, 60, 1180. [all data]

Gordon, Krige, et al., 1974
Gordon, S.M.; Krige, G.J.; Reid, N.W., Isotope effects in the unimolecular decomposition of ethylene by low-energy electron impact, Int. J. Mass Spectrom. Ion Phys., 1974, 14, 109. [all data]

Masclet, Grosjean, et al., 1973
Masclet, P.; Grosjean, D.; Mouvier, G., Alkene ionization potentials. Part I. Quantitative determination of alkyl group structural effects, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 225. [all data]

Beez, Bieri, et al., 1973
Beez, M.; Bieri, G.; Bock, H.; Heilbronner, E., The ionization potentials of butadiene, hexatriene, andtheir methyl derivatives: evidence for through space interaction between double bond π-orbitals and non-bonded pseudo-π orbitals of methyl groups?, Helv. Chim. Acta, 1973, 56, 1028. [all data]

Mason, Kuppermann, et al., 1972
Mason, D.C.; Kuppermann, A.; Mintz, D.M., Angular distribution of electrons from the photoionization of ethylene in Electron Spectroscopy, ed. D.A. Shirley (North Holland, Amsterdam), 1972, 269. [all data]

Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H., Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc., 1972, 94, 1451. [all data]

Frost and Sandhu, 1971
Frost, D.C.; Sandhu, J.S., Ionization potentials of ethylene and some methyl-substituted ethylenes as determined by photoelectron spectroscopy, Indian J. Chem., 1971, 9, 1105. [all data]

Branton, Frost, et al., 1970
Branton, G.R.; Frost, D.C.; Makita, T.; McDowell, C.A.; Stenhouse, I.A., Photoelectron spectra of ethylene and ethylene-d4, J. Chem. Phys., 1970, 52, 802. [all data]

Eland, 1969
Eland, J.H.D., Photoelectron spectra of conjugated hydrocarbons and heteromolecules, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 471. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Botter, Dibeler, et al., 1966
Botter, R.; Dibeler, V.H.; Walker, J.A.; Rosenstock, H.M., Mass-spectrometric study of photoionization. IV.Ethylene and 1,2-dideuteroethylene, J. Chem. Phys., 1966, 45, 1298. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Momigny, 1963
Momigny, J., Ionization potentials and the structures of the photo-ionization yield curves of ethylene and its halogeno derivatives, Nature, 1963, 199, 1179. [all data]

Watanabe, 1954
Watanabe, K., Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO, J. Chem. Phys., 1954, 22, 1564. [all data]

Price and Tutte, 1940
Price, W.C.; Tutte, W.T., The absorption spectra of ethylene, deutero-ethylene and some alkyl-substituted ethylenes in the vacuum ultra-violet, Proc. Roy. Soc. (London), 1940, A174, 207. [all data]

Kusch, Hustrulid, et al., 1937
Kusch, P.; Hustrulid, A.; Tate, J.T., The dissociation of HCN, C2H2, C2N2 and C2H4 by electron impact, Phys. Rev., 1937, 52, 843. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Krause, Taylor, et al., 1978
Krause, D.A.; Taylor, J.W.; Fenske, R.F., An analysis of the effects of alkyl substituents on the ionization potentials of n-alkenes, J. Am. Chem. Soc., 1978, 100, 718. [all data]

Kobayashi, 1978
Kobayashi, T., A simple general tendency in photoelectron angular distributions of some monosubstituted benzenes, Phys. Lett., 1978, 69, 105. [all data]

White, Carlson, et al., 1974
White, R.M.; Carlson, T.A.; Spears, D.P., Angular distribution of the photoelectron spectra for ethylene, propylene, butene and butadiene, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 59. [all data]

Chupka, Berkowitz, et al., 1969
Chupka, W.A.; Berkowitz, J.; Refaey, K.M.A., Photoionization of ethylene with mass analysis, J. Chem. Phys., 1969, 50, 1938. [all data]

Bombach, Dannacher, et al., 1984
Bombach, R.; Dannacher, J.; Stadelmann, J.-P., The rate/energy functions for the competitive fragmentation processes of ethylene and ethane cations, Int. J. Mass Spectrom. Ion Processes, 1984, 58, 217. [all data]

