Methane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-74.87kJ/molReviewChase, 1998Data last reviewed in March, 1961
Δfgas-74.6 ± 0.3kJ/molReviewManion, 2002adopted recommendation of Gurvich, Veyts, et al., 1991; DRB
Δfgas-74.5 ± 0.4kJ/molCcbPittam and Pilcher, 1972ALS
Δfgas-74.85 ± 0.31kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; ALS
Δfgas-73.4 ± 1.1kJ/molCcbRoth and Banse, 1932Reanalyzed by Cox and Pilcher, 1970, Original value = -75.19 kJ/mol; ALS
Quantity Value Units Method Reference Comment
Δcgas-890.7 ± 0.4kJ/molCcbPittam and Pilcher, 1972Corresponding Δfgas = -74.48 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-890.35 ± 0.30kJ/molCcbProsen and Rossini, 1945Hf derived from Heat of Hydrogenation; Corresponding Δfgas = -74.822 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-891.8 ± 1.1kJ/molCcbRoth and Banse, 1932Reanalyzed by Cox and Pilcher, 1970, Original value = -887.3 ± 1.0 kJ/mol; Corresponding Δfgas = -73.39 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-890.16 ± 0.30kJ/molCmRossini, 1931Corresponding Δfgas = -75.010 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas188.66 ± 0.42J/mol*KN/AColwell J.H., 1963The calorimetric value is significantly higher than the statistically calculated entropy, 186.26 J/mol*K, which remains the best value for use in thermodynamic calculations [ Vogt G.J., 1976, Friend D.G., 1989, Gurvich, Veyts, et al., 1989]. Earlier the value of 185.3 J/mol*K was calculated from experimental data [ Giauque W.F., 1931]. The value of S(298.15 K)=185.94 J/mol*K was obtained by high accuracy ab initio calculation [ East A.L.L., 1997].; GT
Quantity Value Units Method Reference Comment
gas,1 bar186.25J/mol*KReviewChase, 1998Data last reviewed in March, 1961

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.92 ± 0.25279.Halford J.O., 1957GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
33.28100.Gurvich, Veyts, et al., 1989p=1 bar. Because of more precise method of calculation, the recommended values are more accurate, especially at high temperatures, than those obtained by [ McDowell R.S., 1963] and often regarded as reference data [ Friend D.G., 1989].; GT
33.51200.
35.69298.15
35.76300.
40.63400.
46.63500.
52.74600.
58.60700.
64.08800.
69.14900.
73.751000.
77.921100.
81.681200.
85.071300.
88.111400.
90.861500.
93.331600.
95.581700.
97.631800.
99.511900.
101.242000.
102.832100.
104.312200.
105.702300.
107.002400.
108.232500.
109.392600.
110.502700.
111.562800.
112.572900.
113.553000.

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1300.1300. to 6000.
A -0.70302985.81217
B 108.477311.26467
C -42.52157-2.114146
D 5.8627880.138190
E 0.678565-26.42221
F -76.84376-153.5327
G 158.7163224.4143
H -74.87310-74.87310
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in March, 1961 Data last reviewed in March, 1961

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil111. ± 2.KAVGN/AAverage of 13 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus85.7KN/AStreng, 1971Uncertainty assigned by TRC = 0.2 K; TRC
Tfus90.6KN/AVan't Zelfde, Omar, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC
Tfus91.2KN/ATimmermans, 1935Uncertainty assigned by TRC = 2. K; TRC
Tfus90.6KN/AClusius, 1929Uncertainty assigned by TRC = 0.2 K; TRC
Tfus90.5KN/AEucken and Karwat, 1924Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Ttriple90.67 ± 0.03KAVGN/AAverage of 25 out of 32 values; Individual data points
Quantity Value Units Method Reference Comment
Ptriple0.1169 ± 0.0006barAVGN/AAverage of 20 out of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Tc190.6 ± 0.3KAVGN/AAverage of 19 out of 23 values; Individual data points
Quantity Value Units Method Reference Comment
Pc46.1 ± 0.3barAVGN/AAverage of 16 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.09860l/molN/AAmbrose and Tsonopoulos, 1995 
Vc0.09852l/molN/AYounglove and Ely, 1987TRC
Vc0.100l/molN/ATerry, Lynch, et al., 1969Uncertainty assigned by TRC = 0.001 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc10.1 ± 0.2mol/lAVGN/AAverage of 16 out of 17 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
8.51999.54N/AVogt and Pitzer, 1976P = 2.81 kPa Data from Frank and Clusius, 1937 and 39FRA/CLU.; DH
8.6101.N/AStock, Henning, et al., 2006Based on data from 92. to 110. K. See also Boublik, Fried, et al., 1984.; AC
8.6105.AStephenson and Malanowski, 1987Based on data from 90. to 120. K.; AC
8.4134.AStephenson and Malanowski, 1987Based on data from 115. to 149. K.; AC
8.7174.AStephenson and Malanowski, 1987Based on data from 148. to 189. K.; AC
8.17111.7N/AMajer and Svoboda, 1985 
8.6112.N/AOtt, Goates, et al., 1972Based on data from 91. to 127. K. See also Boublik, Fried, et al., 1984.; AC
8.5175.N/AOtt, Goates, et al., 1972Based on data from 91. to 190. K.; AC
8.1137.N/AReid, 1972AC
8.6175.N/AAmbrose, Counsell, et al., 1970Based on data from 100. to 190. K.; AC
8.2112.CHestermans and White, 1961AC
7.5130.CHestermans and White, 1961AC
5.9160.CHestermans and White, 1961AC
4.0180.CHestermans and White, 1961AC
8.5149.N/AHestermans and White, 1961Based on data from 109. to 189. K.; AC
8.5 ± 0.199.N/AFrank and Clusius, 1939AC

Enthalpy of vaporization

ΔvapH = A exp(-αTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) 112. to 180.
A (kJ/mol) 10.11
α -0.22
β 0.388
Tc (K) 190.6
ReferenceMajer and Svoboda, 1985

