1,3-Diazine

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas195.8 ± 1.5kJ/molCcrNabavian, Sabbah, et al., 1977Reanalyzed by Pedley, Naylor, et al., 1986, Original value = 193.1 ± 2.0 kJ/mol
Δfgas195.9 ± 1.4kJ/molCcbTjebbes, 1962Reanalyzed by Cox and Pilcher, 1970, Original value = 196.6 ± 1.0 kJ/mol

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfliquid143.2 ± 1.8kJ/molCcrNabavian, Sabbah, et al., 1977 
Δfliquid146.6 ± 0.84kJ/molCcbTjebbes, 1962 
Quantity Value Units Method Reference Comment
Δcliquid-2288.9 ± 1.8kJ/molCcrNabavian, Sabbah, et al., 1977 
Δcliquid-2292.3 ± 0.84kJ/molCcbTjebbes, 1962 

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Tboil396.7KN/AWeast and Grasselli, 1989BS
Quantity Value Units Method Reference Comment
Δvap49. ± 7.kJ/molAVGN/AAverage of 7 values; Individual data points

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
MS - José A. Martinho Simões
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C10H5CrNO5 (solution) + Carbon monoxide (solution) = Chromium hexacarbonyl (solution) + 1,3-Diazine (solution)

By formula: C10H5CrNO5 (solution) + CO (solution) = C6CrO6 (solution) + C4H4N2 (solution)

Quantity Value Units Method Reference Comment
Δr-61.9kJ/molKinSWovkulich and Atwood, 1980solvent: Hexane; The data rely on the enthalpy and entropy of activation for the forward reaction, 106.3 ± 4.6 kJ/mol and 13.0±14.6 J/(mol K) Dennenberg and Darensbourg, 1972, and also on the enthalpy and entropy of activation for the Cr-CO dissociation in Cr(CO)6, 168.2 ± 2.5 kJ/mol and 94.6±6.3 J/(mol K) Graham and Angelici, 1967. The latter data were obtained in decalin; MS

Tungsten hexacarbonyl (cr) + 1,3-Diazine (l) = C10H5NO5W (cr) + Carbon monoxide (g)

By formula: C6O6W (cr) + C4H4N2 (l) = C10H5NO5W (cr) + CO (g)

Quantity Value Units Method Reference Comment
Δr34.6kJ/molN/ANakashima and Adamson, 1982The reaction enthalpy was calculated from the enthalpy of the reaction W(CO)6(solution) + py(solution) = W(CO)5(py)(solution) + CO(solution) in cyclohexane, 27.4 ± 2.9 kJ/mol, together with the enthalpies of solution of W(CO)6(cr), W(CO)5(py)(cr), and py(l), 35.7, 36.4, and 7.9 kJ/mol, respectively Nakashima and Adamson, 1982.; MS

C4H3N2- + Hydrogen cation = 1,3-Diazine

By formula: C4H3N2- + H+ = C4H4N2

Quantity Value Units Method Reference Comment
Δr1612. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B
Quantity Value Units Method Reference Comment
Δr1576.5 ± 2.9kJ/molN/AWren, Vogelhuber, et al., 2012gas phase; B
Δr1577. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B

Tungsten hexacarbonyl (solution) + 1,3-Diazine (solution) = C10H5NO5W (solution) + Carbon monoxide (solution)

By formula: C6O6W (solution) + C4H4N2 (solution) = C10H5NO5W (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr27.4 ± 2.9kJ/molPCNakashima and Adamson, 1982solvent: Cyclohexane; MS
Δr24.9 ± 2.9kJ/molPCNakashima and Adamson, 1982solvent: Benzene; MS
Δr18.4 ± 0.4kJ/molPCNakashima and Adamson, 1982solvent: Tetrahydrofuran; MS

C39H68O3P2W (solution) + 1,3-Diazine (solution) = C44H71NO3P2W (solution) + Hydrogen (g)

By formula: C39H68O3P2W (solution) + C4H4N2 (solution) = C44H71NO3P2W (solution) + H2 (g)

Quantity Value Units Method Reference Comment
Δr-39.7 ± 2.1kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Toluene; MS
Δr-41.8 ± 2.1kJ/molRSCGonzalez, Zhang, et al., 1988solvent: Tetrahydrofuran; MS

C14H10CrN2O4 (cr) = 21,3-Diazine (g) + 4Carbon monoxide (g) + chromium (cr)

By formula: C14H10CrN2O4 (cr) = 2C4H4N2 (g) + 4CO (g) + Cr (cr)

