Acetone
- Formula: C3H6O
- Molecular weight: 58.0791
- IUPAC Standard InChIKey: CSCPPACGZOOCGX-UHFFFAOYSA-N
- CAS Registry Number: 67-64-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: 2-Propanone; β-Ketopropane; Dimethyl ketone; Dimethylformaldehyde; Methyl ketone; Propanone; Pyroacetic ether; (CH3)2CO; Dimethylketal; Ketone propane; Ketone, dimethyl-; Chevron acetone; Rcra waste number U002; UN 1090; Sasetone; Propan-2-one; NSC 135802
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Gas phase thermochemistry data
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 85
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Henry's Law data
Go To: Top, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
30. | 4600. | L | N/A | |
27. | 5300. | M | N/A | |
27. | M | N/A | ||
23. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
32. | 5800. | M | N/A | |
35. | 3800. | M | N/A | The data from Table 1 by missing citation was used to redo the regression analysis. The data for acetone in their Table 2 is wrong. |
3.0 | 3300. | X | N/A | |
26. | 4800. | M | N/A | |
30. | X | N/A | Value given here as quoted by missing citation. | |
25. | M | N/A | ||
25. | X | N/A | Value given here as quoted by missing citation. | |
25. | M | Buttery, Ling, et al., 1969 | ||
22. | 5000. | X | N/A | |
3.1 | R | N/A | ||
28. | M | N/A | ||
30. | R | N/A |
Gas phase ion energetics data
Go To: Top, Henry's Law data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias
Data compiled as indicated in comments:
B - John E. Bartmess
MM - Michael M. Meot-Ner (Mautner)
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron
View reactions leading to C3H6O+ (ion structure unspecified)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.703 ± 0.006 | eV | N/A | N/A | L |
Quantity | Value | Units | Method | Reference | Comment |
Proton affinity (review) | 194. | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Quantity | Value | Units | Method | Reference | Comment |
Gas basicity | 186.9 | kcal/mol | N/A | Hunter and Lias, 1998 | HL |
Electron affinity determinations
EA (eV) | Method | Reference | Comment |
---|---|---|---|
0.00152 | EFD | Desfrancois, Abdoul-Carime, et al., 1994 | EA: 1.5 meV. Dipole-bound state.; B |
Proton affinity at 298K
Proton affinity (kcal/mol) | Reference | Comment |
---|---|---|
>194.8 | Bouchoux, Buisson, et al., 2003 | MM |
>194.6 | Bouchoux, Buisson, et al., 2003 | MM |
>194.2 ± 0.05 | Bouchoux, Buisson, et al., 2003 | MM |
194.0 ± 0.81 | Bouchoux and Salpin, 1999 | T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM |
194.0 ± 0.81 | Bouchoux and Salpin, 1999 | T = 298K; MM |
Gas basicity at 298K
Gas basicity (review) (kcal/mol) | Reference | Comment |
---|---|---|
187.5 | Bouchoux, Buisson, et al., 2003 | MM |
187.0 | Bouchoux, Buisson, et al., 2003 | MM |
186.9 ± 0.05 | Bouchoux, Buisson, et al., 2003 | MM |
186.9 ± 0.36 | Bouchoux and Salpin, 1999 | T = 301K; Re-evaluated thermokinetic parametric fitting by the authors using reference base GBs and PAs from Hunter and Lias, 1998; MM |
186.9 ± 0.36 | Bouchoux and Salpin, 1999 | T = 298K; MM |
Ionization energy determinations
Appearance energy determinations
De-protonation reactions
C3H5O- + =
By formula: C3H5O- + H+ = C3H6O
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 368.8 ± 2.1 | kcal/mol | D-EA | Brinkman, Berger, et al., 1993 | gas phase; B |
ΔrH° | 369.0 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 369.6 ± 2.6 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
ΔrH° | 367.6 ± 1.8 | kcal/mol | EIAE | Muftakhov, Vasil'ev, et al., 1999 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 361.9 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 362.4 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
Ion clustering data
Go To: Top, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Ag+ + C3H6O = (Ag+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.2 ± 4.5 | kcal/mol | RAK | Ho, Yang, et al., 1997 | RCD |
By formula: (Al+ • C3H6O) + C3H6O = (Al+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.3 | kcal/mol | HPMS | Bauschlicher, Bouchard, et al., 1991 | gas phase; laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.7 | cal/mol*K | HPMS | Bauschlicher, Bouchard, et al., 1991 | gas phase; laser desorption; M |
By formula: CH6N+ + C3H6O = (CH6N+ • C3H6O)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.0 | kcal/mol | PHPMS | Meot-Ner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.2 | cal/mol*K | PHPMS | Meot-Ner, 1984 | gas phase; M |
By formula: CN- + C3H6O = (CN- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.7 ± 3.5 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.5 | cal/mol*K | N/A | Larson and McMahon, 1987 | gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.0 ± 2.3 | kcal/mol | IMRE | Larson and McMahon, 1987 | gas phase; B,M |
By formula: C2H3O+ + C3H6O = (C2H3O+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.5 | kcal/mol | PI | Trott, Blais, et al., 1978 | gas phase; M |
By formula: C2H3O2- + C3H6O = (C2H3O2- • C3H6O)
Bond type: Hydrogen bonds of deprotonated acids to ketones/
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.7 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.9 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.1 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (C2H3O2- • C3H6O) + C3H6O = (C2H3O2- • 2C3H6O)
Bond type: Hydrogen bonds of deprotonated acids to ketones/
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.8 | kcal/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.9 | cal/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
By formula: C2H7OS+ + C3H6O = (C2H7OS+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.1 | kcal/mol | PHPMS | Lau, Saluja, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.5 | cal/mol*K | PHPMS | Lau, Saluja, et al., 1980 | gas phase; M |
By formula: C3H5O+ + C3H6O = (C3H5O+ • C3H6O)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.3 | 295. | FA | Mackay, Rakshit, et al., 1982 | gas phase; M |
By formula: C3H5O- + C3H6O = (C3H5O- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | >25.90 | kcal/mol | IMRB | Sheldon and Bowie, 1983 | gas phase; MeOH..F- + Me2CO ->; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | >19.70 | kcal/mol | IMRB | Sheldon and Bowie, 1983 | gas phase; MeOH..F- + Me2CO ->; B |
By formula: C3H6O+ + C3H6O = (C3H6O+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.4 | kcal/mol | PI | Trott, Blais, et al., 1978 | gas phase; ΔrH>; M |
By formula: C3H7O+ + C3H6O = (C3H7O+ • C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.7 | kcal/mol | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; M |
ΔrH° | 30.0 | kcal/mol | PHPMS | Szulejko and McMahon, 1991 | gas phase; M |
ΔrH° | 29.6 | kcal/mol | PHPMS | Hiraoka and Takimoto, 1986 | gas phase; M |
ΔrH° | 31.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrH° | 30.1 | kcal/mol | PHPMS | Lau, Saluja, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28.2 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and Sieck, 1991 | gas phase; M |
ΔrS° | 30.6 | cal/mol*K | PHPMS | Szulejko and McMahon, 1991 | gas phase; M |
ΔrS° | 29.3 | cal/mol*K | PHPMS | Hiraoka and Takimoto, 1986 | gas phase; M |
ΔrS° | 30.9 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
ΔrS° | 30.4 | cal/mol*K | PHPMS | Lau, Saluja, et al., 1980 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 22.3 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: (C3H7O+ • C3H6O) + C3H6O = (C3H7O+ • 2C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.2 | kcal/mol | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.0 | cal/mol*K | PHPMS | Hiraoka, Morise, et al., 1986 | gas phase; M |
By formula: (C3H7O+ • 2C3H6O) + C3H6O = (C3H7O+ • 3C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 8.5 | kcal/mol | PHPMS | Hiraoka, Takimoto, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 17.0 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1986 | gas phase; M |
By formula: C3H7O2+ + C3H6O = (C3H7O2+ • C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.0 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.0 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.4 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C3H9Si+ + C3H6O = (C3H9Si+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45.0 | kcal/mol | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.4 | cal/mol*K | N/A | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31.2 | 468. | PHPMS | Wojtyniak and Stone, 1986 | gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M |
By formula: C3H9Sn+ + C3H6O = (C3H9Sn+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.4 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.9 | cal/mol*K | N/A | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.2 | kcal/mol | PHPMS | Stone and Splinter, 1984 | gas phase; switching reaction((CH3)3Sn+)CH3OH, Entropy change calculated or estimated; M |
By formula: C4H4N- + C3H6O = (C4H4N- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.1 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.5 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: (C4H4N- • C3H6O) + C3H6O = (C4H4N- • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.7 | kcal/mol | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 19.0 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.0 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.6 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 21.9 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C4H9O+ + C3H6O = (C4H9O+ • C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29.4 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.1 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 20.7 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C5H5- + C3H6O = (C5H5- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.5 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.8 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.0 ± 1.0 | kcal/mol | TDAs | Meot-ner, 1988, 2 | gas phase; B |
By formula: (C5H5- • C3H6O) + C3H6O = (C5H5- • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 9.8 | kcal/mol | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 16.4 | cal/mol*K | PHPMS | Meot-ner, 1988, 2 | gas phase; M |
By formula: C5H11O+ + C3H6O = (C5H11O+ • C3H6O)
Bond type: Hydrogen bonds of the type OH-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.5 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.0 | cal/mol*K | N/A | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 19.9 | kcal/mol | ICR | Larson and McMahon, 1982 | gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M |
By formula: C6H5NO2- + C3H6O = (C6H5NO2- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.20 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.3 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 6.40 ± 0.40 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: Cl- + C3H6O = (Cl- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14. ± 2. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.2 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
ΔrS° | 19.6 | cal/mol*K | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
ΔrS° | 17.1 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1986 | gas phase; M |
ΔrS° | 19.7 | cal/mol*K | N/A | Larson and McMahon, 1984 | gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.08 ± 0.20 | kcal/mol | TDAs | Bofdanov and McMahon, 2002 | gas phase; B |
ΔrG° | 7.30 | kcal/mol | TDAs | Hiraoka, Morise, et al., 1986 | gas phase; B |
ΔrG° | 8.80 ± 0.30 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 8.2 ± 2.0 | kcal/mol | IMRE | Larson and McMahon, 1984, 2 | gas phase; B,M |
ΔrG° | 7.9 ± 2.0 | kcal/mol | TDAs | French, Ikuta, et al., 1982 | gas phase; B |