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
85.5899.54Vogt and Pitzer, 1976P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
90.99 to 189.993.9895443.028-0.49Prydz and Goodwin, 1972Coefficents calculated by NIST from author's data.
96.89 to 110.192.00253125.819-48.823Regnier, 1972Coefficents calculated by NIST from author's data.
93.04 to 107.843.80235403.106-5.479Cutler and Morrison, 1965Coefficents calculated by NIST from author's data.
110.00 to 190.54.22061516.68911.223Hestermans and White, 1961Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
9.772.N/AStephenson and Malanowski, 1987Based on data from 53. to 91. K.; AC
9.272.N/ABondi, 1963Based on data from 54. to 90. K. See also Armstrong, Brickwedde, et al., 1955.; AC
10.084.N/AJones, 1960Based on data from 79. to 89. K.; AC
9.763.A,MSTickner and Lossing, 1951Based on data from 48. to 78. K.; AC
9.6277.AStull, 1947Based on data from 67. to 88. K.; AC

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
0.0935520.53crystaline, IIcrystaline, IVogt and Pitzer, 1976Lambda transition.; DH
0.939290.67crystaline, IliquidVogt and Pitzer, 1976DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
4.55720.53crystaline, IIcrystaline, IVogt and Pitzer, 1976Lambda; DH
10.3690.67crystaline, IliquidVogt and Pitzer, 1976DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
MS - José A. Martinho Simões
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr1743.6 ± 2.9kJ/molD-EAEllison, Engelking, et al., 1978gas phase; B
Δr1749. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr>1691.1 ± 0.42kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1735.5kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B
Quantity Value Units Method Reference Comment
Δr1709.8 ± 3.3kJ/molH-TSEllison, Engelking, et al., 1978gas phase; B
Δr1715. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B
Δr>1657.3kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1704.1kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B

(CH5+ • Methane) + Methane = (CH5+ • 2Methane)

By formula: (CH5+ • CH4) + CH4 = (CH5+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr22. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr25.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr6.3kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr102.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr30.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

CH5+ + Methane = (CH5+ • Methane)

By formula: CH5+ + CH4 = (CH5+ • CH4)

Quantity Value Units Method Reference Comment
Δr29. ± 1.kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr31.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr17.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr92.5J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr87.0J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M
Δr51.9J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

C2H5+ + Methane = (C2H5+ • Methane)

By formula: C2H5+ + CH4 = (C2H5+ • CH4)

Quantity Value Units Method Reference Comment
Δr23.0kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr28.kJ/molPHPMSHiroka and Kebarle, 1975gas phase; M
Δr10.kJ/molHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr92.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr97.9J/mol*KPHPMSHiroka and Kebarle, 1975gas phase; M
Δr36.J/mol*KHPMSField and Beggs, 1971gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • 2Methane) + Methane = (Cobalt ion (1+) • 3Methane)

By formula: (Co+ • 2CH4) + CH4 = (Co+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr46.kJ/molSIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
41. (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
3.477.SIDTKemper, Bushnell, et al., 1993gas phase; Entropy change calculated or estimated; M

Cobalt ion (1+) + Methane = (Cobalt ion (1+) • Methane)

By formula: Co+ + CH4 = (Co+ • CH4)

Quantity Value Units Method Reference Comment
Δr82.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
90.0 (+6.7,-0.) CIDHaynes and Armentrout, 1996gas phase; guided ion beam CID; M
90.0 (+5.9,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
94. (+2.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(530 K); M

(Cobalt ion (1+) • Methane) + Hydrogen = (Cobalt ion (1+) • Hydrogen • Methane)

By formula: (Co+ • CH4) + H2 = (Co+ • H2 • CH4)

Quantity Value Units Method Reference Comment
Δr95.8J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
73. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

(Cobalt ion (1+) • Hydrogen) + Methane = (Cobalt ion (1+) • Methane • Hydrogen)

By formula: (Co+ • H2) + CH4 = (Co+ • CH4 • H2)

Quantity Value Units Method Reference Comment
Δr91.2J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
94.6 (+5.0,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+)2H2, ΔrS(440 K); Kemper, Bushnell, et al., 1993, 2; M

Manganese, pentacarbonylmethyl- (g) = C5MnO5 (g) + Methane (g)

By formula: C6H3MnO5 (g) = C5MnO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr192. ± 15.kJ/molPIMSMartinho Simões and Beauchamp, 1990The reaction enthalpy was derived from the appearance energy of Mn(CO)5(+), 940.7 ± 4.8 kJ/mol, using Mn(CO)5(Me) as the neutral precursor, together with the adiabatic ionization energy of Mn(CO)5 radical, 749. ± 14. kJ/mol Martinho Simões and Beauchamp, 1990; MS

(Cobalt ion (1+) • Methane) + Methane = (Cobalt ion (1+) • 2Methane)

By formula: (Co+ • CH4) + CH4 = (Co+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr109.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
95.8 (+5.0,-0.) CIDArmentrout and Kickel, 1994gas phase; guided ion beam CID; M
104. (+4.2,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(500 K); M

(CH5+ • 2Methane) + Methane = (CH5+ • 3Methane)

By formula: (CH5+ • 2CH4) + CH4 = (CH5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr13.1 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr17.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr93.7J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr109.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

(CH5+ • 3Methane) + Methane = (CH5+ • 4Methane)

By formula: (CH5+ • 3CH4) + CH4 = (CH5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr12.6 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr16.kJ/molPHPMSHiraoka and Kebarle, 1975gas phase; M
Quantity Value Units Method Reference Comment
Δr99.2J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M
Δr111.J/mol*KPHPMSHiraoka and Kebarle, 1975gas phase; M

Hydrogen bromide (g) + CH3BrMg (solution) = Methane (solution) + Br2Mg (solution)

By formula: HBr (g) + CH3BrMg (solution) = CH4 (solution) + Br2Mg (solution)

Quantity Value Units Method Reference Comment
Δr-274.5 ± 2.2kJ/molRSCHolm, 1981solvent: Diethyl ether; The enthalpy of formation was calculated using the assumptions and the auxiliary data in Holm, 1981, except for the organic compound, whose enthalpy of formation was quoted from Pedley, 1994; MS

(Cobalt ion (1+) • Methane) + Ethane = (Cobalt ion (1+) • Ethane • Methane)

By formula: (Co+ • CH4) + C2H6 = (Co+ • C2H6 • CH4)

Quantity Value Units Method Reference Comment
Δr108.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
119. (+5.4,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; switching reaction(Co+).2CH4, ΔrS(480 K); M

C63H91CoN13O14P (solution) = Cyanocobalamin (solution) + Methane (solution)