Quantity Value Units Method Reference Comment
Δr>199.kJ/molTD-HFCAdedeji, Connor, et al., 1978The reaction enthalpy is a low limit Adedeji, Connor, et al., 1978.; MS

C8H6MoO3 (solution) + 31,3-Diazine (solution) = C18H15MoN3O3 (solution) + 1,3-Cyclopentadiene (solution)

By formula: C8H6MoO3 (solution) + 3C4H4N2 (solution) = C18H15MoN3O3 (solution) + C5H6 (solution)

Quantity Value Units Method Reference Comment
Δr-69.9 ± 2.9kJ/molRSCNolan, Hoff, et al., 1985solvent: Pyridine; Reaction temperature: 323 K; MS

Nitric oxide anion + 1,3-Diazine = C4H4N3O-

By formula: NO- + C4H4N2 = C4H4N3O-

Quantity Value Units Method Reference Comment
Δr69.5 ± 9.6kJ/molN/ALe Barbu, Schiedt, et al., 2002gas phase; Affinity is difference in EAs of lesser solvated species; B

C9H9CrN3O3 (solution) + 31,3-Diazine (solution) = C18H15CrN3O3 (solution) + 3Acetonitrile (solution)

By formula: C9H9CrN3O3 (solution) + 3C4H4N2 (solution) = C18H15CrN3O3 (solution) + 3C2H3N (solution)

Quantity Value Units Method Reference Comment
Δr-48.1 ± 3.8kJ/molRSCMukerjee, Lang, et al., 1992solvent: Tetrahydrofuran; MS

C7H9Cl2NPd (solution) + 1,3-Diazine (l) = (PdCl2(C5H5N)2) (solution) + Ethylene (solution)

By formula: C7H9Cl2NPd (solution) + C4H4N2 (l) = (PdCl2(C5H5N)2) (solution) + C2H4 (solution)

Quantity Value Units Method Reference Comment
Δr-57.7 ± 1.7kJ/molRSCPartenheimer and Durham, 1974solvent: Dichloromethane; MS

C10H5NO5W (cr) + Carbon monoxide (g) = Tungsten hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5NO5W (cr) + CO (g) = C6O6W (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr83. ± 10.kJ/molDSCDaamen, van der Poel, et al., 1979Please also see Meester, Vriends, et al., 1976.; MS

C12H16CrO5 (solution) + 1,3-Diazine (solution) = Heptane (solution) + C10H5CrNO5 (solution)

By formula: C12H16CrO5 (solution) + C4H4N2 (solution) = C7H16 (solution) + C10H5CrNO5 (solution)

Quantity Value Units Method Reference Comment
Δr-84.1 ± 1.7kJ/molPACYang, Vaida, et al., 1988solvent: Heptane; MS

C39H66MoO3P3 (solution) + 1,3-Diazine (solution) = C44H71MoNO3P2 (solution)

By formula: C39H66MoO3P3 (solution) + C4H4N2 (solution) = C44H71MoNO3P2 (solution)

Quantity Value Units Method Reference Comment
Δr-70.7 ± 2.5kJ/molRSCZhang, Gonzalez, et al., 1991solvent: Toluene; MS

Molybdenum hexacarbonyl (cr) + 31,3-Diazine (g) = C18H15MoN3O3 (cr) + 3Carbon monoxide (g)

By formula: C6MoO6 (cr) + 3C4H4N2 (g) = C18H15MoN3O3 (cr) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr-50.4 ± 7.0kJ/molHFCAdedeji, Connor, et al., 1978MS

Tungsten hexacarbonyl (cr) + 31,3-Diazine (g) = C18H15N3O3W (g) + 3Carbon monoxide (g)

By formula: C6O6W (cr) + 3C4H4N2 (g) = C18H15N3O3W (g) + 3CO (g)

Quantity Value Units Method Reference Comment
Δr-54.7 ± 8.4kJ/molHFCAdedeji, Connor, et al., 1978MS

C10H5CrNO5 (cr) + Carbon monoxide (g) = Chromium hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5CrNO5 (cr) + CO (g) = C6CrO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr75. ± 6.kJ/molDSCDaamen, van der Poel, et al., 1979MS

C10H5MoNO5 (cr) + Carbon monoxide (g) = Molybdenum hexacarbonyl (g) + 1,3-Diazine (g)

By formula: C10H5MoNO5 (cr) + CO (g) = C6MoO6 (g) + C4H4N2 (g)

Quantity Value Units Method Reference Comment
Δr57. ± 3.kJ/molDSCDaamen, van der Poel, et al., 1979MS

Iron ion (1+) + 1,3-Diazine = (Iron ion (1+) • 1,3-Diazine)