By formula: (Cl- • C3H6O) + C3H6O = (Cl- • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.5 ± 1.0 | kcal/mol | TDAs | Hiraoka, Takimoto, et al., 1986 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.3 | cal/mol*K | PHPMS | Hiraoka, Takimoto, et al., 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.4 ± 2.2 | kcal/mol | TDAs | Hiraoka, Takimoto, et al., 1986 | gas phase; B |
By formula: (Cl- • 2C3H6O) + C3H6O = (Cl- • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.4 ± 2.0 | kcal/mol | TDAs | Hiraoka, Takimoto, et al., 1986 | gas phase; Entropy estimated; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22. | cal/mol*K | N/A | Hiraoka, Takimoto, et al., 1986 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 3.8 ± 4.5 | kcal/mol | TDAs | Hiraoka, Takimoto, et al., 1986 | gas phase; Entropy estimated; B |
By formula: Cr+ + C3H6O = (Cr+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 3.3 | kcal/mol | RAK | Lin, Chen, et al., 1997 | RCD |
By formula: Cu+ + C3H6O = (Cu+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 47.5 ± 1.0 | kcal/mol | CIDT | Chu, 2002 | RCD |
ΔrH° | 14.9 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.4 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (Cu+ • C3H6O) + C3H6O = (Cu+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 50.2 ± 1.7 | kcal/mol | CIDT | Chu, 2002 | RCD |
ΔrH° | 15.5 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.0 | kcal/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (Cu+ • 2C3H6O) + C3H6O = (Cu+ • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.3 ± 0.5 | kcal/mol | CIDT | Chu, 2002 | RCD |
By formula: (Cu+ • 3C3H6O) + C3H6O = (Cu+ • 4C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 ± 1.2 | kcal/mol | CIDT | Chu, 2002 | RCD |
By formula: H4N+ + C3H6O = (H4N+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 28.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: (H4N+ • C3H6O) + C3H6O = (H4N+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.3 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.9 | cal/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: (H4N+ • 2C3H6O) + C3H6O = (H4N+ • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.8 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.0 | cal/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: (H4N+ • 3C3H6O) + C3H6O = (H4N+ • 4C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.4 | cal/mol*K | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; M |
By formula: (H4N+ • 4C3H6O) + C3H6O = (H4N+ • 5C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.0 | cal/mol*K | N/A | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.5 | 215. | PHPMS | Meot-Ner (Mautner), Sieck, et al., 1996 | gas phase; Entropy change calculated or estimated; M |
By formula: I- + C3H6O = (I- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 1.0 | kcal/mol | TDAs | Caldwell, Masucci, et al., 1989 | gas phase; B,M |
By formula: K+ + C3H6O = (K+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24.4 | kcal/mol | CIDT | Klassen, Anderson, et al., 1996 | RCD |
ΔrH° | 26. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: (K+ • C3H6O) + C3H6O = (K+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: (K+ • 2C3H6O) + C3H6O = (K+ • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
9.2 | 293. | ES/HPMS | Blades, Klassen, et al., 1995 | gas phase; M |
By formula: (K+ • 3C3H6O) + C3H6O = (K+ • 4C3H6O)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.0 | 293. | ES/HPMS | Blades, Klassen, et al., 1995 | gas phase; M |
By formula: Li+ + C3H6O = (Li+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 44.5 | kcal/mol | ICR | Staley and Beauchamp, 1975 | gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M |
By formula: Mg+ + C3H6O = (Mg+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. ± 5. | kcal/mol | ICR | Operti, Tews, et al., 1988 | gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M |
By formula: Mn+ + C3H6O = (Mn+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 38.0 ± 3.3 | kcal/mol | RAK | Lin, Chen, et al., 1997 | RCD |
By formula: NO- + C3H6O = (NO- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.0 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: NO2- + C3H6O = (NO2- • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.90 ± 0.10 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.9 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.20 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
By formula: Na+ + C3H6O = (Na+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.2 ± 1.0 | kcal/mol | CIDT | Armentrout and Rodgers, 2000 | RCD |
ΔrH° | 30.8 ± 0.5 | kcal/mol | HPMS | Hoyau, Norrman, et al., 1999 | See 96KLA/AND?; RCD |
ΔrH° | 24.4 | kcal/mol | CIDT | Klassen, Anderson, et al., 1996 | RCD |
ΔrH° | 33.4 ± 0.2 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21000. | cal/mol*K | HPMS | Hoyau, Norrman, et al., 1999 | See 96KLA/AND?; RCD |
ΔrS° | 26.1 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
24.1 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (Na+ • C3H6O) + C3H6O = (Na+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 25.2 ± 0.1 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.6 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
By formula: (Na+ • 2C3H6O) + C3H6O = (Na+ • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20.7 ± 0.2 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30.0 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
By formula: (Na+ • 3C3H6O) + C3H6O = (Na+ • 4C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.7 ± 0.2 | kcal/mol | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.3 | cal/mol*K | HPMS | Guo, Conklin, et al., 1989 | gas phase; M |
IR Spectrum
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (100 mmHg, N2 ADDED, TOTAL PRESSURE 600 mmHg); DOW KBr FOREPRISM-GRATING; DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY; 2 cm-1 resolution
- GAS (VAPOR); PERKIN-ELMER 21 (GRATING); DIGITIZED BY NIST FROM HARD COPY; 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 3800-1300, 10% IN CS2 FOR 1300-420 CM-1); BECKMAN IR-9 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 4000-1330 CM-1, 10% IN CS2 FOR 1330-600 CM-1); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Data compiled by: Pamela M. Chu, Franklin R. Guenther, George C. Rhoderick, and Walter J. Lafferty
- gas; IFS66V (Bruker); 3-Term B-H Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Boxcar Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Happ Genzel Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); NB Strong Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution - gas; IFS66V (Bruker); Triangular Apodization
0.1250, 0.2410, 0.4820, 0.9640, 1.9290 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 114413 |
UV/Visible spectrum
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Bayliss and McRae, 1954 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 2803 |
Instrument | Beckman spectrophotometer |
Melting point | -94.8 |
Boiling point | 56.0 |
Vibrational and/or electronic energy levels
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: C2ν Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1 | 1 | CH3 d-str | 3019 | C | 3018.5 S | gas | 3005.5 S | liq. | SF(ν13) | |
a1 | 2 | CH3 s-str | 2937 | D | 2937 S | gas | 2922 VS p | liq. | SF(ν14) | |
a1 | 3 | CO str | 1731 | C | 1731 VS | gas | 1710.5 S p | liq. | ||
a1 | 4 | CH3 d-deform | 1435 | C | 1435 S | gas | 1430 S | liq. | ||
a1 | 5 | CH3 s-deform | 1364 | C | 1363.5 VS | gas | 1356 W | liq. | SF(ν16) | |
a1 | 6 | CH3 rock | 1066 | C | 1066 M p | liq. | ||||
a1 | 7 | CC str | 777 | C | 777 W | gas | 787 VS p | liq. | ||
a1 | 8 | CCC deform | 385 | C | 385 W | gas | 393 W dp | liq. | ||
a2 | 9 | CH3 d-str | 2963 | E | ia | CF | ||||
a2 | 10 | CH3 d-deform | 1426 | E | ia | CF | ||||
a2 | 11 | CH3 rock | 877 | E | ia | CF | ||||
a2 | 12 | Torsion | 105 | D | ia | CF, MW: ν102 | ||||
b1 | 13 | CH3 d-str | 3019 | C | 3018.5 S | gas | 3005.5 S dp | liq. | SF(ν1) | |
b1 | 14 | CH3 s-str | 2937 | D | 2937 S | gas | 2922 VS | liq. | SF(ν2) | |
b1 | 15 | CH3 d-deform | 1410 | C | 1410 S | gas | ||||
b1 | 16 | CH3 s-deform | 1364 | C | 1363.5 VS | gas | SF(ν5) | |||
b1 | 17 | CC str | 1216 | C | 1215.5 VS | gas | 1221 M dp | liq. | ||
b1 | 18 | CH3 rock | 891 | C | 891 M | gas | 902.5 W dp | liq. | ||
b1 | 19 | CO ip-bend | 530 | C | 530 S | gas | 531 M dp | liq. | ||
b2 | 20 | CH3 d-str | 2972 | C | 2972 S | gas | 2967 S | liq. | ||
b2 | 21 | CH3 d-deform | 1454 | C | 1454 S | gas | ||||
b2 | 22 | CH3 rock | 1091 | C | 1090.5 M | gas | ||||
b2 | 23 | CO op-bend | 484 | C | 484 W | gas | 493 W dp | liq. | ||
b2 | 24 | Torsion | 109 | D | 109 | gas | MW: ν102 | |||
Source: Shimanouchi, 1972
Notes
VS | Very strong |
S | Strong |
M | Medium |
W | Weak |
ia | Inactive |
p | Polarized |
dp | Depolarized |
CF | Calculated frequency |
SF | Calculation shows that the frequency approximately equals that of the vibration indicated in the parentheses. |
MW | Torsional Frequency calculated from microwave spectroscopic data. |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
E | 15~30 cm-1 uncertainty |
Gas Chromatography
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | HP-1 | 110. | 470.23 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 20. | 470.9 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 30. | 470.7 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 40. | 470.1 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 50. | 469.67 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 60. | 469.5 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 70. | 469.28 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 90. | 469.41 | Héberger, Görgényi, et al., 2002 | 50. m/0.32 mm/1.05 μm |
Capillary | HP-1 | 110. | 470. | Héberger and Görgényi, 1999 | 50. m/0.32 mm/1.05 μm, N2 |
Capillary | HP-1 | 50. | 470. | Héberger and Görgényi, 1999 | 50. m/0.32 mm/1.05 μm, N2 |
Capillary | HP-1 | 70. | 469. | Héberger and Görgényi, 1999 | 50. m/0.32 mm/1.05 μm, N2 |
Capillary | HP-1 | 90. | 469. | Héberger and Görgényi, 1999 | 50. m/0.32 mm/1.05 μm, N2 |
Capillary | SE-30 | 100. | 481. | Golovnya, Syomina, et al., 1997 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 110. | 484. | Golovnya, Syomina, et al., 1997 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 80. | 477. | Golovnya, Syomina, et al., 1997 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-30 | 90. | 478. | Golovnya, Syomina, et al., 1997 | 25. m/0.32 mm/1. μm, He |
Capillary | SE-54 | 110. | 488.7 | Grigor'eva, Vasil'ev, et al., 1989 | 15. m/0.28 mm/2.5 μm, Ar |
Capillary | SE-54 | 130. | 488.2 | Grigor'eva, Vasil'ev, et al., 1989 | 15. m/0.28 mm/2.5 μm, Ar |
Capillary | SE-54 | 150. | 485.0 | Grigor'eva, Vasil'ev, et al., 1989 | 15. m/0.28 mm/2.5 μm, Ar |
Capillary | Apiezon L + KF | 60. | 497. | Svetlova, Samusenko, et al., 1986 | 30. m/0.25 mm/0.06 μm |
Packed | SE-30 | 100. | 475. | Winskowski, 1983 | Gaschrom Q; Column length: 2. m |
Packed | Squalane | 50. | 437. | Becerra, Sánchez, et al., 1982 | N2, Chromosorb W-AM; Column length: 6. m |
Packed | Squalane | 50. | 437. | Becerra, Sánchez, et al., 1982 | N2, Chromosorb W-AM; Column length: 6. m |
Packed | Porapack Q | 200. | 450. | Goebel, 1982 | N2 |
Packed | Squalane | 100. | 443.5 | Gröbler and Bálizs, 1979 | Column length: 1. m |
Packed | SE-30 | 150. | 465. | Haken, Nguyen, et al., 1979 | Celatom AW silanized; Column length: 3.7 m |
Packed | Apiezon L | 120. | 441. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 160. | 444. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Packed | Apiezon L | 70. | 439. | Bogoslovsky, Anvaer, et al., 1978 | |
Packed | SE-30 | 150. | 459. | Haken, Ho, et al., 1975 | Column length: 3.7 m |
Packed | Apiezon L | 100. | 443. | Brown, Chapman, et al., 1968 | N2, DCMS-treated Chromosorb W; Column length: 2.3 m |
Packed | DC-200 | 100. | 472. | Rohrschneider, 1966 | Column length: 4. m |
Packed | Apiezon L | 100. | 450. | Rohrschneider, 1966 | Column length: 5. m |