By formula: C63H91CoN13O14P (solution) = C63H88CoN14O14P (solution) + CH4 (solution)

Quantity Value Units Method Reference Comment
Δr155. ± 13.kJ/molKinSMartin and Finke, 1990solvent: Ethylene glycol; Please also see Martin and Finke, 1992. The reaction enthalpy relies on 172. ± 13. kJ/mol for the reaction activation enthalpy. The reaction refers to "base-on" cobalamine.; MS

C3H7+ + Methane = (C3H7+ • Methane)

By formula: C3H7+ + CH4 = (C3H7+ • CH4)

Quantity Value Units Method Reference Comment
Δr10.8kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr14.kJ/molPHPMSHiraoka and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr72.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M
Δr84.J/mol*KPHPMSHiraoka and Kebarle, 1976gas phase; M

Hydrogen iodide + Methane, iodo- = Methane + Iodine

By formula: HI + CH3I = CH4 + I2

Quantity Value Units Method Reference Comment
Δr-52.55 ± 0.54kJ/molEqkGolden, Walsh, et al., 1965gas phase; ALS
Δr-53.0 ± 0.2kJ/molEqkGoy and Pritchard, 1965gas phase; ALS
Δr-46.2 ± 5.6kJ/molCmNichol and Ubbelohde, 1952gas phase; ALS

(C2H5+ • 9Methane) + Methane = (C2H5+ • 10Methane)

By formula: (C2H5+ • 9CH4) + CH4 = (C2H5+ • 10CH4)

Quantity Value Units Method Reference Comment
Δr7.99kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C3H7+ • 7Methane) + Methane = (C3H7+ • 8Methane)

By formula: (C3H7+ • 7CH4) + CH4 = (C3H7+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.28kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr92.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(C4H9+ • 8Methane) + Methane = (C4H9+ • 9Methane)

By formula: (C4H9+ • 8CH4) + CH4 = (C4H9+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr7.78kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka, Mori, et al., 1993gas phase; Entropy change calculated or estimated; M

(CH5+ • 8Methane) + Methane = (CH5+ • 9Methane)

By formula: (CH5+ • 8CH4) + CH4 = (CH5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr6.44kJ/molPHPMSHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr84.J/mol*KN/AHiraoka and Mori, 1989gas phase; Entropy change calculated or estimated; M

(Cobalt ion (1+) • Water) + Methane = (Cobalt ion (1+) • Methane • Water)

By formula: (Co+ • H2O) + CH4 = (Co+ • CH4 • H2O)

Quantity Value Units Method Reference Comment
Δr113.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
108. (+3.,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(525 K); M

(Hydronium cation • Methane) + Methane = (Hydronium cation • 2Methane)

By formula: (H3O+ • CH4) + CH4 = (H3O+ • 2CH4)

Quantity Value Units Method Reference Comment
Δr14.kJ/molHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr34.J/mol*KHPMSBennet and Field, 1972gas phase; Entropy change is questionable; M

(Cobalt ion (1+) • Ethane) + Methane = (Cobalt ion (1+) • Methane • Ethane)

By formula: (Co+ • C2H6) + CH4 = (Co+ • CH4 • C2H6)

Quantity Value Units Method Reference Comment
Δr110.J/mol*KSIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

Enthalpy of reaction

ΔrH° (kJ/mol) T (K) Method Reference Comment
102. (+4.6,-0.) SIDTKemper, Bushnell, et al., 1993gas phase; ΔrS(490 K); M

NH4+ + Methane = (NH4+ • Methane)

By formula: H4N+ + CH4 = (H4N+ • CH4)

Quantity Value Units Method Reference Comment
Δr15.kJ/molHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M
Quantity Value Units Method Reference Comment
Δr64.9J/mol*KHPMSBennet and Field, 1972, 2gas phase; Entropy change is questionable; M

Hydrogen bromide (g) + methyllithium (cr) = Methane (g) + Lithium bromide (cr)

By formula: HBr (g) + CH3Li (cr) = CH4 (g) + BrLi (cr)

Quantity Value Units Method Reference Comment
Δr-317.3 ± 2.0kJ/molRSCHolm, 1974Please also see Pedley and Rylance, 1977. The reaction enthalpy was quoted from Pedley and Rylance, 1977. See Liebman, Martinho Simões, et al., 1995 for comments; MS

2Hydrogen + Methylene chloride = Methane + 2Hydrogen chloride

By formula: 2H2 + CH2Cl2 = CH4 + 2HCl

Quantity Value Units Method Reference Comment
Δr-163.4 ± 1.3kJ/molChydLacher, Amador, et al., 1967gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -167.7 ± 1.3 kJ/mol; At 250 C; ALS

Dimethylzinc (l) + (Sulfuric Acid • 100Water) (solution) = 2Methane (g) + (zinc sulphate • 100Water) (solution)

By formula: C2H6Zn (l) + (H2O4S • 100H2O) (solution) = 2CH4 (g) + (O4SZn • 100H2O) (solution)

Quantity Value Units Method Reference Comment
Δr-341.8 ± 0.8kJ/molRSCCarson, Hartley, et al., 1949Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970, 2.; MS

(CH5+ • 4Methane) + Methane = (CH5+ • 5Methane)

By formula: (CH5+ • 4CH4) + CH4 = (CH5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr11.7 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr104.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 5Methane) + Methane = (CH5+ • 6Methane)

By formula: (CH5+ • 5CH4) + CH4 = (CH5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr11.3 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr106.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 6Methane) + Methane = (CH5+ • 7Methane)

By formula: (CH5+ • 6CH4) + CH4 = (CH5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr11.2 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr111.J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(CH5+ • 7Methane) + Methane = (CH5+ • 8Methane)

By formula: (CH5+ • 7CH4) + CH4 = (CH5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.5 ± 0.8kJ/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr90.4J/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(C2H5+ • 2Methane) + Methane = (C2H5+ • 3Methane)

By formula: (C2H5+ • 2CH4) + CH4 = (C2H5+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.54kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr74.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 3Methane) + Methane = (C2H5+ • 4Methane)

By formula: (C2H5+ • 3CH4) + CH4 = (C2H5+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 4Methane) + Methane = (C2H5+ • 5Methane)