By formula: Fe+ + C4H4N2 = (Fe+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr199. ± 7.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Chromium ion (1+) + 1,3-Diazine = (Chromium ion (1+) • 1,3-Diazine)

By formula: Cr+ + C4H4N2 = (Cr+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr177. ± 6.3kJ/molCIDTAmunugama and Rodgers, 2001RCD

Titanium ion (1+) + 1,3-Diazine = (Titanium ion (1+) • 1,3-Diazine)

By formula: Ti+ + C4H4N2 = (Ti+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr214. ± 10.kJ/molCIDTAmunugama and Rodgers, 2001RCD

Manganese ion (1+) + 1,3-Diazine = (Manganese ion (1+) • 1,3-Diazine)

By formula: Mn+ + C4H4N2 = (Mn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr159. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

Scandium ion (1+) + 1,3-Diazine = (Scandium ion (1+) • 1,3-Diazine)

By formula: Sc+ + C4H4N2 = (Sc+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr214. ± 9.2kJ/molCIDTAmunugama and Rodgers, 2001RCD

Magnesium ion (1+) + 1,3-Diazine = (Magnesium ion (1+) • 1,3-Diazine)

By formula: Mg+ + C4H4N2 = (Mg+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr174. ± 5.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Vanadium ion (1+) + 1,3-Diazine = (Vanadium ion (1+) • 1,3-Diazine)

By formula: V+ + C4H4N2 = (V+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr204. ± 7.1kJ/molCIDTAmunugama and Rodgers, 2001RCD

Nickel ion (1+) + 1,3-Diazine = (Nickel ion (1+) • 1,3-Diazine)

By formula: Ni+ + C4H4N2 = (Ni+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr244. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

Aluminum ion (1+) + 1,3-Diazine = (Aluminum ion (1+) • 1,3-Diazine)

By formula: Al+ + C4H4N2 = (Al+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr159. ± 5.9kJ/molCIDTAmunugama and Rodgers, 2001RCD

Zinc ion (1+) + 1,3-Diazine = (Zinc ion (1+) • 1,3-Diazine)

By formula: Zn+ + C4H4N2 = (Zn+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr208. ± 7.5kJ/molCIDTAmunugama and Rodgers, 2001RCD

Cobalt ion (1+) + 1,3-Diazine = (Cobalt ion (1+) • 1,3-Diazine)

By formula: Co+ + C4H4N2 = (Co+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr245. ± 13.kJ/molCIDTAmunugama and Rodgers, 2001RCD

Copper ion (1+) + 1,3-Diazine = (Copper ion (1+) • 1,3-Diazine)

By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr249. ± 9.6kJ/molCIDTAmunugama and Rodgers, 2001RCD

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to C4H4N2+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)9.33 ± 0.07eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)885.8kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity855.7kJ/molN/AHunter and Lias, 1998HL

Electron affinity determinations

EA (eV) Method Reference Comment
>-0.24999ETSNenner and Schultz, 1975Pyrimidine. EA estimated as 0 eV, based on soln phase electrochemical correlations. G3MP2B3 calculations put EA at -4 kcal/mol; B

Ionization energy determinations

IE (eV) Method Reference Comment
9.1PEPiancastelli, Keller, et al., 1983LBLHLM
9.23PEGleiter, Heilbronner, et al., 1972LLK
9.32 ± 0.01PEAsbrink, Fridh, et al., 1972LLK
9.42PEDewar and Worley, 1969RDSH
9.35 ± 0.01PIYencha and El-Sayed, 1968RDSH
9.73 ± 0.03PEHush and Cheung, 1975Vertical value; LLK
9.73PESuffolk, 1974Vertical value; LLK
9.73PEGleiter, Heilbronner, et al., 1970Vertical value; RDSH

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C3H2N+15.01 ± 0.10?EIMomigny, Urbain, et al., 1965RDSH
C3H3N+12.87 ± 0.10HCNEIMomigny, Urbain, et al., 1965RDSH
C4H3N2+13.01 ± 0.10HEIMomigny, Urbain, et al., 1965RDSH

De-protonation reactions

C4H3N2- + Hydrogen cation = 1,3-Diazine

By formula: C4H3N2- + H+ = C4H4N2

Quantity Value Units Method Reference Comment
Δr1612. ± 10.kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B
Quantity Value Units Method Reference Comment
Δr1576.5 ± 2.9kJ/molN/AWren, Vogelhuber, et al., 2012gas phase; B
Δr1577. ± 8.4kJ/molTDEqMeot-ner and Kafafi, 1988gas phase; Acid: pyrimidine. Anchored to 88MEO scale, not "87 acidity scale; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-IW-3052
NIST MS number 231129