Packed | SE-30 | 80. | 475. | Viani, Müggler-Chavan, et al., 1965 | He, Chromosorb P; Column length: 6. m |
Packed | Apiezon L | 130. | 450. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Packed | Apiezon L | 70. | 447. | Wehrli and Kováts, 1959 | Celite; Column length: 2.25 m |
Packed | Apiezon L | 70. | 439. | von Kováts, 1958 | Celite (40:60 Gewichtsverhaltnis) |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SE-54 | 503. | Rembold, Wallner, et al., 1989 | 30. m/0.25 mm/0.25 μm, He, 0. C @ 12. min, 12. K/min; Tend: 250. C |
Kovats' RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH-100 | 477.55 | Haagen-Smit Laboratory, 1997 | He; Column length: 100. m; Column diameter: 0.2 mm; Program: 5C(10min) => 5C/min => 50C(48min) => 1.5C/min => 195C(91min) |
Packed | SE-30 | 510. | Minyard, Tumlinson, et al., 1967 | He, Chromasorb W; Column length: 6.1 m; Program: 150C (10min) => 15C/min => 200C(16min) => 10C/min => 240C |
Packed | Apiezon L | 470. | Minyard, Tumlinson, et al., 1967 | N2, Gas Chrom P; Column length: 3.0 m; Program: not specified |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | HP-Innowax | 110. | 843.5 | Héberger and Görgényi, 1999 | 30. m/0.32 mm/0.5 μm |
Capillary | HP-Innowax | 50. | 835.0 | Héberger and Görgényi, 1999 | 30. m/0.32 mm/0.5 μm |
Capillary | HP-Innowax | 70. | 837.5 | Héberger and Görgényi, 1999 | 30. m/0.32 mm/0.5 μm |
Capillary | HP-Innowax | 90. | 840.8 | Héberger and Görgényi, 1999 | 30. m/0.32 mm/0.5 μm |
Capillary | Supelcowax-10 | 60. | 832. | Castello, Vezzani, et al., 1991 | N2; Column length: 60. m; Column diameter: 0.75 mm |
Packed | Carbowax 20M | 75. | 847. | Goebel, 1982 | N2, Kieselgur (60-100 mesh); Column length: 2. m |
Packed | Carbowax 20M | 100. | 785. | Kevei and Kozma, 1976 | Chromosorb |
Packed | Carbowax 4000 | 105. | 842. | Minyard, Tumlinson, et al., 1967 | N2, GAS Chrom P; Column length: 10. m |
Packed | Carbowax 20M | 100. | 824. | Rohrschneider, 1966 | Column length: 2. m |
Kovats' RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CBP-20 | 821. | Shimadzu, 2003 | 25. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 813. | Umano, Hagi, et al., 1994 | He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 814. | Tatsuka, Suekane, et al., 1990 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | DB-Wax | 814. | Tatsuka, Suekane, et al., 1990 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | DB-Wax | 814. | Tatsuka, Suekane, et al., 1990 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | Carbowax 20M | 820. | Nishimura, Yamaguchi, et al., 1989 | 2. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | DB-Wax | 818. | Umano, Shoji, et al., 1986 | N2, 60. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Kovats' RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | PEG-20M | 794. | Slizhov and Gavrilenko, 2001 | He; Column length: 10. m; Column diameter: 0.2 mm; Program: not specified |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 | 503. | Insausti, Goñi, et al., 2005 | 50. m/0.32 mm/1.05 μm, He, 35. C @ 15. min, 8. K/min, 220. C @ 5. min |
Capillary | CP-Sil 8CB-MS | 500. | Bruna, Hierro, et al., 2003 | 60. m/0.25 mm/0.25 μm, 40. C @ 2. min, 4. K/min, 280. C @ 5. min |
Capillary | Petrocol DH | 475.3 | Censullo, Jones, et al., 2003 | 50. m/0.25 mm/0.5 μm, He, 35. C @ 10. min, 3. K/min, 200. C @ 10. min |
Capillary | CP Sil 5 CB | 481. | Pino, Almora, et al., 2003 | 60. m/0.32 mm/0.25 μm, He, 60. C @ 10. min, 3. K/min, 280. C @ 60. min |
Capillary | CP Sil 5 CB | 481. | Pino, Marbot, et al., 2002 | 30. m/0.25 mm/0.25 μm, H2, 60. C @ 10. min, 2. K/min, 280. C @ 40. min |
Capillary | CP Sil 8 CB | 500. | Elmore, Mottram, et al., 2000 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 4. K/min; Tend: 280. C |
Capillary | DB-1 | 488.6 | Helmig, Klinger, et al., 1999 | 60. m/0.32 mm/1. μm, -50. C @ 2. min, 6. K/min; Tend: 175. C |
Capillary | DB-1 | 471. | Bartelt, 1997 | 30. m/0.32 mm/5. μm, He, 35. C @ 1. min, 10. K/min; Tend: 270. C |
Capillary | DB-1 | 474. | Helmig, Pollock, et al., 1996 | 30. m/0.25 mm/1. μm, 6. K/min; Tstart: -50. C; Tend: 180. C |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-1 | 468. | Place, Imhof, et al., 2003 | 60. m/0.32 mm/1. μm, He; Program: 35C(5min) => 10C/min => 45C (5min) => 5C/min => 250C (10min) |
Packed | SE-30 | 466. | Peng, Ding, et al., 1988 | Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 809. | Mahattanatawee K., Perez-Cacho P.R., et al., 2007 | 30. m/0.32 mm/0.5 μm, He, 7. K/min, 240. C @ 5. min; Tstart: 40. C |
Capillary | CP-Wax 52CB | 813. | Alasalvar, Taylor, et al., 2005 | 60. m/0.25 mm/0.25 μm, 35. C @ 4. min, 3. K/min; Tend: 203. C |
Capillary | DB-Wax | 834. | Malliaa, Fernandez-Garcia, et al., 2005 | 60. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min |
Capillary | DB-Wax | 842. | Malliaa, Fernandez-Garcia, et al., 2005 | 60. m/0.32 mm/1. μm, He, 45. C @ 1. min, 5. K/min, 250. C @ 12. min |
Capillary | DB-Wax | 814. | Rega, Fournier, et al., 2004 | 30. m/0.32 mm/0.5 μm, He, 40. C @ 5. min, 5. K/min; Tend: 240. C |
Capillary | Carbowax | 821.3 | Censullo, Jones, et al., 2003 | 60. m/0.25 mm/0.5 μm, He, 50. C @ 10. min, 5. K/min, 250. C @ 10. min |
Capillary | DB-Wax | 814. | Rega, Fournier, et al., 2003 | 30. m/0.32 mm/0.5 μm, 35. C @ 5. min, 5. K/min, 240. C @ 5. min |
Capillary | FFAP | 802. | Ott, Fay, et al., 1997 | 30. m/0.25 mm/0.25 μm, He, 20. C @ 1. min, 4. K/min, 200. C @ 1. min |
Capillary | Supelcowax-10 | 813. | Chung and Cadwallader, 1993 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min |
Capillary | DB-Wax | 818. | Umano, Hagi, et al., 1992 | He, 40. C @ 10. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | Carbowax 20M | 811. | Chen and Ho, 1988 | He, 1.5 K/min, 225. C @ 80. min; Column length: 60. m; Column diameter: 0.32 mm; Tstart: 50. C |
Capillary | Carbowax 20M | 816. | Chen, Kuo, et al., 1982 | He, 50. C @ 10. min, 1. K/min; Tend: 160. C |
Packed | Carbowax 20M | 822. | van den Dool and Kratz, 1963 | Celite 545, 4.6 K/min; Tstart: 75. C; Tend: 228. C |
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Supelcowax-10 | 813. | Bianchi, Cantoni, et al., 2007 | 30. m/0.25 mm/0.25 μm; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 220C(1min) |
Capillary | Supelcowax-10 | 814. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 819. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 813. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 812. | Bianchi, Careri, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | CP-Wax 52CB | 830. | Verzera, Ziino, et al., 2004 | 60. m/0.25 mm/0.25 μm, He; Program: 45C(5min) => 10C/min => 80C => 2C/min => 240C |
Capillary | DB-Wax | 808. | Radovic, Careri, et al., 2001 | 30. m/0.25 mm/0.25 μm; Program: 30C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min) |
Capillary | FFAP | 808. | Yasuhara, 1987 | 50. m/0.25 mm/0.25 μm, He; Program: 20C (5min) => 2C/min => 70C => 4C/min => 210C |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Methyl Silicone | 100. | 471. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 120. | 480. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 140. | 472. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | Methyl Silicone | 80. | 473. | Lebrón-Aguilar, Quintanilla-López, et al., 2007 | |
Capillary | DB-1 | 60. | 472. | Shimadzu, 2003, 2 | 60. m/0.32 mm/1. μm, He |
Capillary | OV-1 | 60. | 470. | Amboni, Junkes, et al., 2002 | |
Packed | Synachrom | 150. | 466. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | Synachrom | 150. | 468. | Dufka, Malinsky, et al., 1971 | Helium, Synachrom (60-80 mesh); Column length: 1.5 m |
Packed | DC-400 | 150. | 466. | Anderson, 1968 | Helium, Gas-Pak (60-80 mesh); Column length: 3.0 m |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Polydimethyl siloxane: CP-Sil 5 CB | 479. | Bramston-Cook, 2013 | 60. m/0.25 mm/1.0 μm, Helium, 45. C @ 1.45 min, 3.6 K/min, 210. C @ 2.72 min |
Capillary | HP-5 MS | 500. | Kotowska, Zalikowski, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min |
Capillary | VF-5 MS | 496. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | VF-5 MS | 496. | Leffingwell and Alford, 2011 | 60. m/0.32 mm/0.25 μm, Helium, 2. K/min, 260. C @ 28. min; Tstart: 30. C |
Capillary | OV-101 | 472. | Zenkevich, Eliseenkov, et al., 2011 | 25. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 40. C; Tend: 240. C |
Capillary | 5 % Phenyl methyl siloxane | 502. | Ramirez R. and Cava R., 2007 | 30. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min |
Capillary | 5 % Phenyl methyl siloxane | 502. | Ramirez R. and Cava R., 2007 | 30. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min |
Capillary | HP-5 | 487. | Isidorov, Purzynska, et al., 2006 | 30. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | HP-5 | 476.6 | Leffingwell and Alford, 2005 | 60. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min |
Capillary | 5 % Phenyl methyl siloxane | 503. | Ramírez, Estévez, et al., 2004 | 0. m/0.25 mm/1. μm, He, 40. C @ 10. min, 7. K/min, 250. C @ 5. min |
Capillary | DB-5 | 500. | Joffraud, Leroi, et al., 2001 | 60. m/0.32 mm/1. μm, He, 40. C @ 5. min, 3. K/min; Tend: 200. C |
Capillary | BP-1 | 487. | Health Safety Executive, 2000 | 50. m/0.22 mm/0.75 μm, He, 5. K/min; Tstart: 50. C; Tend: 200. C |
Capillary | SE-30+Igepal | 474. | Shibamoto and Jennings, 1977 | 1. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C |
Capillary | SE-30+Igepal | 474. | Shibamoto and Jennings, 1977 | 1. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-5 MS | 500. | Kotowska, Zalikowski, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-5 | 509. | Miyazaki, Plotto, et al., 2011 | 60. m/0.25 mm/1.00 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min) |
Capillary | HP-5 | 512. | Pugliese, Sirtori, et al., 2009 | 50. m/0.32 mm/1.05 μm, Helium; Program: not specified |
Capillary | Squalane | 459. | Chen, 2008 | Program: not specified |
Capillary | SLB-5MS | 471. | Risticevic, Carasek, et al., 2008 | 10. m/0.18 mm/0.18 μm, Helium; Program: not specified |
Capillary | Methyl Silicone | 450. | Chen and Feng, 2007 | Program: not specified |
Capillary | Methyl Silicone | 476. | Blunden, Aneja, et al., 2005 | 60. m/0.32 mm/1.0 μm, Helium; Program: -50 0C (2 min) 8 0C/min -> 200 0C (7.75 min) 25 0C -> 225 0C (8 min) |
Capillary | BPX-5 | 501. | Duflos, Moine, et al., 2005 | 60. m/0.25 mm/0.25 μm, He; Program: 40C(5min) => 5C/min => 100C => 20C/min => 280C (5min) |
Capillary | HP-1 | 470. | Junkes, Amboni, et al., 2004 | Program: not specified |
Capillary | Polydimethyl siloxane | 470. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | Methyl Silicone | 450. | N/A | Program: not specified |
Capillary | Polydimethyl siloxane | 497. | Spanier, Shahidi, et al., 2001 | Program: not specified |
Capillary | Polydimethyl siloxanes | 472. | Zenkevich, 2001 | Program: not specified |
Capillary | DB-5 | 500. | Dittmann and Nitz, 2000 | Program: not specified |
Capillary | SPB-1 | 460. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | Polydimethyl siloxanes | 473. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | Polydimethyl siloxanes | 473. | Zenkevich and Chupalov, 1996 | Program: not specified |
Capillary | Methyl Silicone | 473. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-1 | 465. | Schuberth, 1994 | 30. m/0.25 mm/1. μm, He; Program: 40C (4min) => 10C/min => 200C => 50C/min => 250C |
Capillary | SPB-1 | 460. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | SPB-1 | 469. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: not specified |
Capillary | CP Sil 8 CB | 491. | Weller and Wolf, 1989 | 40. m/0.25 mm/0.25 μm, He; Program: 30 0C (1 min) 15 0C/min -> 45 0C 3 0C/min -> 120 0C |
Capillary | methyl silicone oil with 5% Igepal | 474. | Schultz, Flath, et al., 1988 | Column length: 150. m; Column diameter: 0.75 mm; Program: not specified |
Capillary | methyl silicone oil with 5% Igepal | 484. | Schultz, Flath, et al., 1988 | Column length: 150. m; Column diameter: 0.75 mm; Program: not specified |