By formula: (C2H5+ • 4CH4) + CH4 = (C2H5+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.29kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr79.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 5Methane) + Methane = (C2H5+ • 6Methane)

By formula: (C2H5+ • 5CH4) + CH4 = (C2H5+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 6Methane) + Methane = (C2H5+ • 7Methane)

By formula: (C2H5+ • 6CH4) + CH4 = (C2H5+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr8.91kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr86.6J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 7Methane) + Methane = (C2H5+ • 8Methane)

By formula: (C2H5+ • 7CH4) + CH4 = (C2H5+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.79kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C2H5+ • 8Methane) + Methane = (C2H5+ • 9Methane)

By formula: (C2H5+ • 8CH4) + CH4 = (C2H5+ • 9CH4)

Quantity Value Units Method Reference Comment
Δr8.70kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 2Methane) + Methane = (C3H7+ • 3Methane)

By formula: (C3H7+ • 2CH4) + CH4 = (C3H7+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.46kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr77.0J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 3Methane) + Methane = (C3H7+ • 4Methane)

By formula: (C3H7+ • 3CH4) + CH4 = (C3H7+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr79.5J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 4Methane) + Methane = (C3H7+ • 5Methane)

By formula: (C3H7+ • 4CH4) + CH4 = (C3H7+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.20kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 5Methane) + Methane = (C3H7+ • 6Methane)

By formula: (C3H7+ • 5CH4) + CH4 = (C3H7+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr9.16kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr87.9J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C3H7+ • 6Methane) + Methane = (C3H7+ • 7Methane)

By formula: (C3H7+ • 6CH4) + CH4 = (C3H7+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr9.04kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr91.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 2Methane) + Methane = (C4H9+ • 3Methane)

By formula: (C4H9+ • 2CH4) + CH4 = (C4H9+ • 3CH4)

Quantity Value Units Method Reference Comment
Δr9.92kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 3Methane) + Methane = (C4H9+ • 4Methane)

By formula: (C4H9+ • 3CH4) + CH4 = (C4H9+ • 4CH4)

Quantity Value Units Method Reference Comment
Δr9.87kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr83.7J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 4Methane) + Methane = (C4H9+ • 5Methane)

By formula: (C4H9+ • 4CH4) + CH4 = (C4H9+ • 5CH4)

Quantity Value Units Method Reference Comment
Δr9.25kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr81.2J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 5Methane) + Methane = (C4H9+ • 6Methane)

By formula: (C4H9+ • 5CH4) + CH4 = (C4H9+ • 6CH4)

Quantity Value Units Method Reference Comment
Δr8.74kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr80.8J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 6Methane) + Methane = (C4H9+ • 7Methane)

By formula: (C4H9+ • 6CH4) + CH4 = (C4H9+ • 7CH4)

Quantity Value Units Method Reference Comment
Δr8.58kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr82.4J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

(C4H9+ • 7Methane) + Methane = (C4H9+ • 8Methane)

By formula: (C4H9+ • 7CH4) + CH4 = (C4H9+ • 8CH4)

Quantity Value Units Method Reference Comment
Δr8.33kJ/molPHPMSHiraoka, Mori, et al., 1993gas phase; M
Quantity Value Units Method Reference Comment
Δr84.1J/mol*KPHPMSHiraoka, Mori, et al., 1993gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00141600.LN/AThe parameterization given by missing citation (parameters A, B, C) doesn't fit the data in the same paper for this substance. Therefore the parameteriztaion of the solubility data (X1) was recalculated.
0.00131900.QN/AOnly the tabulated data between T = 273. K and T = 303. K from missing citation was used to derive kH and -Δ kH/R. Above T = 303. K the tabulated data could not be parameterized by equation (reference missing) very well. The partial pressure of water vapor (needed to convert some Henry's law constants) was calculated using the formula given by missing citation. The quantities A and α from missing citation were assumed to be identical.
0.0015 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0013 LN/A 
0.00131800.XN/A 
0.00141700.LN/A 
0.0015 VN/A 
0.00097 CN/A 
0.0014 RN/A 
0.0092 VN/A 

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
B - John E. Bartmess
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

View reactions leading to CH4+ (ion structure unspecified)

Quantity Value Units Method Reference Comment
IE (evaluated)12.61 ± 0.01eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)543.5kJ/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity520.6kJ/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
12.61 ± 0.01PIBerkowitz, Greene, et al., 1987LBLHLM
12.6 ± 0.4EIChatham, Hils, et al., 1984LBLHLM
12.63 ± 0.02EIPlessis, Marmet, et al., 1983LBLHLM
13.6PEKimura, Katsumata, et al., 1981LLK
12.75 ± 0.02PEBieri, Burger, et al., 1977LLK
12.82 ± 0.02EISelim and El-Kholy, 1975LLK
12.6PEDebies and Rabalais, 1975LLK
12.6PIRabalais, Debies, et al., 1974LLK
12.8EIMorrison and Traeger, 1973LLK
12.64PEPotts and Price, 1972LLK
12.94 ± 0.04EIFinney and Harrison, 1972LLK
12.51PEBergmark, Rabalais, et al., 1972LLK
~12.51PERabalais, Bergmark, et al., 1971LLK
≤12.615 ± 0.010PIChupka and Berkowitz, 1971LLK
12.78PEPullen, Carlson, et al., 1970RDSH
12.75PEBrundle, Robin, et al., 1970RDSH
≤12.70EILossing and Semeluk, 1969RDSH
12.99 ± 0.05EIWilliams and Hamill, 1968RDSH
12.75 ± 0.05TEVillarejo, Stockbauer, et al., 1968RDSH
12.9CICermak, 1968RDSH
12.70PEBaker, Baker, et al., 1968RDSH
12.55 ± 0.05PIBrehm, 1966RDSH
12.704 ± 0.008PINicholson, 1965RDSH
12.71 ± 0.02PIDibeler, Krauss, et al., 1965RDSH
13.00 ± 0.02EIMelton and Hamill, 1964RDSH
13.6PEBieri and Asbrink, 1980Vertical value; LLK
13.6 ± 0.1PEBieri, Burger, et al., 1977Vertical value; LLK
13.60EIHarshbarger, Robin, et al., 1973Vertical value; LLK