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Bredereck, Gompper, et al., 1957
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 14
Instrument Spectrophotometer SF-16
Melting point 22
Boiling point 123.8

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryOV-101110.744.Golovnya, Kuz'menko, et al., 2000He; Phase thickness: 0.4 μm
CapillaryOV-101110.744.Zhuravleva, 200050. m/0.3 mm/0.4 μm, He
CapillaryOV-101110.744.Golovnya, Kuz'menko, et al., 199950. m/0.3 mm/0.4 μm, He

Kovats' RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
PackedOV-1702.Yamaji, Kimura, et al., 1978Gas Chrom Q; Column length: 1. m; Program: not specified

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedPEG-2000150.1303.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.1308.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.1318.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-1718.4Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C
PackedSE-30728.Peng, Ding, et al., 1988He, Supelcoport and Chromosorb, 40. C @ 4. min, 10. K/min, 250. C @ 60. min; Column length: 3.05 m

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1257.Peng, Yang, et al., 1991Program: not specified
CapillaryDB-Wax1276.Peng, Yang, et al., 1991Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Nabavian, Sabbah, et al., 1977
Nabavian, P.M.; Sabbah, R.; Chastel, R.; Laffitte, M., Thermodynamique de composes azotes. II. Etude thermochimique des acides aminobenzoiques, de la pyrimidine, de l'uracile et de la thymine., J. Chim. Phys., 1977, 74, 115-126. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Tjebbes, 1962
Tjebbes, J., The heats of combustion and formation of the three diazines and their resonance energies, Acta Chem. Scand., 1962, 16, 916-921. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Wovkulich and Atwood, 1980
Wovkulich, M.J.; Atwood, J.D., J. Organometal. Chem., 1980, 184, 77. [all data]

Dennenberg and Darensbourg, 1972
Dennenberg, R.J.; Darensbourg, D.J., Inorg. Chem., 1972, 11, 72. [all data]

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Nakashima and Adamson, 1982
Nakashima, M.; Adamson, A.W., J. Phys. Chem., 1982, 86, 2905. [all data]

Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A., Carbon Acidities of Aromatic Compounds, J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003 . [all data]

Wren, Vogelhuber, et al., 2012
Wren, S.W.; Vogelhuber, K.M.; Garver, J.M.; Kato, S.; Sheps, L.; Bierbaum, V.M.; Lineberger, W.C., C-H Bond Strengths and Acidities in Aromatic Systems: Effects of Nitrogen Incorporation in Mono-, Di-, and Triazines, J. Am. Chem. Soc., 2012, 134, 15, 6584-6595, https://doi.org/10.1021/ja209566q . [all data]

Gonzalez, Zhang, et al., 1988
Gonzalez, A.A.; Zhang, K.; Nolan, S.P.; Lopez de la Vega, R.; Mukerjee, S.L.; Hoff, C.D., Organometallics, 1988, 7, 2429. [all data]

Adedeji, Connor, et al., 1978
Adedeji, F.A.; Connor, J.A.; Demain, C.P.; Martinho Simões, J.A.; Skinner, H.A.; Zafarani- Moattar, M.T., J. Organometal. Chem., 1978, 149, 333. [all data]

Nolan, Hoff, et al., 1985
Nolan, S.P.; Hoff, C.D.; Landrum, J.T., J. Organometal. Chem., 1985, 282, 357. [all data]

Le Barbu, Schiedt, et al., 2002
Le Barbu, K.; Schiedt, J.; Weinkauf, R.; Schlag, E.W.; Nilles, J.M.; Xu, S.J.; Thomas, O.C.; Bowen, K.H., Microsolvation of small anions by aromatic molecules: An exploratory study, J. Chem. Phys., 2002, 116, 22, 9663-9671, https://doi.org/10.1063/1.1475750 . [all data]

Mukerjee, Lang, et al., 1992
Mukerjee, S.L.; Lang, R.F.; Ju, T.; Kiss, G.; Hoff, C.D.; Nolan, S.P., Inorg. Chem., 1992, 31, 4885. [all data]

Partenheimer and Durham, 1974
Partenheimer, W.; Durham, B., J. Am. Chem. Soc., 1974, 96, 3800. [all data]

Daamen, van der Poel, et al., 1979
Daamen, H.; van der Poel, H.; Stufkens, D.J.; Oskam, A., Thermochim. Acta, 1979, 34, 69. [all data]

Meester, Vriends, et al., 1976
Meester, M.A.M.; Vriends, R.C.J.; Stufkens, D.J.; Vrieze, K., Inorg. Chim. Acta, 1976, 19, 95. [all data]

Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S., Polyhedron, 1988, 7, 1619. [all data]

Zhang, Gonzalez, et al., 1991
Zhang, K.; Gonzalez, A.A.; Murkerjee, S.L.; Chou, S.-J.; Hoff, C.D.; Kubat- Martin, K.A.; Barnhart, D.; Kubas, G.J., J. Am. Chem. Soc., 1991, 113, 9170. [all data]

Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T., Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory, J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Nenner and Schultz, 1975
Nenner, I.; Schultz, G.J., Temporary negative ions and electron affinities of benzene and N-heterocyclic molecules: Pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine, J. Chem. Phys., 1975, 62, 1747. [all data]

Piancastelli, Keller, et al., 1983
Piancastelli, M.N.; Keller, P.R.; Taylor, J.W.; Grimm, F.A.; Carlson, T.A., Angular distribution parameter as a function of photon energy for some mono- and diazabenzenes and its use for orbital assignment, J. Am. Chem. Soc., 1983, 105, 4235. [all data]

Gleiter, Heilbronner, et al., 1972
Gleiter, R.; Heilbronner, E.; Hornung, V., Photoelectron spectra of azabenzenes azanaphthalenes: I. Pyridine, diazines s-triazine and s-tetrazine, Helv. Chim. Acta, 1972, 55, 255. [all data]

Asbrink, Fridh, et al., 1972
Asbrink, L.; Fridh, C.; Jonsson, B.O.; Lindholm, E., Rydberg series in small molecules. XVI. Photoelectron, UV, mass and electron impact spectra of pyrimidine, Int. J. Mass Spectrom. Ion Phys., 1972, 8, 215. [all data]

Dewar and Worley, 1969
Dewar, M.J.S.; Worley, S.D., Photoelectron spectra of molecules. II.The ionization potentials of azabenzenes and azanaphthalenes, J. Chem. Phys., 1969, 51, 263. [all data]

Yencha and El-Sayed, 1968
Yencha, A.J.; El-Sayed, M.A., Lowest ionization potentials of some nitrogen heterocyclics, J. Chem. Phys., 1968, 48, 3469. [all data]

Hush and Cheung, 1975
Hush, N.S.; Cheung, A.S., Ionization potentials and donor properties of nucleic acid bases and related compounds, Chem. Phys. Lett., 1975, 34, 11. [all data]

Suffolk, 1974
Suffolk, R.J., The photoelectron spectra of the perfluorodiazines, J. Electron Spectrosc. Relat. Phenom., 1974, 3, 53. [all data]

Gleiter, Heilbronner, et al., 1970
Gleiter, R.; Heilbronner, E.; Hornung, V., Lone pair interaction in pyridazine, pyrimidine, and pyrazine, Angew. Chem. Int. Ed. Engl., 1970, 9, 901. [all data]

Momigny, Urbain, et al., 1965
Momigny, J.; Urbain, J.; Wankenne, H., Les effets de l'impact electronique sur la pyridine et les diazines isomeres, Bull. Soc. Roy. Sci. Liege, 1965, 34, 337. [all data]

Bredereck, Gompper, et al., 1957
Bredereck, H.; Gompper, R.; Morlock, G., Eine neue pyrimidin-synthese, Chem. Ber., 1957, 90, 942-952. [all data]

Golovnya, Kuz'menko, et al., 2000
Golovnya, R.V.; Kuz'menko, T.E.; Krikunova, N.I., The influence of alkyl substituents on the chromatographic indicator of self-association of N-containing heterocyclic compounds, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 321-324, https://doi.org/10.1007/BF02494681 . [all data]

Zhuravleva, 2000
Zhuravleva, I.L., Evaluation of the polarity and boiling points of nitrogen-containing heterocyclic compounds by gas chromatography, Russ. Chem. Bull. (Engl. Transl.), 2000, 49, 2, 325-328, https://doi.org/10.1007/BF02494682 . [all data]

Golovnya, Kuz'menko, et al., 1999
Golovnya, R.V.; Kuz'menko, T.E.; Zhuravleva, I.L., Gas chromatographic indicator of the ability of five- and six-membered heterocyclic nitrogen-containing compounds for self-association in pure liquids, Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 4, 726-729, https://doi.org/10.1007/BF02496256 . [all data]

Yamaji, Kimura, et al., 1978
Yamaji, A.; Kimura, S.; Kawasaki, H.; Yuki, H., Gas chromatographic analysis of pyrimidine and purine bases by retention indices, Yakugaku Zasshi, 1978, 98, 1, 1536-1541. [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C., Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns, J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8 . [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References