Capillary | DB-1 | 468. | Takeoka, Flath, et al., 1988 | 30. m/0.25 mm/0.25 μm, H2; Program: 30C (2min) => 2C/min => 150C => 4C/min => 250C |
Capillary | OV-1 | 469. | Ramsey and Flanagan, 1982 | Program: not specified |
Capillary | SE-30 | 478. | Heydanek and McGorrin, 1981 | He; Column length: 50. m; Column diameter: 0.5 mm; Program: -10C (8min) => 12C/min => 26C => 3C/min => 170C (30min) |
Normal alkane RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | DB-Wax | 60. | 834. | Shimadzu, 2003, 2 | 50. m/0.32 mm/1. μm, He |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-FFAP | 832. | Wanakhachornkrai and Lertsiri, 9999 | 25. m/0.32 mm/0.50 μm, Helium, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | HP-Innowax | 841. | Feng, Zhuang, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium, 60. C @ 1. min, 3. K/min, 220. C @ 5. min |
Capillary | DB-Wax | 821. | Ganeko, Shoda, et al., 2008 | 4. K/min; Column length: 60. m; Column diameter: 0.35 mm; Tstart: 40. C; Tend: 200. C |
Capillary | CP-Wax 52CB | 812. | Povolo, Contarini, et al., 2007 | 60. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min |
Capillary | CP-Wax 52CB | 811. | Povolo, Contarini, et al., 2007 | 60. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min |
Capillary | CP-Wax 52CB | 823. | Povolo, Contarini, et al., 2007 | 60. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min |
Capillary | CP-Wax 52CB | 820. | Povolo, Contarini, et al., 2007 | 60. m/0.32 mm/0.5 μm, He, 40. C @ 8. min, 4. K/min, 220. C @ 20. min |
Capillary | DB-Wax | 810. | Rizzolo, Cambiaghi, et al., 2005 | 60. m/0.53 mm/1. μm, 50. C @ 10. min, 3. K/min; Tend: 180. C |
Capillary | Supelcowax-10 | 827. | Rochat and Chaintreau, 2005 | 60. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min |
Capillary | Supelcowax-10 | 827. | Rochat and Chaintreau, 2005 | 60. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min |
Capillary | Supelcowax-10 | 828. | Rochat and Chaintreau, 2005 | 60. m/0.53 mm/1. μm, He, 40. C @ 2. min, 4. K/min, 240. C @ 20. min |
Capillary | DB-Wax | 825. | Chida, Sone, et al., 2004 | 60. m/0.25 mm/0.5 μm, 35. C @ 5. min, 4. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 811. | Tanaka, Yamauchi, et al., 2003 | 30. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C |
Capillary | DB-Wax | 816. | Tanaka, Yamauchi, et al., 2003 | 30. m/0.25 mm/0.25 μm, 30. C @ 1. min, 4. K/min; Tend: 250. C |
Capillary | Supelcowax-10 | 820. | Vichi, Castellote, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C |
Capillary | Supelcowax-10 | 816. | Vichi, Pizzale, et al., 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 10. min, 3. K/min; Tend: 200. C |
Capillary | HP-FFAP | 832. | Wanakhachornkrai and Lertsiri, 2003 | 25. m/0.32 mm/0.5 μm, He, 15. K/min; Tstart: 45. C; Tend: 220. C |
Capillary | FFAP | 814. | Lecanu, Ducruet, et al., 2002 | 30. m/0.32 mm/1. μm, He, 35. C @ 3. min, 5. K/min; Tend: 240. C |
Capillary | DB-Wax | 845. | Umano, Hagi, et al., 2002 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | DB-Wax | 798. | Duque, Bonilla, et al., 2001 | 30. m/0.25 mm/0.25 μm, Helium, 4. K/min, 220. C @ 30. min; Tstart: 25. C |
Capillary | DB-Wax | 825. | Wei, Mura, et al., 2001 | 60. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C |
Capillary | Supelcowax-10 | 814. | Girard and Durance, 2000 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 10. min, 4. K/min; Tend: 200. C |
Capillary | DB-Wax | 823. | Lee and Shibamoto, 2000 | 30. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C |
Capillary | DB-Wax | 821. | Tamura, Boonbumrung, et al., 2000 | Nitrogen, 40. C @ 10. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C |
Capillary | DB-Wax | 846. | Umano, Hagi, et al., 2000 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | DB-Wax | 805. | Iwatsuki, Mizota, et al., 1999 | 4. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C |
Capillary | DB-Wax | 820. | Umano, Nakahara, et al., 1999 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 2. min, 2. K/min; Tend: 200. C |
Capillary | Carbowax 20M | 810. | Anker, Jurs, et al., 1990 | 2. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C |
Capillary | Carbowax 20M | 810. | Mihara, Tateba, et al., 1988 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 822. | Mihara, Tateba, et al., 1988 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 810. | Mihara, Tateba, et al., 1987 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 822. | Mihara, Tateba, et al., 1987 | N2, 3. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C |
Capillary | Carbowax 20M | 854. | Labropoulos, Palmer, et al., 1982 | Helium, 10. K/min; Column length: 31. m; Column diameter: 0.50 mm; Tstart: 40. C; Tend: 200. C |
Packed | Carbowax 20M | 816. | Tsao, 1969 | Helium, Chromosorb P HMDS, 5. K/min; Column length: 2. m; Tstart: 40. C; Tend: 200. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 800. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 818. | Welke, Manfroi, et al., 2012 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | HP-Innowax | 845. | Feng, Zhuang, et al., 2011 | 60. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | SOLGel-Wax | 814. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | SOLGel-Wax | 814. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax | 775. | Miyazaki, Plotto, et al., 2011 | 60. m/0.25 mm/0.50 μm, Helium; Program: 40 0C 4 0C/min -> 230 0C 100 0C/min -> 260 0C (11.7 min) |
Capillary | CP-Wax 52 CB | 821. | Povolo, Cabassi, et al., 2011 | Program: not specified |
Capillary | HP-Innowax | 841. | Cajka, Riddellova, et al., 2010 | 30. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (1 min) 5 oC/min -> 170 0C 10 0C/min -> 260 0C (1 min) |
Capillary | DB-Wax | 836. | Kadar, Juan-Borras, et al., 2010 | 60. m/0.32 mm/1.0 μm, Helium; Program: 40 0C (2 min) 4 0C/min -> 190 0C (11 min) 8 0C/min -> 220 0C (8 min) |
Capillary | Supelko CO Wax | 816. | Vekiari, Orepoulou, et al., 2010 | 60. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 75 0C 5 0C/min -> 250 0C (10 min) |
Capillary | Supelko CO Wax | 813. | Vekiari, Orepoulou, et al., 2010 | 60. m/0.32 mm/0.25 μm, Helium; Program: not specified |
Capillary | Supelcowax 10 | 815. | Soria, Martinez-Castro, et al., 2008 | 50. m/0.25 mm/0.25 μm, Helium; Program: 45 0C (15 min) 3 0C/min -> 75 0C 5 0C/min -> 180 0C (10 min) |
Capillary | Supelcowax-10 | 814. | Berard, Bianchi, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min) |
Capillary | Supelcowax-10 | 819. | Berard, Bianchi, et al., 2007 | 30. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 6C/min => 60C => 4C/min => 160C => 20C/min => 200C(1min) |
Capillary | HP-Innowax | 788. | Viegas and Bassoli, 2007 | 60. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min) |
Capillary | HP-Innowax | 823. | Viegas and Bassoli, 2007 | 60. m/0.32 mm/0.25 μm, Helium; Program: not specified |
Capillary | Supelcowax-10 | 847. | Kourkoutas, Kandylis, et al., 2006 | 60. m/0.32 mm/0.25 μm, He; Program: 35C(3min) => 5C/min => 110C => 10C/min => 240C (10min) |
Capillary | Innowax | 835. | Junkes, Amboni, et al., 2004 | Program: not specified |
Capillary | Carbowax 20M | 810. | Vinogradov, 2004 | Program: not specified |
Capillary | CP-Wax 52CB | 824. | Muresan, Eillebrecht, et al., 2000 | 50. m/0.32 mm/1.2 μm; Program: 40C(10min) => 3C/min => 190C => 10C/min => 250C(5min) |
Capillary | Supelcowax 10 | 815. | Castioni and Kapetanidis, 1996 | 60. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (10 min) 2 0C/min -> 80 0C 3 0C/min -> 100 0C 4 0C/min -> 220 0C (30 min) |
Capillary | Supelcowax 10 | 820. | Castioni and Kapetanidis, 1996 | 60. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | Supelcowax 10 | 821. | Castioni and Kapetanidis, 1996 | 60. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | Polyethylene Glycol | 820. | Zenkevich, Korolenko, et al., 1995 | Program: not specified |
Capillary | DB-Wax | 816. | Peng, Yang, et al., 1991 | Program: not specified |
Capillary | Carbowax 20M | 810. | Shibamoto, 1987 | Program: not specified |
Capillary | Carbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc. | 847. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Capillary | Carbowax 20M | 819. | Ramsey and Flanagan, 1982 | Program: not specified |
Capillary | Polyethylene Glycol | 810. | MacLeod and Pieris, 1981 | Program: not specified |
References
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Buttery, Ling, et al., 1969
Buttery, R.G.; Ling, L.C.; Guadagni, D.G.,
Volatilities Aldehydes, Ketones, and Esters in Dilute Water Solution,
J. Agric. Food Chem., 1969, 17, 385-389. [all data]
Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G.,
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,
J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018
. [all data]
Desfrancois, Abdoul-Carime, et al., 1994
Desfrancois, C.; Abdoul-Carime, H.; Khelifa, N.; Schermann, J.P.,
Fork 1/r to 1/r2 Potentials: Electron Exchange between Rydberg Atoms and Polar Molecules,
Phys. Rev. Lett., 1994, 73, 18, 2436, https://doi.org/10.1103/PhysRevLett.73.2436
. [all data]
Bouchoux, Buisson, et al., 2003
Bouchoux, G.; Buisson, D.A.; Bourcier, S.; Sablier, M.,
Application of the kinetic method to bifunctional bases. ESI tandem quadrupole experiments,
Int. J. Mass Spectrom., 2003, 228, 1035. [all data]
Bouchoux and Salpin, 1999
Bouchoux, J.; Salpin, J.Y.,
Re-evaluated gas-phase basicity and proton affinity data from the thermokinetic method,
Rapid Com. Mass Spectrom., 1999, 13, 932. [all data]
Traeger, McLouglin, et al., 1982
Traeger, J.C.; McLouglin, R.G.; Nicholson, A.J.C.,
Heat of formation for acetyl cation in the gas phase,
J. Am. Chem. Soc., 1982, 104, 5318. [all data]
Trott, Blais, et al., 1978
Trott, W.M.; Blais, N.C.; Walters, E.A.,
Molecular beam photoionization study of acetone and acetone-d6,
J. Chem. Phys., 1978, 69, 3150. [all data]
Staley, Wieting, et al., 1977
Staley, R.H.; Wieting, R.D.; Beauchamp, J.L.,
Carbenium ion stabilities in the gas phase and solution. An ion cyclotron resonance study of bromide transfer reactions involving alkali ions, alkyl carbenium ions, acyl cations and cyclic halonium ions,
J. Am. Chem. Soc., 1977, 99, 5964. [all data]
Hernandez, Masclet, et al., 1977
Hernandez, R.; Masclet, P.; Mouvier, G.,
Spectroscopie de photoelectrons d'aldehydes et de cetones aliphatiques,
J. Electron Spectrosc. Relat. Phenom., 1977, 10, 333. [all data]
Mouvier and Hernandez, 1975
Mouvier, G.; Hernandez, R.,
Ionisation and appearance potentials of alkylketones,
Org. Mass Spectrom., 1975, 10, 958. [all data]
Tam, Yee, et al., 1974
Tam, W.-C.; Yee, D.; Brion, C.E.,
Photoelectron spectra of some aldehydes and ketones,
J. Electron Spectrosc. Relat. Phenom., 1974, 4, 77. [all data]
Ogata, Kitayama, et al., 1974
Ogata, H.; Kitayama, J.; Koto, M.; Kojima, S.; Nihei, Y.; Kamada, H.,
Vacuum ultraviolet absorption and photoelectron spectra of aliphatic ketones,
Bull. Chem. Soc. Jpn., 1974, 47, 958. [all data]
Knowles and Nicholson, 1974
Knowles, D.J.; Nicholson, A.J.C.,
Ionization energies of formic and acetic acid monomers,
J. Chem. Phys., 1974, 60, 1180. [all data]
Huebner, Celotta, et al., 1973
Huebner, R.H.; Celotta, R.J.; Mielczarek, S.R.; Kuyatt, C.E.,
Electron energy loss spectroscopy of acetone vapor,
J. Chem. Phys., 1973, 59, 5434. [all data]
Potapov and Sorokin, 1972
Potapov, V.K.; Sorokin, V.V.,
Kinetic energies of products of dissociative photoionization of molecules. I. Aliphatic ketones and alcohols,
Khim. Vys. Energ., 1972, 6, 387. [all data]
Johnstone and Mellon, 1972
Johnstone, R.A.W.; Mellon, F.A.,
Electron-impact ionization and appearance potentials,
J. Chem. Soc. Faraday Trans. 2, 1972, 68, 1209. [all data]
Brundle, Robin, et al., 1972
Brundle, C.R.; Robin, M.B.; Kuebler, N.A.; Basch, H.,
Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules,
J. Am. Chem. Soc., 1972, 94, 1451. [all data]