Appearance energy determinations

Ion AE (eV) Other Products MethodReferenceComment
C+25. ± 2.?EIChatham, Hils, et al., 1984LBLHLM
C+19.56 ± 0.202H2EIPlessis, Marmet, et al., 1983LBLHLM
C+≤25.2?EIMorrison and Traeger, 1973LLK
CH+22.2 ± 0.4?EIChatham, Hils, et al., 1984LBLHLM
CH+19.11 ± 0.20H-+H2EIPlessis, Marmet, et al., 1983LBLHLM
CH+19.87 ± 0.20H+H2EIPlessis, Marmet, et al., 1983LBLHLM
CH+22.4H2+H?EIMorrison and Traeger, 1973LLK
CH2+15.1 ± 0.4H2EIChatham, Hils, et al., 1984LBLHLM
CH2+15.06 ± 0.02H2EIPlessis, Marmet, et al., 1983LBLHLM
CH2+15.16 ± 0.02H2PIMcCulloh and Dibeler, 1976T = 0K; LLK
CH2+15.3H2EIMorrison and Traeger, 1973LLK
CH2+15.19 ± 0.02H2PIChupka, 1968RDSH
CH2+15.16 ± 0.04H2PIDibeler, Krauss, et al., 1965RDSH
CH3+14.3 ± 0.4HEIChatham, Hils, et al., 1984LBLHLM
CH3+13.25 ± 0.08H-EIPlessis, Marmet, et al., 1983LBLHLM
CH3+14.01 ± 0.08HEIPlessis, Marmet, et al., 1983LBLHLM
CH3+14.30HPIPECOStockbauer, 1977LLK
CH3+14.324 ± 0.003HPIMcCulloh and Dibeler, 1976T = 0K; LLK
CH3+14.4HEIMorrison and Traeger, 1973LLK
CH3+14.30HEILossing and Semeluk, 1970RDSH
CH3+14.24 ± 0.05HEIWilliams and Hamill, 1968RDSH
CH3+13.50 ± 0.05H-PIChupka, 1968RDSH
CH3+14.320 ± 0.004HPIChupka, 1968RDSH
CH3+14.23 ± 0.05HPIBrehm, 1966RDSH
CH3+14.25 ± 0.02HPIDibeler, Krauss, et al., 1965RDSH
H+21.3 ± 0.3CH3EILocht, Olivier, et al., 1979LLK
H+24.0 ± 0.5CH3EIAppell and Kubach, 1971LLK

De-protonation reactions

CH3- + Hydrogen cation = Methane

By formula: CH3- + H+ = CH4

Quantity Value Units Method Reference Comment
Δr1743.6 ± 2.9kJ/molD-EAEllison, Engelking, et al., 1978gas phase; B
Δr1749. ± 15.kJ/molCIDTGraul and Squires, 1990gas phase; B
Δr>1691.1 ± 0.42kJ/molG+TSBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1735.5kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B
Quantity Value Units Method Reference Comment
Δr1709.8 ± 3.3kJ/molH-TSEllison, Engelking, et al., 1978gas phase; B
Δr1715. ± 15.kJ/molH-TSGraul and Squires, 1990gas phase; B
Δr>1657.3kJ/molIMRBBohme, Lee-Ruff, et al., 1972gas phase; B
Δr1704.1kJ/molN/ACheck, Faust, et al., 2001gas phase; FeBr3; ; ΔS(EA)=9.3; B

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY
NIST MS number 61313

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Vibrational and/or electronic energy levels

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Takehiko Shimanouchi

Symmetry:   Td     Symmetry Number σ = 12


 Sym.   No   Approximate   Selected Freq.  Infrared   Raman   Comments 
 Species   type of mode   Value   Rating   Value  Phase  Value  Phase

a1 1 Sym str 2917  A  ia 2917.0 gas
e 2 Deg deform 1534  A 1533 ia gas 1533.6 Observed through Coriolis interaction with ν4
f2 3 Deg str 3019  A 3018.9 gas 3019.5
f2 4 Deg deform 1306  C 1306.2 gas

Source: Shimanouchi, 1972

Notes

iaInactive
A0~1 cm-1 uncertainty
C3~6 cm-1 uncertainty

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Gurvich, Veyts, et al., 1991
Thermodynamic Properties of Individual Substances, 4th edition, Volume 2, Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.;, ed(s)., Hemisphere, New York, 1991. [all data]

Pittam and Pilcher, 1972
Pittam, D.A.; Pilcher, G., Measurements of heats of combustion by flame calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229. [all data]

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Roth and Banse, 1932
Roth, W.A.; Banse, H., Die verbrennungs- und bildungswarme von kohlenoxyd und methan, Arch. Eisenhutten., 1932, 6, 43-46. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Rossini, 1931
Rossini, F.D., The heats of combustion of methane and carbon monoxide, J. Res. NBS, 1931, 6, 37-49. [all data]

Colwell J.H., 1963
Colwell J.H., Thermodynamic properties of CH4 and CD4. Interpretation of the properties of solid, J. Chem. Phys., 1963, 39, 635-653. [all data]

Vogt G.J., 1976
Vogt G.J., Entropy and heat capacity of methane; spin-species conversion, J. Chem. Thermodyn., 1976, 8, 1011-1031. [all data]

Friend D.G., 1989
Friend D.G., Thermophysical properties of methane, J. Phys. Chem. Ref. Data, 1989, 18, 583-638. [all data]

Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B., Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]

Giauque W.F., 1931
Giauque W.F., The entropies of methane and ammonia, Phys. Rev., 1931, 38, 196-197. [all data]

East A.L.L., 1997
East A.L.L., Ab initio statistical thermodynamical models for the computation of third-law entropies, J. Chem. Phys., 1997, 106, 6655-6674. [all data]

Halford J.O., 1957
Halford J.O., Standard heat capacities of gaseous methanol, ethanol, methane and ethane at 279 K by thermal conductivity, J. Phys. Chem., 1957, 61, 1536-1539. [all data]

McDowell R.S., 1963
McDowell R.S., Thermodynamic functions of methane, J. Chem. Eng. Data, 1963, 8, 547-548. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Van't Zelfde, Omar, et al., 1968
Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z., Solid-liquid equilibrium diagram for the argon + methane system., Physica (Amsterdam), 1968, 38, 241-51. [all data]

Timmermans, 1935
Timmermans, J., Researches in Stoichiometry. I. The Heat of Fusion of Organic Compounds., Bull. Soc. Chim. Belg., 1935, 44, 17-40. [all data]