Gordon, Harvey, et al., 1977
Gordon, S.M.; Harvey, G.A.; Jackson, J.R.; Tresling, J.D.; Van Niekerk, J.M., Computer-assisted retarding potential difference system for ionization efficiency measurements, Int. J. Mass Spectrom. Ion Phys., 1977, 23, 259. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Shiromaru, Achiba, et al., 1987
Shiromaru, H.; Achiba, Y.; Kimura, K.; Lee, Y.T., Determination of the C-H bond dissociation energies of ethylene and acetylene by observation of the threshold energies of H+ formation by synchrotron radiation, J. Phys. Chem., 1987, 91, 17. [all data]

Ervin, Gronert, et al., 1990
Ervin, K.M.; Gronert, S.; Barlow, S.E.; Gilles, M.K.; Harrison, A.G.; Bierbaum, V.M.; DePuy, C.H.; Lin, W.C., Bonds Strengths of Ethylene and Acetylene, J. Am. Chem. Soc., 1990, 112, 15, 5750, https://doi.org/10.1021/ja00171a013 . [all data]

DePuy, Gronert, et al., 1989
DePuy, C.H.; Gronert, S.; Barlow, S.E.; Bierbaum, V.M.; Damrauer, R., The Gas Phase Acidities of the Alkanes, J. Am. Chem. Soc., 1989, 111, 6, 1968, https://doi.org/10.1021/ja00188a003 . [all data]

Peerboom, Rademaker, et al., 1992
Peerboom, R.A.L.; Rademaker, G.J.; Dekoning, L.J.; Nibbering, N.M.M., Stabilization of Cycloalkyl Carbanions in the Gas Phase, Rapid Commun. Mass Spectrom., 1992, 6, 6, 394, https://doi.org/10.1002/rcm.1290060608 . [all data]

Froelicher, Freiser, et al., 1986
Froelicher, S.W.; Freiser, B.S.; Squires, R.R., The C3H5- isomers. Experimental and theoretical studies of the tautomeric propenyl ions and the cyclopropyl anion in the gas phase, J. Am. Chem. Soc., 1986, 108, 2853. [all data]

Guo and Castleman, 1991
Guo, B.C.; Castleman, A.W., The Bonding Strength of Ag+(C2H4) and Ag+(C2H4)2 Complexes, Chem. Phys. Lett., 1991, 181, 1, 16, https://doi.org/10.1016/0009-2614(91)90214-T . [all data]

Stockigt, Schwarz, et al., 1996
Stockigt, D.; Schwarz, J.; Schwarz, H., Theoretical and Experimental Studies on the Bond Dissociation Energies of Al(methane)+, Al(acetylene)+, Al(ethene)+, and Al(ethane)+, J. Phys. Chem., 1996, 100, 21, 8786, https://doi.org/10.1021/jp960060k . [all data]

Ono, Linn, et al., 1984
Ono, Y.; Linn, S.H.; Tzeng, W.-B.; Ng, C.Y., A Study of the Unimolecular Decomposition of the (C2H4)2+ Complex, J. Chem. Phys., 1984, 80, 4, 1482, https://doi.org/10.1063/1.446897 . [all data]

Ceyer, Tiedemann, et al., 1979
Ceyer, S.T.; Tiedemann, P.W.; Ng, C.Y.; Mahan, B.H.; Lee, Y.T., Photoionization of Ethylene Clusters, J. Chem. Phys., 1979, 70, 5, 2138, https://doi.org/10.1063/1.437758 . [all data]

Li and Stone, 1989
Li, X.; Stone, J.A., Determination of the beta silicon effect from a mass spectrometric study of the association of trimethylsilylium ion with alkenes, J. Am. Chem. Soc., 1989, 111, 15, 5586, https://doi.org/10.1021/ja00197a013 . [all data]

Hop and McMahon, 1991
Hop, C.E.C.A.; McMahon, T.B., High Pressure Mass Spectrometric Observation of Metal Carbonyl Alkyl Adduct Ions of Novel Structure, Inorg. Chem., 1991, 30, 13, 2828, https://doi.org/10.1021/ic00013a025 . [all data]

Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B., Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes, J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1994
Haynes, C.L.; Armentrout, P.B., Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers, Organomettalics, 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022 . [all data]