Johnstone, Mellon, et al., 1971
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
On-line computer methods used in conjunction with the measurement of ionization appearance potentials,
Adv. Mass Spectrom., 1971, 5, 334. [all data]
Cocksey, Eland, et al., 1971
Cocksey, B.J.; Eland, J.H.D.; Danby, C.J.,
The effect of alkyl substitution on ionisation potential,
J. Chem. Soc., 1971, (B), 790. [all data]
Johnstone, Mellon, et al., 1970
Johnstone, R.A.W.; Mellon, F.A.; Ward, S.D.,
Online acquisition of ionization efficiency data,
Intern. J. Mass Spectrom. Ion Phys., 1970, 5, 241. [all data]
Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D.,
Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation,
J. Chem. Phys., 1969, 50, 654. [all data]
Potapov, Filyugina, et al., 1968
Potapov, V.K.; Filyugina, A.D.; Shigorin, D.N.; Ozerova, G.A.,
Photoionization of some compounds containing the carbonyl and amino groups,
Dokl. Akad. Nauk SSSR, 1968, 180, 398, In original 352. [all data]
Dorman, 1965
Dorman, F.H.,
Fragment ions from CH3CHO and (CH3)2CO by electron impact,
J. Chem. Phys., 1965, 42, 65. [all data]
Murad and Inghram, 1964
Murad, E.; Inghram, M.G.,
Photoionization of aliphatic ketones,
J. Chem. Phys., 1964, 40, 3263. [all data]
Al-Joboury and Turner, 1964
Al-Joboury, M.I.; Turner, D.W.,
Molecular photoelectron spectroscopy. Part II. A summary of ionization potentials,
J. Chem. Soc., 1964, 4434. [all data]
Vilesov, 1960
Vilesov, F.I.,
The photoionization of vapors of compounds whose molecules contain carbonyl groups,
Dokl. Phys. Chem., 1960, 132, 521, In original 1332. [all data]
Vilesov and Terenin, 1957
Vilesov, F.I.; Terenin, A.N.,
The photoionization of the vapors of certain organic compounds,
Dokl. Akad. Nauk SSSR, 1957, 115, 744, In original 539. [all data]
Watanabe, 1954
Watanabe, K.,
Photoionization and total absorption cross section of gases. I. Ionization potentials of several molecules. Cross sections of NH3 and NO,
J. Chem. Phys., 1954, 22, 1564. [all data]
Bieri, Asbrink, et al., 1982
Bieri, G.; Asbrink, L.; Von Niessen, W.,
30.4-nm He(II) photoelectron spectra of organic molecules,
J. Electron Spectrosc. Relat. Phenom., 1982, 27, 129. [all data]
Kobayashi, 1978
Kobayashi, T.,
A new rule for photoelectron angular distributions of molecules,
Phys. Lett. A, 1978, 69, 31. [all data]
Benoit and Harrison, 1977
Benoit, F.M.; Harrison, A.G.,
Predictive value of proton affinity. Ionization energy correlations involving oxygenated molecules,
J. Am. Chem. Soc., 1977, 99, 3980. [all data]
Young and Cheng, 1976
Young, V.Y.; Cheng, K.L.,
The photoelectron spectra of halogen substituted acetones,
J. Chem. Phys., 1976, 65, 3187. [all data]
Rao, 1975
Rao, C.N.R.,
Lone-pair ionization bands of chromophores in the photoelectron spectra of organic molecules,
Indian J. Chem., 1975, 13, 950. [all data]
Kimura, Katsumata, et al., 1975
Kimura, K.; Katsumata, S.; Yamazaki, T.; Wakabayashi, H.,
UV photoelectron spectra and sum rule consideration; out-of-plane orbitals of unsaturated compounds with planar-skeleton structure,
J. Electron Spectrosc. Relat. Phenom., 1975, 6, 41. [all data]
Aue, Webb, et al., 1975
Aue, D.H.; Webb, H.M.; Bowers, M.T.,
Proton affinities, ionization potentials, and hydrogen affinities of nitrogen and oxygen bases. Hybridization effects,
J. Am. Chem. Soc., 1975, 97, 4137. [all data]
Kelder, Cerfontain, et al., 1974
Kelder, J.; Cerfontain, H.; Higginson, B.R.; Lloyd, D.R.,
Photoelectron and ultraviolet absorption spectra of cyclopropyl conjugated 1,2-diketones,
Tetrahedron Lett., 1974, 739. [all data]
Hentrich, Gunkel, et al., 1974
Hentrich, G.; Gunkel, E.; Klessinger, M.,
Photoelektronenspektren organischer verbindungen. 4. Photoelektronenspektren ungesattigter carbonylverbindungen,
J. Mol. Struct., 1974, 21, 231. [all data]
Powis and Danby, 1979
Powis, I.; Danby, C.J.,
The unimolecular fragmentation of energy-selected acetone ions,
Int. J. Mass Spectrom. Ion Phys., 1979, 32, 27. [all data]
Majer, Olavesen, et al., 1971
Majer, J.R.; Olavesen, C.; Robb, J.C.,
Wavelength effect in the photolysis of halogenated ketones,
J. Chem. Soc. B, 1971, 48. [all data]
Potzinger and Bunau, 1969
Potzinger, P.; Bunau, G.v.,
Empirische Beruksichtigung von Uberschussenergien bei der Auftrittspotentialbestimmung,
Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 466. [all data]
Haney and Franklin, 1969
Haney, M.A.; Franklin, J.L.,
Excess energies in mass spectra of some oxygen-containing organic compounds,
J. Chem. Soc. Faraday Trans., 1969, 65, 1794. [all data]
Shigorin, Filyugina, et al., 1966
Shigorin, D.N.; Filyugina, A.D.; Potapov, V.K.,
Ionization and dissociation of molecules of acetaldehyde, acetone, and acetic acid on electron impact,
Teor. i Eksperim. Khim., 1966, 2, 554, In original 417. [all data]
Kanomata, 1961
Kanomata, I.,
Mass-spectrometric study on ionization and dissociation of formaldehyde, acetaldehyde, acetone and ethyl methyl ketone by electron impact,
Bull. Chem. Soc. Japan, 1961, 34, 1864. [all data]
Murad and Inghram, 1964, 2
Murad, E.; Inghram, M.G.,
Thermodynamic properties of the acetyl radical and bond dissociation energies in aliphatic carbonyl compounds,
J. Chem. Phys., 1964, 41, 404. [all data]
Potapov and Shigorin, 1966
Potapov, V.K.; Shigorin, D.N.,
Relation between nature of electronic states of the acetone molecule and mechanism of its breakdown on electron bombardment,
Zh. Fiz. Khim., 1966, 40, 200, In original 101. [all data]
Brinkman, Berger, et al., 1993
Brinkman, E.A.; Berger, S.; Marks, J.; Brauman, J.I.,
Molecular Rotation and the Observation of Dipole-Bound States of Anions,
J. Chem. Phys., 1993, 99, 10, 7586, https://doi.org/10.1063/1.465688
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Muftakhov, Vasil'ev, et al., 1999
Muftakhov, M.V.; Vasil'ev, Y.V.; Mazunov, V.A.,
Determination of electron affinity of carbonyl radicals by means of negative ion mass spectrometry,
Rapid Commun. Mass Spectrom., 1999, 13, 12, 1104-1108, https://doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1104::AID-RCM619>3.0.CO;2-C
. [all data]
Ho, Yang, et al., 1997
Ho, Y.-P.; Yang, Y.-C.; Klippenstein, S.J.; Dunbar, R.C.,
Binding Energies of Ag+ and Cd+ Complexes from Analysis of Radiative Association Kinetics,
J. Phys. Chem. A, 1997, 101, 18, 3338, https://doi.org/10.1021/jp9637284
. [all data]
Bauschlicher, Bouchard, et al., 1991
Bauschlicher, C.W.; Bouchard, F.; Hepburn, J.W.; McMahon, T.B.; Surjasasmita, I.; Roth, L.M.; Gord, J.R.,
On the Structure of Al(Acetone)2+,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 15, https://doi.org/10.1016/0168-1176(91)85094-3
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids,
J. Am. Chem. Soc., 1987, 109, 6230. [all data]
Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P.,
Hydration of CN-, NO2-, NO3-, and HO- in the gas phase,
Can. J. Chem., 1971, 49, 3308. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Lau, Saluja, et al., 1980
Lau, Y.K.; Saluja, P.P.S.; Kebarle, P.,
The Proton in Dimethyl Sulfoxide and Acetone. Results from Gas - Phase Ion Equilibria Involving (Me2SO)nH+ and (Me2CO)nH+,
J. Am. Chem. Soc., 1980, 102, 25, 7429, https://doi.org/10.1021/ja00545a004
. [all data]
Mackay, Rakshit, et al., 1982
Mackay, G.I.; Rakshit, A.B.; Bohme, D.K.,
An Experimental Study of the Reactivity and Relative Basicity of the Methoxide Anion in the Gas Phase at Room Temperature, and their Perturbation by Methanol Solvent,
Can. J. Chem., 1982, 60, 20, 2594, https://doi.org/10.1139/v82-373
. [all data]
Sheldon and Bowie, 1983
Sheldon, J.C.; Bowie, J.H.,
The Reactions of {F-..HOMe} and {MeCO2-..HF} Negative Ions with Acetaldehyde and Acetone.,
Aust. J. Chem., 1983, 36, 2, 289, https://doi.org/10.1071/CH9830289
. [all data]
Meot-Ner (Mautner) and Sieck, 1991
Meot-Ner (Mautner), M.; Sieck, L.W.,
Proton affinity ladders from variable-temperature equilibrium measurements. 1. A reevaluation of the upper proton affinity range,
J. Am. Chem. Soc., 1991, 113, 12, 4448, https://doi.org/10.1021/ja00012a012
. [all data]
Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B.,
A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia,
Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y
. [all data]
Hiraoka and Takimoto, 1986
Hiraoka, K.; Takimoto, H.,
Gas-Phase Stabilities of Symmetric Proton-Held Dimer Cations,
J. Phys. Chem., 1986, 90, 22, 5910, https://doi.org/10.1021/j100280a090
. [all data]
Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B.,
Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements,
J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016
. [all data]
Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P.,
Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding,
J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002
. [all data]
Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D.,
Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules,
J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]
Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr.,
Thermochemical data on Ggs-phase ion-molecule association and clustering reactions,
J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]
Hiraoka, Morise, et al., 1986
Hiraoka, K.; Morise, K.; Nishijima, T.; Nakamura, S.; Nakazato, M.; Ohkuma, K.,
Gas Phase Ion Equilibria Studies of Protons and Chloride Ions in Propanol and Acetone,
Int. J. Mass Spectrom. Ion Proc., 1986, 68, 1-2, 99, https://doi.org/10.1016/0168-1176(86)87071-9
. [all data]
Hiraoka, Takimoto, et al., 1986
Hiraoka, K.; Takimoto, H.; Morise, K.; Shoda, T.; Nakamura, S.,
Ion-Molecule Reactions in Gaseous Acetone,
Bull. Chem. Soc. Japan, 1986, 59, 7, 2247, https://doi.org/10.1246/bcsj.59.2247
. [all data]
Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J.,
A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases,
Can. J. Chem., 1986, 74, 59. [all data]
Stone and Splinter, 1984
Stone, J.A.; Splinter, D.E.,
A high-pressure mass spectrometric study of the binding of (CH3)3Sn+ to lewis bases in the gas phase,
Int. J. Mass Spectrom. Ion Processes, 1984, 59, 169. [all data]
Meot-ner, 1988, 2
Meot-ner, M.,
The Ionic Hydrogen Bond and Solvation. 7. Interaction Energies of Carbanions with Solvent Molecules,
J. Am. Chem. Soc., 1988, 110, 12, 3858, https://doi.org/10.1021/ja00220a022
. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B.,
Gas phase negative ion chemistry of alkylchloroformates,
Can. J. Chem., 1984, 62, 675. [all data]
Bofdanov and McMahon, 2002
Bofdanov, B.; McMahon, T.B.,
Structures, Thermochemistry, and Infrared Spectra of Chloride Ion-Fluorinated Acetone Complexes and Neutral Fluorinated Acetones in the Gas Phase: Experiment and Theory,
Int. J. Mass Spectrom., 2002, 219, 3, 593-613, https://doi.org/10.1016/S1387-3806(02)00745-5
. [all data]
Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B.,
Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria,
J. Am. Chem. Soc., 1984, 106, 517. [all data]
Lin, Chen, et al., 1997
Lin, C.-Y.; Chen, Q.; Chen, H.; Freiser, B.S.,
Bond Dissociation Energy Determinations for MOC(CH3)2+ and MOC(CD3)2+ (M=Cr, Mn) Using Continuous Ejection and Radiative Association Methods,
Int. J. Mass Spectrom. Ion Proc., 1997, 167/168, 713, https://doi.org/10.1016/S0168-1176(97)00131-6
. [all data]
Chu, 2002
Chu, Y.,
Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x=1-4 From Collision-Induced Dissociation and Theoretical Studies,
J. Am. Soc. Mass Spectrom., 2002, 13, 5, 453, https://doi.org/10.1016/S1044-0305(02)00355-0
. [all data]
El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M.,
Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry,
J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002
. [all data]
Meot-Ner (Mautner), Sieck, et al., 1996
Meot-Ner (Mautner), M.; Sieck, L.W.; Liebman, J.F.; Scheiner, S.,
Complexing of the Ammonium Ion by Polyethers. Comparative Complexing Thermochemistry of Ammonium, Hydronium, and Alkali Cations,
J. Phys. Chem., 1996, 100, 16, 6445, https://doi.org/10.1021/jp9514943
. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Klassen, Anderson, et al., 1996
Klassen, J.S.; Anderson, S.G.; Blades, A.T.; Kebarle, P.,
Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds,
J. Phys. Chem., 1996, 100, 33, 14218, https://doi.org/10.1021/jp9608382
. [all data]
Sunner, 1984
Sunner, J. Kebarle,
Ion - Solvent Molecule Interactions in the Gas Phase. The Potassium Ion and Me2SO, DMA, DMF, and Acetone,
J. Am. Chem. Soc., 1984, 106, 21, 6135, https://doi.org/10.1021/ja00333a002
. [all data]
Blades, Klassen, et al., 1995
Blades, A.T.; Klassen, J.S.; Kebarle, P.,
Free Energies of Hydration in the Gas Phase on the Anions of Some Oxo Acids of C, N, S, P, Cl and I,
J. Am. Chem. Soc., 1995, 117, 42, 10563, https://doi.org/10.1021/ja00147a019
. [all data]
Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L.,
Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases,
J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050
. [all data]
Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P.,
Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n,
J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013
. [all data]
Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S.,
Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques,
J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T.,
An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory,
J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n
. [all data]
Hoyau, Norrman, et al., 1999
Hoyau, S.; Norrman, K.; McMahon, T.B.; Ohanessian, G.,
A Quantitative Basis for a Scale of Na+ Affinities of Organic and Small Biological Molecules in the Gas Phase,
J. Am. Chem. Soc., 1999, 121, 38, 8864, https://doi.org/10.1021/ja9841198
. [all data]
Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W.,
Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase,
J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005
. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Bayliss and McRae, 1954
Bayliss, N.S.; McRae, E.G.,
Solvent effects in the spectra of acetone, crotonaldehyde, nitromethane and nitrobenzene,
J. Phys. Chem., 1954, 58, 1006-1011. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]
Héberger, Görgényi, et al., 2002
Héberger, K.; Görgényi, M.; Kowalska, T.,
Temperature dependence of Kováts indices in gas chromatography revisited,
J. Chromatogr. A, 2002, 973, 1-2, 135-142, https://doi.org/10.1016/S0021-9673(02)01198-6
. [all data]
Héberger and Görgényi, 1999
Héberger, K.; Görgényi, M.,
Principal component analysis of Kováts indices for carbonyl compounds in capillary gas chromatography,
J. Chromatogr., 1999, 845, 1-2, 21-31, https://doi.org/10.1016/S0021-9673(99)00323-4
. [all data]
Golovnya, Syomina, et al., 1997
Golovnya, R.V.; Syomina, L.A.; Samusenko, A.L.,
Temperature changes of sorption parameters of di-n-alkylketones and methylcyclohexanones in capillary gas chromatography,
Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 2, 314-318, https://doi.org/10.1007/BF02494370
. [all data]
Grigor'eva, Vasil'ev, et al., 1989
Grigor'eva, D.N.; Vasil'ev, A.V.; Golovnya, R.V.,
Variation in retention indices and equivalent chain lengths of homologous series of n-alkyl acetates, n-alkyl methyl ketones, and methyl esters of aliphatic carboxylic acids as a function of homolog number and analysis temperature,
Zh. Anal. Khim., 1989, 44, 1, 68-73. [all data]
Svetlova, Samusenko, et al., 1986
Svetlova, N.I.; Samusenko, A.L.; Golovnya, R.V.,
Advantage of the universal equation over the linear equation for the calculation of retention parameters of homologous series in capillary chromatography,
J. Hi. Res. Chromatogr. Chromatogr. Comm., 1986, 9, 12, 737-740, https://doi.org/10.1002/jhrc.1240091205
. [all data]
Winskowski, 1983
Winskowski, J.,
Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren,
Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041
. [all data]
Becerra, Sánchez, et al., 1982
Becerra, M.R.; Sánchez, E.F.; Domínguez, J.A.G.; Muñoz, J.G.; Molera, M.J.,
The use of gaseous and liquid n-paraffins in GC identification of oxidation products of acetondimethyl acetal,
J. Chromatogr. Sci., 1982, 20, 8, 363-366, https://doi.org/10.1093/chromsci/20.8.363
. [all data]
Goebel, 1982
Goebel, K.-J.,
Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe,
J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5
. [all data]
Gröbler and Bálizs, 1979
Gröbler, A.; Bálizs, G.,
Investigations on mixed gas chromatographic stationary phases. Part I. Dependence of the retention index on the composition of the stationary phase,
J. Chromatogr. Sci., 1979, 17, 11, 631-635, https://doi.org/10.1093/chromsci/17.11.631
. [all data]
Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S.,
Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols,
J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Haken, Ho, et al., 1975
Haken, J.K.; Ho, D.K.M.; Vaughan, C.E.,
Gas chromatography of homologous esters. VII. The retention behaviour of pyruvate esters and related carbonyl and carboxyl compounds,
J. Chromatogr., 1975, 106, 2, 317-325, https://doi.org/10.1016/S0021-9673(00)93839-1
. [all data]
Brown, Chapman, et al., 1968
Brown, I.; Chapman, I.L.; Nicholson, G.J.,
Gas chromatography of polar solutes in electron acceptor stationary phases,
Aust. J. Chem., 1968, 21, 5, 1125-1141, https://doi.org/10.1071/CH9681125
. [all data]
Rohrschneider, 1966
Rohrschneider, L.,
Eine methode zur charakterisierung von gaschromatographischen trennflüssigkeiten,
J. Chromatogr., 1966, 22, 6-22, https://doi.org/10.1016/S0021-9673(01)97064-5
. [all data]
Viani, Müggler-Chavan, et al., 1965
Viani, R.; Müggler-Chavan, F.; Reymond, D.; Egli, R.H.,
196. Sur la composition de l'arôme de café,
Helv. Chim. Acta, 1965, 48, 195-196, 1809-1815, https://doi.org/10.1002/hlca.19650480743
. [all data]
Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E.,
Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen,
Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745
. [all data]
von Kováts, 1958
von Kováts, E.,
206. Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone,
Helv. Chim. Acta, 1958, 41, 7, 1915-1932, https://doi.org/10.1002/hlca.19580410703
. [all data]
Rembold, Wallner, et al., 1989
Rembold, H.; Wallner, P.; Nitz, S.; Kollmannsberger, H.; Drawert, F.,
Volatile components of chickpea (Cicer arietinum L.) seed,
J. Agric. Food Chem., 1989, 37, 3, 659-662, https://doi.org/10.1021/jf00087a018
. [all data]
Haagen-Smit Laboratory, 1997
Haagen-Smit Laboratory,
Procedure for the detailed hydrocarbon analysis of gasolines by single column high efficiency (capillary) column gas chromatography, SOP NO. MLD 118, Revision No. 1.1, California Environmental Protection Agency, Air Resources Board, El Monte, California, 1997, 22. [all data]
Minyard, Tumlinson, et al., 1967
Minyard, J.P.; Tumlinson, J.H.; Thompson, A.C.; Hedin, P.A.,
Constituents of the cotton bud. The carbonyl compounds,
J. Agric. Food Chem., 1967, 15, 3, 517-524, https://doi.org/10.1021/jf60151a021
. [all data]
Castello, Vezzani, et al., 1991
Castello, G.; Vezzani, S.; Gerbino, T.,
Gas chromatographic separation and automatic identification of complex mixtures of organic solvents in indrustrial wates,
J. Chromatogr., 1991, 585, 2, 273-280, https://doi.org/10.1016/0021-9673(91)85088-W
. [all data]
Kevei and Kozma, 1976
Kevei, E.; Kozma, E.,
Gaschromatographische Untersuchungsmethoden zur Aromaprüfung in gekochtem Schweinefleisch (M. semimembranosus),
Nahrung, 1976, 20, 3, 243-252, https://doi.org/10.1002/food.19760200303
. [all data]
Shimadzu, 2003
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Umano, Hagi, et al., 1994
Umano, K.; Hagi, Y.; Tamura, T.; Shoji, A.; Shibamoto, T.,
Identification of volatile compounds isolated from round kumquat (Fortunella japonica Swingle),
J. Agric. Food Chem., 1994, 42, 9, 1888-1890, https://doi.org/10.1021/jf00045a011
. [all data]
Tatsuka, Suekane, et al., 1990
Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H.,
Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling,
J. Agric. Food Chem., 1990, 38, 12, 2176-2180, https://doi.org/10.1021/jf00102a015
. [all data]
Nishimura, Yamaguchi, et al., 1989
Nishimura, O.; Yamaguchi, K.; Mihara, S.; Shibamoto, T.,
Volatile Constituents of Guava Fruits (Psidium guajava L.) and Canned Puree,
J. Agric. Food Chem., 1989, 37, 1, 139-142, https://doi.org/10.1021/jf00085a033
. [all data]
Umano, Shoji, et al., 1986
Umano, K.; Shoji, A.; Hagi, Y.; Shibamoto, T.,
Volatile constituents of peel of quince fruit, Cydonia oblonga Miller,
J. Agric. Food Chem., 1986, 34, 4, 593-596, https://doi.org/10.1021/jf00070a003
. [all data]
Slizhov and Gavrilenko, 2001
Slizhov, Yu.G.; Gavrilenko, M.A.,
Effect of thermal treatment of poly(ethylene glycol) modified with europium acetylacetonate on its chromatographic properties,
Russ. J. Phys. Chem. (Engl. Transl.), 2001, 75, 6, 1012-1013. [all data]
Insausti, Goñi, et al., 2005
Insausti, K.; Goñi, V.; Petri, E.; Gorraiz, C.; Beriain, M.J.,
Effect of weight at slaughter on the volatile compounds of cooked beef from Spanish cattle breeds,
Meat Sci., 2005, 70, 1, 83-90, https://doi.org/10.1016/j.meatsci.2004.12.003
. [all data]
Bruna, Hierro, et al., 2003
Bruna, J.M.; Hierro, E.M.; de la Hoz, L.; Mottram, D.S.; Fernández, M.; Ordóñez, J.A.,
Changes in selected biochemical and sensory parameters as affected by the superficial inoculation of Penicillium camemberti on dry fermented sausages,
Int. J. Food Microbiol., 2003, 85, 1-2, 111-125, https://doi.org/10.1016/S0168-1605(02)00505-6
. [all data]
Censullo, Jones, et al., 2003
Censullo, A.C.; Jones, D.R.; Wills, M.T.,
Speciation of the volatile organic compounds (VOCs) in solventborne aerosol coatings by solid phase microextraction-gas chromatography,
J. Coat. Technol., 2003, 75, 936, 47-53, https://doi.org/10.1007/BF02697922
. [all data]
Pino, Almora, et al., 2003
Pino, J.; Almora, K.; Marbot, R.,
Volatile components of papaya (Carica papaya L., maradol variety) fruit,
Flavour Fragr. J., 2003, 18, 6, 492-496, https://doi.org/10.1002/ffj.1248
. [all data]
Pino, Marbot, et al., 2002
Pino, J.A.; Marbot, R.; Bello, A.,
Volatile compounds of Psidium salutare (H.B.K.) Berg. fruit,
J. Agric. Food Chem., 2002, 50, 18, 5146-5148, https://doi.org/10.1021/jf0116303
. [all data]
Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Hierro, E.,
Two-fibre solid-phase microextraction combined with gas chromatography-mass spectrometry for the analysis of volatile aroma compounds in cooked pork,
J. Chromatogr. A, 2000, 905, 1-2, 233-240, https://doi.org/10.1016/S0021-9673(00)00990-0
. [all data]
Helmig, Klinger, et al., 1999
Helmig, D.; Klinger, L.F.; Guenther, A.; Vierling, L.; Geron, C.; Zimmerman, P.,
Biogenic volatile organic compound emissions (BVOCs). I. Identifications from three continental sites in the U.S.,
Chemosphere, 1999, 38, 9, 2163-2187, https://doi.org/10.1016/S0045-6535(98)00425-1
. [all data]
Bartelt, 1997
Bartelt, R.J.,
Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles,
Anal. Chem., 1997, 69, 3, 364-372, https://doi.org/10.1021/ac960820n
. [all data]
Helmig, Pollock, et al., 1996
Helmig, D.; Pollock, W.; Greenberg, J.; Zimmerman, P.,
Gas chromatography mass spectrometry analysis of volatile organic trace gases at Mauna Loa Observatory, Hawaii,
J. Geophys. Res., 1996, 101, D9, 14697-14710, https://doi.org/10.1029/96JD00212
. [all data]
Place, Imhof, et al., 2003
Place, R.B.; Imhof, M.; Teuber, M.; Olivier Bosset, J.,
Distribution of the volatile (flavour) compounds in Raclette cheese produced with different staphylococci in the smear,
Mitt. Lebensmittelunters. Hyg., 2003, 94, 192-211. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Mahattanatawee K., Perez-Cacho P.R., et al., 2007
Mahattanatawee K.; Perez-Cacho P.R.; Davenport T.; Rouseff R.,
Comparison of three lychee cultivar odor profiles using gas chromatography-olfactometry and gas chromatography-sulfur detection,