Clusius, 1929
Clusius, K., The specific heat of several condensed gases between 10deg. abs. and their triple point., Z. Phys. Chem., Abt. B, 1929, 3, 41. [all data]

Eucken and Karwat, 1924
Eucken, A.; Karwat, E., Determination of the heat content of several condensed gases, Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1924, 112, 467. [all data]

Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C., Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes, J. Chem. Eng. Data, 1995, 40, 531-546. [all data]

Younglove and Ely, 1987
Younglove, B.A.; Ely, J.F., Thermophysical Properties of Fluids II. Methane, Ethane, Propane, Isobutane, and Normal Butane, J. Phys. Chem. Ref. Data, 1987, 16, 577. [all data]

Terry, Lynch, et al., 1969
Terry, M.J.; Lynch, J.T.; Bunclark, M.; Mansell, K.R.; Staveley, L.A.K., The Densities of Liquid Argon, Krypton, Xenon, Oxygen, Nitrogen, Carbon Monoxide, Methane and Carbon Tetrafluoride Along the Orthobaric Liquid Curve, J. Chem. Thermodyn., 1969, 1, 413. [all data]

Vogt and Pitzer, 1976
Vogt, G.J.; Pitzer, K.S., Entropy and heat capacity of methane, spin-species conversion, J. Chem. Thermodynam., 1976, 8, 1011-1031. [all data]

Frank and Clusius, 1937
Frank, A.; Clusius, K., The entropy of methane, Z. Physik. Chem., 1937, B36, 291-300. [all data]

Stock, Henning, et al., 2006
Stock, Alfred; Henning, Fritz; Kuß, Ernst, Dampfdrucktafeln für Temperaturbestimmungen zwischen + 25° und - 185°, Ber. dtsch. Chem. Ges. A/B, 2006, 54, 5, 1119-1129, https://doi.org/10.1002/cber.19210540531 . [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Ott, Goates, et al., 1972
Ott, J. Bevan; Goates, J. Rex; Lamb, John D., Solid-liquid phase equilibria in water + ethylene glycol, The Journal of Chemical Thermodynamics, 1972, 4, 1, 123-126, https://doi.org/10.1016/S0021-9614(72)80015-6 . [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J., The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point, The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5 . [all data]

Hestermans and White, 1961
Hestermans, P.; White, David, THE VAPOR PRESSURE, HEAT OF VAPORIZATION AND HEAT CAPACITY OF METHANE FROM THE BOILING POINT TO THE CRITICAL TEMPERATURE, J. Phys. Chem., 1961, 65, 2, 362-365, https://doi.org/10.1021/j100820a044 . [all data]

Frank and Clusius, 1939
Frank, A.; Clusius, K., Z. Phys. Chem. Abt. B, 1939, 42, 395. [all data]

Prydz and Goodwin, 1972
Prydz, R.; Goodwin, R.D., Experimental Melting and Vapor Pressures of Methane, J. Chem. Thermodyn., 1972, 4, 1, 127-133, https://doi.org/10.1016/S0021-9614(72)80016-8 . [all data]

Regnier, 1972
Regnier, J., Tension de Vapeur de L'Ethane Entre 80 et 135 K, J. Chim. Phys., 1972, 69, 942-944. [all data]

Cutler and Morrison, 1965
Cutler, A.J.B.; Morrison, J.A., Excess Thermodynamic Functions for Liquid Mixtures of Methane+Propane, Trans. Faraday Soc., 1965, 61, 429-442, https://doi.org/10.1039/tf9656100429 . [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Armstrong, Brickwedde, et al., 1955
Armstrong, George T.; Brickwedde, F.G.; Scott, R.B., Vapor pressures of the methanes, J. RES. NATL. BUR. STAN., 1955, 55, 1, 39, https://doi.org/10.6028/jres.055.005 . [all data]

Jones, 1960
Jones, A.H., Sublimation Pressure Data for Organic Compounds., J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019 . [all data]

Tickner and Lossing, 1951
Tickner, A.W.; Lossing, F.P., The Measurement of Low Vapor Pressures by Means of a Mass Spectrometer., J. Phys. Chem., 1951, 55, 5, 733-740, https://doi.org/10.1021/j150488a013 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Ellison, Engelking, et al., 1978
Ellison, G.B.; Engelking, P.C.; Lineberger, W.C., An experimental determination of the geometry and electron affinity of CH3, J. Am. Chem. Soc., 1978, 100, 2556. [all data]

Graul and Squires, 1990
Graul, S.T.; Squires, R.R., Gas-Phase Acidities Derived from Threshold Energies for Activated Reactions, J. Am. Chem. Soc., 1990, 112, 7, 2517, https://doi.org/10.1021/ja00163a007 . [all data]

Bohme, Lee-Ruff, et al., 1972
Bohme, D.K.; Lee-Ruff, E.; Young, L.B., Acidity order of selected bronsted acids in the gas phase at 300K, J. Am. Chem. Soc., 1972, 94, 5153. [all data]

Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S., Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements, J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Gas - Phase Stability and Structure of Cluster Ions CH5+(CH4)n with n = 1 - 9, Chem. Phys. Lett., 1989, 161, 2, 111, https://doi.org/10.1016/0009-2614(89)85040-7 . [all data]

Hiraoka and Kebarle, 1975
Hiraoka, K.; Kebarle, P., Energetics, Stabilities and Possible Structures of CH5+(CH4)n Clusters from Gas Phase Study of Equilibria CH5+(CH4)n - 1 + CH4 = CH5+(CH4)n for n = 1 - 5, J. Am. Chem. Soc., 1975, 97, 15, 4179, https://doi.org/10.1021/ja00848a005 . [all data]

Field and Beggs, 1971
Field, F.H.; Beggs, D.P., Reversible Reactions of Gas Phase Ions. III. Studies with Methane at 0.1-1.0 Torr and 77-300 K, J. Am. Chem. Soc., 1971, 93, 7, 1585, https://doi.org/10.1021/ja00736a003 . [all data]

Hiraoka, Mori, et al., 1993
Hiraoka, K.; Mori, T.; Yamabe, S., The Gas-Phase Solvation of C2H5+, s-C3H7+ and s-C4H9+ with CH4. The Isomeric Structures of C2H5+ and C2H5+.CH4, Chem. Phys. Lett., 1993, 207, 2-3, 178, https://doi.org/10.1016/0009-2614(93)87011-Q . [all data]