Sullivan and Beauchamp, 1976
Sullivan, S.A.; Beauchamp, J.L., Competition between proton transfer and elimination in the reactions of strong bases with fluoroethanes in the gas phase. Influence of base strength on reactivity, J. Am. Chem. Soc., 1976, 98, 1160. [all data]

Roy and McMahon, 1985
Roy, M.; McMahon, T.B., The Anomalous Gas Phase Acidity of Ethyl Fluoride. An ab initio Investigation of the Importance of Hydrogen Bonding between Fluoride and sp2 and sp C-H Bonds., Can. J. Chem., 1985, 63, 3, 708, https://doi.org/10.1139/v85-117 . [all data]

Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M., Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives, J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034 . [all data]

Ranashinge and Freiser, 1992
Ranashinge, Y.A.; Freiser, B.S., Gas-Phase Photodissociation of MC2H2+ (M = Sc, Y, La). Determination of D0(M+ - C2H2), Chem. Phys. Let., 1992, 200, 1-2, 135, https://doi.org/10.1016/0009-2614(92)87058-W . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Chen and Armetrout, 1995
Chen, Y.M.; Armetrout, P.B., Activation of C2H6, C3H8, and c-C3H6 by Gas-Phase Rh+ and the Thermochemistry of Rh-Ligand Complexes, J. Am. Chem. Soc., 1995, 117, 36, 9291, https://doi.org/10.1021/ja00141a022 . [all data]

Platt and Price, 1949
Platt, J.R.; Price, W.C., J. Chem. Phys., 1949, 17, 466. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]

Nijs and Jacobs, 1981
Nijs, H.H.; Jacobs, P.A., On-Line Single Run Analysis of Effluents from a Fischer-Tropsch Reactor, J. Chromatogr. Sci., 1981, 19, 1, 40-45, https://doi.org/10.1093/chromsci/19.1.40 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]

Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory, Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]

Hoekman, 1993
Hoekman, S.K., Improved gas chromatography procedure for speciated hydrocarbon measurements of vehicle emissions, J. Chromatogr., 1993, 639, 2, 239-253, https://doi.org/10.1016/0021-9673(93)80260-F . [all data]

Voorhees, Hileman, et al., 1975
Voorhees, K.J.; Hileman, F.D.; Einhorn, I.N., Generation of retention index standards by pyrolysis of hydrocarbons, Anal. Chem., 1975, 47, 14, 2385-2389, https://doi.org/10.1021/ac60364a035 . [all data]

Supelco, 2012
Supelco, CatalogNo. 24160-U, Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]

Chupalov and Zenkevich, 1996
Chupalov, A.A.; Zenkevich, I.G., Chromatographic Characterization of Structural Transformations of Organic Compounds in Diels-Alder Reaction. Aliphatic Dienes and Dienophyls, Zh. Org. Khim., 1996, 32, 6, 675-684. [all data]

Chen and Feng, 2007
Chen, Y.; Feng, C., QSPR study on gas chromatography retention index of some organic pollutants, Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]

Zenkevich and Rodin, 2004
Zenkevich, I.G.; Rodin, A.A., Gas chromatographic identification of some volatile toxic fluorine containing compounds by precalculated retention indices, J. Ecol. Chem. (Rus.), 2004, 13, 1, 22-28. [all data]

Zenkevich, 2000
Zenkevich, I.G., Mutual Correlation between Gas Chromatographic Retention Indices of Unsaturated and Saturated Hydrocarbons found by Molecular Dynamics, Z. Anal. Chem., 2000, 55, 10, 1091-1097. [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, 1997
Zenkevich, I.G., Influence of the Variations of Dynamics Molecular Parameterts on the Additivity of Chromatigraphic Retention Indices of Products of Organic Reactions Relative to Initial Reagents, Dokl. Akad. Nauk (Rus.), 1997, 353, 5, 625-627. [all data]

Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R., Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions, Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Robinson and Odell, 1971
Robinson, P.G.; Odell, A.L., A system of standard retention indices and its uses. The characterisation of stationary phases and the prediction of retention indices, J. Chromatogr., 1971, 57, 1-10, https://doi.org/10.1016/0021-9673(71)80001-8 . [all data]


Notes

Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References