J. Agric. Food Chem., 2007, 55, 5, 1939-1944, https://doi.org/10.1021/jf062925p
. [all data]
Alasalvar, Taylor, et al., 2005
Alasalvar, C.; Taylor, K.D.A.; Shahidi, F.,
Comparison of volatiles of cultured and wild sea bream (Sparus aurata) during storage in ice by dynamic headspace analysis/gas chromatography-mass spectrometry,
J. Agric. Food Chem., 2005, 53, 7, 2616-2622, https://doi.org/10.1021/jf0483826
. [all data]
Malliaa, Fernandez-Garcia, et al., 2005
Malliaa, S.; Fernandez-Garcia, E.; Bosset, J.O.,
Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses,
Int. Dairy J., 2005, 15, 6-9, 741-758, https://doi.org/10.1016/j.idairyj.2004.11.007
. [all data]
Rega, Fournier, et al., 2004
Rega, B.; Fournier, N.; Nicklaus, S.; Guichard, E.,
Role of pulp in flavor release and sensory perception in orange juice,
J. Agric. Food Chem., 2004, 52, 13, 4204-4212, https://doi.org/10.1021/jf035361n
. [all data]
Rega, Fournier, et al., 2003
Rega, B.; Fournier, N.; Guichard, E.,
Solid phase microextraction (SPME) of orange juice flavor: odor representativeness by direct gas chromatography olfactometry (D-GC-O),
J. Agric. Food Chem., 2003, 51, 24, 7092-7099, https://doi.org/10.1021/jf034384z
. [all data]
Ott, Fay, et al., 1997
Ott, A.; Fay, L.B.; Chaintreau, A.,
Determination and origin of the aroma impact compounds of yogurt flavor,
J. Agric. Food Chem., 1997, 45, 3, 850-858, https://doi.org/10.1021/jf960508e
. [all data]
Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R.,
Volatile components in blue crab (Callinectes sapidus) meat and processing by-product,
J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x
. [all data]
Umano, Hagi, et al., 1992
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Volatile constituents of green and ripened pineapple (Aanas comosus [L.] Merr.),
J. Agric. Food Chem., 1992, 40, 4, 599-603, https://doi.org/10.1021/jf00016a014
. [all data]
Chen and Ho, 1988
Chen, C.-C.; Ho, C.-T.,
Gas chromatographic analysis of volatile components of ginger oil (Zingiber officinale Roscoe) extracted with liquid carbon dioxide,
J. Agric. Food Chem., 1988, 36, 2, 322-328, https://doi.org/10.1021/jf00080a020
. [all data]
Chen, Kuo, et al., 1982
Chen, C.-C.; Kuo, M.-C.; Hwang, L.S.; Wu, J.S.-B.; Wu, C.-M.,
Headspace components of passion fruit juice,
J. Agric. Food Chem., 1982, 30, 6, 1211-1215, https://doi.org/10.1021/jf00114a052
. [all data]
van den Dool and Kratz, 1963
van den Dool, H.; Kratz, P. Dec.,
A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography,
J. Chromatogr., 1963, 11, 463-471, https://doi.org/10.1016/S0021-9673(01)80947-X
. [all data]
Bianchi, Cantoni, et al., 2007
Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A.,
Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages,
Talanta, 2007, 72, 4, 1552-1563, https://doi.org/10.1016/j.talanta.2007.02.019
. [all data]
Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M.,
Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness,
J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393
. [all data]
Verzera, Ziino, et al., 2004
Verzera, A.; Ziino, M.; Condurso, C.; Romeo, V.; Zappala, M.,
Solid-phase microextraction and gas chromatography-mass spectrometry for rapid characterisation of semi-hard cheeses,
Anal. Bioanal. Chem., 2004, 380, 7-8, 930-936, https://doi.org/10.1007/s00216-004-2879-4
. [all data]
Radovic, Careri, et al., 2001
Radovic, B.S.; Careri, M.; Mangia, A.; Musci, M.; Gerboles, M.; Anklam, E.,
Analytical, nutritional, and clinical methods section. Contribution of dynamic headspace GC-MS analysis of aroma compounds to authenticity testing of honey,
Food Chem., 2001, 72, 4, 511-520, https://doi.org/10.1016/S0308-8146(00)00263-6
. [all data]
Yasuhara, 1987
Yasuhara, A.,
Identification of Volatile Compounds in Poultry Manure by Gas Chromatography-Mass Spectrometry,
J. Chromatogr., 1987, 387, 371-378, https://doi.org/10.1016/S0021-9673(01)94539-X
. [all data]
Lebrón-Aguilar, Quintanilla-López, et al., 2007
Lebrón-Aguilar, R.; Quintanilla-López, J.E.; Tello, A.M.; Santiuste, J.M.,
Isothermal retention indices on poly (3,3,3-trifluoropropylmethylsiloxane) stationary phases,
J. Chromatogr. A, 2007, 1160, 1-2, 276-288, https://doi.org/10.1016/j.chroma.2007.05.025
. [all data]
Shimadzu, 2003, 2
Shimadzu,
Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]
Amboni, Junkes, et al., 2002
Amboni, R.D.DeM.C.; Junkes, B. daS.; Yunes, R.A.; Heinzen, V.E.F.,
Quantitative structure-property relationships study of chromatographic retention indices and normal boiling points for oxo compounds using the semi-empirical topological method,
J. Mol. Struct. (Theochem), 2002, 586, 1-3, 71-80, https://doi.org/10.1016/S0166-1280(02)00062-3
. [all data]
Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J.,
Sorpcni materialy pro plynovou chromatographii - III,
Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]
Anderson, 1968
Anderson, D.G.,
USe of Kovats retention indices and response factors for the qualitative and quantitative analysis of coating solvents,
J. Paint Technol., 1968, 40, 527, 549-557. [all data]
Bramston-Cook, 2013
Bramston-Cook, R.,
Kovats indices for C2-C13 hydrocarbons and selected oxygenated/halocarbons with 100 % dimethylpolysiloxane columns, 2013, retrieved from http://lotusinstruments.com/monographs/List .... [all data]
Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A.,
HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge,
Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8
. [all data]
Leffingwell and Alford, 2011
Leffingwell, J.; Alford, E.D.,
Volatile constituents of the giant pufball mushroom (Calvatia gigantea),
Leffingwell Rep., 2011, 4, 1-17. [all data]
Zenkevich, Eliseenkov, et al., 2011
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.; Zhakovskaya, Z.A.; Khoroshko, L.O.,
Gas chromatographic identification of chlorination products of aliphatic ketones,
J. Chromatogr., 2011, 1218, 21, 3291-3299, https://doi.org/10.1016/j.chroma.2010.12.056
. [all data]
Ramirez R. and Cava R., 2007
Ramirez R.; Cava R.,
Volatile profiles of dry-cured meat products from three different Iberian x Duroc genotypes,
J. Agric. Food Chem., 2007, 55, 5, 1923-1931, https://doi.org/10.1021/jf062810l
. [all data]
Isidorov, Purzynska, et al., 2006
Isidorov, V.; Purzynska, A.; Modzelewska, A.; Serowiecka, M.,
Distribution coefficients of aliphatic alcohols, carbonyl compounds and esters between air and Carboxen/polydimethylsiloxane fiber coating,
Anal. Chim. Acta., 2006, 560, 1-2, 103-109, https://doi.org/10.1016/j.aca.2005.12.043
. [all data]
Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D.,
Volatile constituents of Perique tobacco,
Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]
Ramírez, Estévez, et al., 2004
Ramírez, M.R.; Estévez, M.; Morcuende, D.; Cava, R.,
Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS,
J. Agric. Food Chem., 2004, 52, 25, 7637-7643, https://doi.org/10.1021/jf049207s
. [all data]
Joffraud, Leroi, et al., 2001
Joffraud, J.J.; Leroi, F.; Roy, C.; Berdagué, J.L.,
Characterisation of volatile compounds produced by bacteria isolated from the spoilage flora of cold-smoked salmon,
Int. J. Food Microbiol., 2001, 66, 3, 175-184, https://doi.org/10.1016/S0168-1605(00)00532-8
. [all data]
Health Safety Executive, 2000
Health Safety Executive,
MDHS 96 Volatile organic compounds in air - Laboratory method using pumed solid sorbent tubes, solvent desorption and gas chromatography
in Methods for the Determination of Hazardous Substances (MDHS) guidance, Crown, Colegate, Norwich, 2000, 1-24, retrieved from http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf. [all data]
Shibamoto and Jennings, 1977
Shibamoto, T.; Jennings, W.G.,
The volatile composition of the leaf oil of California Juniper (J. californica Carr.)
in Proceedings of VII International Congress of Essential Oils, October 7-11, 1977, Kyoto, Japan, 1977, 413-418. [all data]
Miyazaki, Plotto, et al., 2011
Miyazaki, T.; Plotto, A.; Goodner, K.; Gmitter F.G.,
Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance,
J. Sci. Food Agric., 2011, 91, 3, 449-460, https://doi.org/10.1002/jsfa.4205
. [all data]
Pugliese, Sirtori, et al., 2009
Pugliese, C.; Sirtori, F.; Ruiz, J.; Martin, D.; Parenti, S.; Franci, O.,
Effect of pasture on chestnut or acorn on fatty acid composition and aromatic profile of fat of China Senece dry-cured ham,
Gracas y Aceites, 2009, 60, 3, 271-276, https://doi.org/10.3989/gya.130208
. [all data]
Chen, 2008
Chen, H.-F.,
Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression,
Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003
. [all data]
Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J.,
Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee,
Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009
. [all data]
Chen and Feng, 2007
Chen, Y.; Feng, C.,
QSPR study on gas chromatography retention index of some organic pollutants,
Comput. Appl. Chem. (China), 2007, 24, 10, 1404-1408. [all data]
Blunden, Aneja, et al., 2005
Blunden, J.; Aneja, V.P.; Lonneman, W.A.,
Characterization of non-methane volatile organic compounds at swine facilities in eastern North Carolina,
Atm. Environ., 2005, 39, 36, 6707-6718, https://doi.org/10.1016/j.atmosenv.2005.03.053
. [all data]
Duflos, Moine, et al., 2005
Duflos, G.; Moine, F.; Coin, V.M.; Malle, P.,
Determination of volatile compounds in whiting (Merlangius merlangus) using headspace-solid-phase microextraction-gas chromatography-mass spectrometry,
J. Chromatogr. Sci., 2005, 43, 6, 304-312, https://doi.org/10.1093/chromsci/43.6.304
. [all data]
Junkes, Amboni, et al., 2004
Junkes, B.S.; Amboni, R.D.M.C.; Yunes, R.A.; Heinzen, V.E.F.,
Application of the semi-empirical topological index in quantitative structure-chromatographic retention relationship (QSRR) studies of aliphatic ketones and aldehydes on stationary phases of different polarity,
J. Braz. Chem. Soc., 2004, 15, 2, 183-189, https://doi.org/10.1590/S0103-50532004000200005
. [all data]
Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F.,
Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies,
Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]
Spanier, Shahidi, et al., 2001
Spanier, A.M.; Shahidi, F.; Par; iment, T.H.; Mussinan, C.,
Food Flavors and Chemistry. Advances of the New Millenium, Royal Soc. Chem., 2001, 666. [all data]
Zenkevich, 2001
Zenkevich, I.G.,
Encyclopedia of Chromatography. Derivatization of Amines, Amino Acids, Amides and Imides for GC Analysis, Marcel Dekker, Inc, New York - Basel, 2001, 224. [all data]
Dittmann and Nitz, 2000
Dittmann, B.; Nitz, S.,
Strategies for the development of reliable QArQC methods when working with mass spectrometry-based chemosensory systems,
Sens. Actuators B, 2000, 69, 3, 253-257, https://doi.org/10.1016/S0925-4005(00)00504-9
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Zenkevich and Chupalov, 1996
Zenkevich, I.G.; Chupalov, A.A.,
New Possibilities of Chromato Mass Pectrometric Identification of Organic Compounds Using Increments of Gas Chromatographic Retention Indices of Molecular Structural Fragments,
Zh. Org. Khim. (Rus.), 1996, 32, 5, 656-666. [all data]
Zenkevich, Korolenko, et al., 1995
Zenkevich, I.G.; Korolenko, L.I.; Khralenkova, N.B.,
Desorption with solvent vapor as a method of sample preparation in the sorption preconcentration of organic-compounds from the air of a working area and from industrial-waste gases,
J. Appl. Chem. USSR (Engl. Transl.), 1995, 50, 10, 937-944. [all data]
Schuberth, 1994
Schuberth, J.,
Joint use of retention index and mass spectrum in postmortem tests for volatile organics by headspace capillary gas chromatography with ion-trap detection,
J. Chromatogr. A, 1994, 674, 1-2, 63-71, https://doi.org/10.1016/0021-9673(94)85217-0
. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Weller and Wolf, 1989
Weller, J.-P.; Wolf, M.,
Massenspektroskopie und Headspace-GC,
Beitr. Gerichtl. Med., 1989, 47, 525-532. [all data]
Schultz, Flath, et al., 1988