Hiroka and Kebarle, 1975
Hiroka, K.; Kebarle, P., Information on the Proton Affinity and Protolysis of Propane from Measurement of the Ion Cluster Equilibrium: C2H5+ + CH4 = C3H9+, Can. J. Phys., 1975, 53, 970. [all data]

Kemper, Bushnell, et al., 1993
Kemper, P.R.; Bushnell, J.; Von Koppen, P.; Bowers, M.T., Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters, J. Phys. Chem., 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016 . [all data]

Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L., Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]

Haynes and Armentrout, 1996
Haynes, C.L.; Armentrout, P.B., Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy, Chem Phys. Let., 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7 . [all data]

Kemper, Bushnell, et al., 1993, 2
Kemper, P.R.; Bushnell, J.; Von Helden, G.; Bowers, M.T., Co+(H2)n Clusters: Binding Energies and Molecular Parameters, J. Chem Phys., 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012 . [all data]

Martinho Simões and Beauchamp, 1990
Martinho Simões, J.A.; Beauchamp, J.L., Chem. Rev., 1990, 90, 629. [all data]

Holm, 1981
Holm, T., J. Chem. Soc., Perkin Trans. II, 1981, 464.. [all data]

Pedley, 1994
Pedley, J.B., Thermodynamic Data and Structures of Organic Compounds; Thermodynamics Research Center Data Series, Vol I, Thermodynamics Research Center, College Station, 1994. [all data]

Martin and Finke, 1990
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1990, 112, 2419. [all data]

Martin and Finke, 1992
Martin, B.D.; Finke, R.G., J. Am. Chem. Soc., 1992, 114, 585. [all data]

Hiraoka and Kebarle, 1976
Hiraoka, K.; Kebarle, P., Stabilities and Energetics of Pentacoordinated Carbonium Ions. The Isomeric C2H7+ Ions and Some Higher Analogues: C3H9+ and C4H11+, J. Am. Chem. Soc., 1976, 98, 20, 6119, https://doi.org/10.1021/ja00436a009 . [all data]

Golden, Walsh, et al., 1965
Golden, D.M.; Walsh, R.; Benson, S.W., The thermochemistry of the gas phase equilibrium I2 + CH4 «=» CH3I + HI and the heat of formation of the methyl radical, J. Am. Chem. Soc., 1965, 87, 4053-4057. [all data]

Goy and Pritchard, 1965
Goy, C.A.; Pritchard, H.O., Kinetics and thermodynamics of the reaction between iodine and methane and the heat of formation of methyl iodide, J. Phys. Chem., 1965, 69, 3040-3041. [all data]

Nichol and Ubbelohde, 1952
Nichol, R.J.; Ubbelohde, A.R., A thermochemical evaluation of bond strengths in some carbon compounds. part II. Bond strengths based on the reaction CH3I + HI = CH4 + I2, J. Am. Chem. Soc., 1952, 415-421. [all data]

Bennet and Field, 1972
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. V. The Methane - Water System at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 15, 5188, https://doi.org/10.1021/ja00770a008 . [all data]

Bennet and Field, 1972, 2
Bennet, S.L.; Field, F.H., Reversible Reactions of Gaseous Ions. VI. The NH3 - CH4, H2S - CH4 and CF4 - CH4 Systems at Low Temperatures, J. Am. Chem. Soc., 1972, 94, 18, 6305, https://doi.org/10.1021/ja00773a009 . [all data]

Holm, 1974
Holm, T., J. Organometal. Chem., 1974, 77, 27. [all data]

Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J., Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]

Liebman, Martinho Simões, et al., 1995
Liebman, J.F.; Martinho Simões, J.A.; Slayden, S.W., In Lithium Chemistry: A Theoretical and Experimental Overview Wiley: New York, Sapse, A.-M.; Schleyer, P. von Ragué, ed(s)., 1995. [all data]

Lacher, Amador, et al., 1967
Lacher, J.R.; Amador, A.; Park, J.D., Reaction heats of organic compounds. Part 5.-Heats of hydrogenation of dichloromethane, 1,1- and 1,2-dichloroethane and 1,2-dichloropropane, Trans. Faraday Soc., 1967, 63, 1608-1611. [all data]

Carson, Hartley, et al., 1949
Carson, A.S.; Hartley, K.; Skinner, H.A., Thermochemistry of metal alkyls. Part II.?The bond dissociation energies of some Zn?C and Cd?C bonds, and of Et?I., Trans. Faraday Soc., 1949, 45, 1159, https://doi.org/10.1039/tf9494501159 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds in Academic Press, New York, 1970. [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Berkowitz, Greene, et al., 1987
Berkowitz, J.; Greene, J.P.; Cho, H.; Ruscic, B., The ionization potentials of CH4 and CD4, J. Chem. Phys., 1987, 86, 674. [all data]

Chatham, Hils, et al., 1984
Chatham, H.; Hils, D.; Robertson, R.; Gallagher, A., Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6, J. Chem. Phys., 1984, 81, 1770. [all data]

Plessis, Marmet, et al., 1983
Plessis, P.; Marmet, P.; Dutil, R., Ionization and appearance potentials of CH4 by electron impact, J. Phys. B:, 1983, 16, 1283. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Bieri, Burger, et al., 1977
Bieri, G.; Burger, F.; Heilbronner, E.; Maier, J.P., Valence ionization enrgies of hydrocarbons, Helv. Chim. Acta, 1977, 60, 2213. [all data]

Selim and El-Kholy, 1975
Selim, E.T.M.; El-Kholy, S.B., Mass spectrometric ionization and dissociation of methane, Indian J. Pure Appl. Phys., 1975, 13, 233. [all data]

Debies and Rabalais, 1975
Debies, T.P.; Rabalais, J.W., Calculated photoionization cross-sections and angular distributions for the isoelectronic series Ne, HF, H2O, NH3, and CH4, J. Am. Chem. Soc., 1975, 97, 487. [all data]

Rabalais, Debies, et al., 1974
Rabalais, J.W.; Debies, T.P.; Berkosky, J.L.; Huang, J.-T.J.; Ellison, F.O., Calculated photoionization cross sections relative experimental photoionization intensities for a selection of small molecules, J. Chem. Phys., 1974, 61, 516. [all data]