Schultz, T.H.; Flath, R.A.; Stern, D.J.; Mon, T.R.; Teranishi, R.; McKenna Kruse, S.; Butlder, B.; Howard, W.E.,
Coyote estrous urine volatiles,
J. Chem. Ecol., 1988, 14, 2, 701-712, https://doi.org/10.1007/BF01013917
. [all data]
Takeoka, Flath, et al., 1988
Takeoka, G.R.; Flath, R.A.; Güntert, M.; Jennings, W.,
Nectarine volatiles: vacuum steam distillation versus headspace sampling,
J. Agric. Food Chem., 1988, 36, 3, 553-560, https://doi.org/10.1021/jf00081a037
. [all data]
Ramsey and Flanagan, 1982
Ramsey, J.D.; Flanagan, R.J.,
Detection and Identification of Volatile Organic Compounds in Blood by Headspace Gas Chromatography as an Aid to the Diagnosis of Solvent Abuse,
J. Chromatogr., 1982, 240, 2, 423-444, https://doi.org/10.1016/S0021-9673(00)99622-5
. [all data]
Heydanek and McGorrin, 1981
Heydanek, M.G.; McGorrin, R.J.,
Gas chromatography-mass spectroscopy investigations on the flavor chemistry of oat groats,
J. Agric. Food Chem., 1981, 29, 5, 950-954, https://doi.org/10.1021/jf00107a016
. [all data]
Wanakhachornkrai and Lertsiri, 9999
Wanakhachornkrai, P.; Lertsiri, S.,
Comparison of determination method for volatile compounds in Thai soy sauce,
Analytical, Nutritional and Clinical Methods, 9999, 1-11. [all data]
Feng, Zhuang, et al., 2011
Feng, T.; Zhuang, H.; Ye, R.; Jin, Z.; Xu, X.; Xie, Z.,
Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose,
Sensors and Actuators B: Chemical, 2011, 160, 1, 964-973, https://doi.org/10.1016/j.snb.2011.09.013
. [all data]
Ganeko, Shoda, et al., 2008
Ganeko, N.; Shoda, M.; Hirohara, I.; Bhadra, A.; Ishida, T.; Matsuda, H.; Takamura, H.; Matoba, T.,
Analysis of volatile flavor compounds of sardine (Sardinops melanostica) by solid phase microextraction,
J. Food Sci., 2008, 73, 1, s83-s88, https://doi.org/10.1111/j.1750-3841.2007.00608.x
. [all data]
Povolo, Contarini, et al., 2007
Povolo, M.; Contarini, G.; Mele, M.; Secchiari, P.,
Study on the influence of pasture on volatile fraction of Ewes' dairy products by solid-phase microextraction and gas chromatography-mass spectrometry,
J. Dairy Sci., 2007, 90, 2, 556-569, https://doi.org/10.3168/jds.S0022-0302(07)71539-4
. [all data]
Rizzolo, Cambiaghi, et al., 2005
Rizzolo, A.; Cambiaghi, P.; Grassi, M.; Zerbini, P.E.,
Influence of 1-Methylcyclopropene and Storage Atmosphere on Changes in Volatile Compounds and Fruit Quality of Conference Pears,
J. Agric. Food Chem., 2005, 53, 25, 9781-9789, https://doi.org/10.1021/jf051339d
. [all data]
Rochat and Chaintreau, 2005
Rochat, S.; Chaintreau, A.,
Carbonyl Odorants Contributing to the In-Oven Roast Beef Top Note,
J. Agric. Food Chem., 2005, 53, 24, 9578-9585, https://doi.org/10.1021/jf058089l
. [all data]
Chida, Sone, et al., 2004
Chida, M.; Sone, Y.; Tamura, H.,
Aroma characteristics of stored tobacco cut leaves analyzed by a high vacuum distillation and canister system,
J. Agric. Food Chem., 2004, 52, 26, 7918-7924, https://doi.org/10.1021/jf049223p
. [all data]
Tanaka, Yamauchi, et al., 2003
Tanaka, T.; Yamauchi, T.; Katsumata, R.; Kiuchi, K.,
Comparison of volatile components in commercial Itohiki-Natto by solid phase microextraction and gas chromatography,
Nippon Shokuhin Kagaku Kogaku Kaishi, 2003, 50, 6, 278-285, https://doi.org/10.3136/nskkk.50.278
. [all data]
Vichi, Castellote, et al., 2003
Vichi, S.; Castellote, A.I.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E.,
Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection,
J. Chromatogr. A, 2003, 983, 1-2, 19-33, https://doi.org/10.1016/S0021-9673(02)01691-6
. [all data]
Vichi, Pizzale, et al., 2003
Vichi, S.; Pizzale, L.; Conte, L.S.; Buxaderas, S.; López-Tamames, E.,
Solid-phase microextraction in the analysis of virgin olive oil volatile fraction: characterization of virgin olive oils from two distinct geographical areas of Northern Italy,
J. Agric. Food Chem., 2003, 51, 22, 6572-6577, https://doi.org/10.1021/jf030269c
. [all data]
Wanakhachornkrai and Lertsiri, 2003
Wanakhachornkrai, P.; Lertsiri, S.,
Analytical, nutritional, and clinical methods. Comparison of determination method for volatile compounds in Thai soy sauce,
Food Chem., 2003, 83, 4, 619-629, https://doi.org/10.1016/S0308-8146(03)00256-5
. [all data]
Lecanu, Ducruet, et al., 2002
Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A.,
Optimization of headspace solid-phase microextraction (SPME) for the odor analysis of surface-ripened cheese,
J. Agric. Food Chem., 2002, 50, 13, 3810-3817, https://doi.org/10.1021/jf0117107
. [all data]
Umano, Hagi, et al., 2002
Umano, K.; Hagi, Y.; Shibamoto, T.,
Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.),
J. Agric. Food Chem., 2002, 50, 19, 5355-5359, https://doi.org/10.1021/jf0203951
. [all data]
Duque, Bonilla, et al., 2001
Duque, C.; Bonilla, A.; Bautista, E.; Zea, S.,
Exudation of low molecular wight compounds (thiobismethane, methyl isocyanide, amd methyl isothiocyanate) as a possible chemical defense mechanism in the marine sponge Ircinia felix,
Biochem. Systematics Ecol., 2001, 29, 5, 459-467, https://doi.org/10.1016/S0305-1978(00)00081-8
. [all data]
Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T.,
Antioxidative activity of volatile chemicals extracted from beer,
J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e
. [all data]
Girard and Durance, 2000
Girard, B.; Durance, T.,
Headspace volatiles of sockeye and pink salmon as affected by retort process,
Food Chem. Toxicol., 2000, 65, 1, 34-39. [all data]
Lee and Shibamoto, 2000
Lee, K.-G.; Shibamoto, T.,
Antioxidant properties of aroma compounds isolated from soybeans and mung beans,
J. Agric. Food Chem., 2000, 48, 9, 4290-4293, https://doi.org/10.1021/jf000442u
. [all data]
Tamura, Boonbumrung, et al., 2000
Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W.,
Volatile components of the essential oil in the pulp of four yellow mangoes (Mangifera indica L.) in Thailand,
Food Sci. Technol. Res., 2000, 6, 1, 68-73, https://doi.org/10.3136/fstr.6.68
. [all data]
Umano, Hagi, et al., 2000
Umano, K.; Hagi, Y.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.),
J. Agric. Food Chem., 2000, 48, 8, 3463-3469, https://doi.org/10.1021/jf0001738
. [all data]
Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M.,
Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis,
Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587
. [all data]
Umano, Nakahara, et al., 1999
Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T.,
Aroma chemicals isolated and identified from leaves of aloe arborescens Mill. Var. natalensis Berger,
J. Agric. Food Chem., 1999, 47, 9, 3702-3705, https://doi.org/10.1021/jf990116i
. [all data]
Anker, Jurs, et al., 1990
Anker, L.S.; Jurs, P.C.; Edwards, P.A.,
Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups,
Anal. Chem., 1990, 62, 24, 2676-2684, https://doi.org/10.1021/ac00223a006
. [all data]
Mihara, Tateba, et al., 1988
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K.,
The volatile components of Chinese quince (Pseudocydonia sinensis Schneid)
in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 537-550. [all data]
Mihara, Tateba, et al., 1987
Mihara, S.; Tateba, H.; Nishimura, O.; Machii, Y.; Kishino, K.,
Volatile components of Chinese quince (Pseudocydonia sinensis Schneid),
J. Agric. Food Chem., 1987, 35, 4, 532-537, https://doi.org/10.1021/jf00076a023
. [all data]
Labropoulos, Palmer, et al., 1982
Labropoulos, A.E.; Palmer, J.K.; Tao, P.,
Flavor evaluation and characterization of yogurt as affected by ultra-high temperature and vat processes,
J. Dairy Sci., 1982, 65, 2, 191-196, https://doi.org/10.3168/jds.S0022-0302(82)82176-0
. [all data]
Tsao, 1969
Tsao, J.C.Y.,
Prelimivary reports on structural study via mercury-sensitized photolysis and gas chromatography,
J. Chin. Chem. Soc., 1969, 16, 4, 152-163. [all data]
Welke, Manfroi, et al., 2012
Welke, J.E.; Manfroi, V.; Zanus, M.; Lazarotto, M.; Zini, C.A.,
Characterization of the volatile profile of Brazilian merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection,
J. Chromatogr. A, 2012, 1226, 124-139, https://doi.org/10.1016/j.chroma.2012.01.002
. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Povolo, Cabassi, et al., 2011
Povolo, M.; Cabassi, G.; Profaizer, M.; Lanteri, S.,
Study on the use of evolved gas analysis FT-IR (EGA FT-IR) for the evaluation of cheese volatile fraction,
The Open Food Sci. J., 2011, 5, 1, 10-16, https://doi.org/10.2174/1874256401105010010
. [all data]
Cajka, Riddellova, et al., 2010
Cajka, T.; Riddellova, K.; Klimankova, E.; Carna, M.; Pudil, F.; Hajslova, J.,
Traceability of olive oil based on volatiles pattern and multivariante analysis,
Food Chem., 2010, 121, 1, 282-289, https://doi.org/10.1016/j.foodchem.2009.12.011
. [all data]
Kadar, Juan-Borras, et al., 2010
Kadar, M.; Juan-Borras, M.; Hellebrandova, M.; Domenech, E.; Escriche, I.,
Volatile fraction composition of Acacia (Robinia pseudoacacia) honey from Romania, Spain, and Check Republic,
Bull. USAMV Agriculture, 2010, 67, 2, 259-265. [all data]
Vekiari, Orepoulou, et al., 2010
Vekiari, S.A.; Orepoulou, V.; Kourkoutas, Y.; Kamoun, N.; Msallem, M.; Psimouli, V.; Arapoglou, D.,
Characterization and seasonal variations of the quality of virgin olive oil of the Thoumbolia and Koroneiki varieties from Southern Greece,
Grasas y Aceites, 2010, 61, 3, 221-231, https://doi.org/10.3989/gya.108709
. [all data]
Soria, Martinez-Castro, et al., 2008
Soria, A.C.; Martinez-Castro, I.; Sanz, J.,
Some aspects of dynamic headspace analysis of volatile components in honey,
Foog Res. International, 2008, 41, 8, 838-848, https://doi.org/10.1016/j.foodres.2008.07.010
. [all data]
Berard, Bianchi, et al., 2007
Berard, J.; Bianchi, F.; Careri, M.; Chatel, A.; Mangia, A.; Musci, M.,
Characterization of the volatile fraction and of free fatty acids of Fontina Valle d'Aosta, a protected designation of origin Italian cheese,
Food Chem., 2007, 105, 1, 293-300, https://doi.org/10.1016/j.foodchem.2006.11.041
. [all data]
Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G.,
Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax,
Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040
. [all data]
Kourkoutas, Kandylis, et al., 2006
Kourkoutas, Y.; Kandylis, P.; Panas, P.; Dooley, J.S.G.; Nigam, P.; Koutinas, A.A.,
Evaluation of freeze-dried kefir coculture as starter in feta-type cheese production,
Appl. Environ. Microbiol., 2006, 72, 9, 6124-6135, https://doi.org/10.1128/AEM.03078-05
. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Muresan, Eillebrecht, et al., 2000
Muresan, S.; Eillebrecht, M.A.J.L.; de Rijk, T.C.; de Jonge, H.G.; Leguijt, T.; Nijhuis, H.H.,
Aroma profile development of intermediate chocolate products. I. Volatile constituents of block-milk,
Food Chem., 2000, 68, 2, 167-174, https://doi.org/10.1016/S0308-8146(99)00171-5
. [all data]
Castioni and Kapetanidis, 1996
Castioni, P.; Kapetanidis, I.,
Volatile constituents from Brunfelsia grandiflora ssp. grandiflora: qualitative analysis by GC-MS,
Scientia Pharmaceutica, 1996, 64, 83-91. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Shibamoto, 1987
Shibamoto, T.,
Retention Indices in Essential Oil Analysis
in Capillary Gas Chromatography in Essential Oil Analysis, Sandra, P.; Bicchi, C., ed(s)., Hutchig Verlag, Heidelberg, New York, 1987, 259-274. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
MacLeod and Pieris, 1981
MacLeod, A.J.; Pieris, N.M.,
Volatile flavor components of beli fruit (Aegle marmelos) and a processed product,
J. Agric. Food Chem., 1981, 29, 6, 1262-1264, https://doi.org/10.1021/jf00108a040
. [all data]
Notes
Go To: Top, Henry's Law data, Gas phase ion energetics data, Ion clustering data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Vibrational and/or electronic energy levels, Gas Chromatography, References
- Symbols used in this document:
AE Appearance energy EA Electron affinity IE (evaluated) Recommended ionization energy T Temperature d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.