Morrison and Traeger, 1973
Morrison, J.D.; Traeger, J.C., Ionization and dissociation by electron impact. III. CH4 and SiH4, Int. J. Mass Spectrom. Ion Phys., 1973, 11, 289. [all data]

Potts and Price, 1972
Potts, A.W.; Price, W.C., The photoelectron spectra of methane, silane germane and stannane, Proc. R. Soc. London A:, 1972, 165. [all data]

Finney and Harrison, 1972
Finney, C.D.; Harrison, A.G., A third-derivative method for determining electron-impact onset potentials, Int. J. Mass Spectrom. Ion Phys., 1972, 9, 221. [all data]

Bergmark, Rabalais, et al., 1972
Bergmark, T.; Rabalais, J.W.; Werme, L.O.; Karlsson, L.; Siegbahn, K., High-resolution electron spectra of methane, thiophene, 2-bromothiphene, and 3-bromothiophene in Electron Spectroscopy, ed. D.A. Shirley (North-Holland Pub. Co., Amsterdam), 1972. [all data]

Rabalais, Bergmark, et al., 1971
Rabalais, J.W.; Bergmark, T.; Werme, L.O.; Karlsson, L.; Siegbahn, K., The Jahn-Teller effect in the electron spectrum of methane, Phys. Scr., 1971, 3, 13. [all data]

Chupka and Berkowitz, 1971
Chupka, W.A.; Berkowitz, J., Photoionization of methane: ionization potential and proton affinity of CH4, J. Chem. Phys., 1971, 54, 4256. [all data]

Pullen, Carlson, et al., 1970
Pullen, B.P.; Carlson, T.A.; Moddeman, W.E.; Schweitzer, G.K.; Bull, W.E., Photoelectron spectra of methane, silane, germane, methyl fluoride, difluoromethane, and trifluoromethane, J. Chem. Phys., 1970, 53, 768. [all data]

Brundle, Robin, et al., 1970
Brundle, C.R.; Robin, M.B.; Basch, H., Electronic energies and electronic structures of the fluoromethanes, J. Chem. Phys., 1970, 53, 2196. [all data]

Lossing and Semeluk, 1969
Lossing, F.P.; Semeluk, G.P., Threshold ionization efficiency curves for monoenergetic electron impact on H2, D2, CH4 and CD4, Intern. J. Mass Spectrom. Ion Phys., 1969, 2, 408. [all data]

Williams and Hamill, 1968
Williams, J.M.; Hamill, W.H., Ionization potentials of molecules and free radicals and appearance potentials by electron impact in the mass spectrometer, J. Chem. Phys., 1968, 49, 4467. [all data]

Villarejo, Stockbauer, et al., 1968
Villarejo, D.; Stockbauer, R.; Inghram, M.G., Measurement of threshold electrons in the photoionization of small molecules, Bull. Am. Phys. Soc., 1968, 13, 39. [all data]

Cermak, 1968
Cermak, V., Penning ionization electron spectroscopy. I. Determination of ionization potentials of polyatomic molecules, Collection Czech. Chem. Commun., 1968, 33, 2739. [all data]

Baker, Baker, et al., 1968
Baker, A.D.; Baker, C.; Brundle, C.R.; Turner, D.W., The electronic structures of methane, ethane, ethylene and formaldehyde studied by high-resolution molecular photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 285. [all data]

Brehm, 1966
Brehm, B., Massenspektrometrische Untersuchung der Photoionisation von Molekulen, Z. Naturforsch., 1966, 21a, 196. [all data]

Nicholson, 1965
Nicholson, A.J.C., Photoionization-efficiency curves. II. False and genuine structure, J. Chem. Phys., 1965, 43, 1171. [all data]

Dibeler, Krauss, et al., 1965
Dibeler, V.H.; Krauss, M.; Reese, R.M.; Harllee, F.N., Mass-spectrometric study of photoionization. III. Methane and methane-d4, J. Chem. Phys., 1965, 42, 3791. [all data]

Melton and Hamill, 1964
Melton, C.E.; Hamill, W.H., Appearance potentials by the retarding potential-difference method for secondary ions produced by excited-neutral, excited ion-neutral, and ion-neutral reactions, J. Chem. Phys., 1964, 41, 1469. [all data]

Bieri and Asbrink, 1980
Bieri, G.; Asbrink, L., 30.4-nm He(II) photoelectron spectra of organic molecules, J. Electron Spectrosc. Relat. Phenom., 1980, 20, 149. [all data]

Harshbarger, Robin, et al., 1973
Harshbarger, W.R.; Robin, M.B.; Lassettre, E.N., The electron impact spectra of the fluoromethanes, J. Electron Spectrosc. Relat. Phenom., 1973, 1, 319. [all data]

McCulloh and Dibeler, 1976
McCulloh, K.E.; Dibeler, V.H., Enthalpy of formation of methyl and methylene radicals of photoionization studies of methane and ketene, J. Chem. Phys., 1976, 64, 4445. [all data]

Chupka, 1968
Chupka, W.A., Mass-spectrometric study of the photoionization of methane, J. Chem. Phys., 1968, 48, 2337. [all data]

Stockbauer, 1977
Stockbauer, R., A threshold photoelectron-photoion coincidence mass spectrometer for measureing ion kinetic energy release on fragmentation, Int. J. Mass Spectrom. Ion Processes, 1977, 25, 89. [all data]

Lossing and Semeluk, 1970
Lossing, F.P.; Semeluk, G.P., Free radicals by mass spectrometry. XLII.Ionization potentials and ionic heats of formation for C1-C4 alkyl radicals, Can. J. Chem., 1970, 48, 955. [all data]

Locht, Olivier, et al., 1979
Locht, R.; Olivier, J.L.; Momigny, J., Dissociative autoionization as a mechanism for the proton formation from methane and methane-d4 by low energy electron impact, Chem. Phys., 1979, 43, 425. [all data]

Appell and Kubach, 1971
Appell, J.; Kubach, C., On the formation of energetic protons by electron impact on methane, Chem. Phys. Lett., 1971, 11, 486. [all data]

Shimanouchi, 1972
Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1-160. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Vibrational and/or electronic energy levels, References