Dinitrogen tetroxide

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Condensed phase thermochemistry data

Go To: Top, Henry's Law data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfliquid-19.56kJ/molReviewChase, 1998Data last reviewed in September, 1964
Quantity Value Units Method Reference Comment
liquid,1 bar209.20J/mol*KReviewChase, 1998Data last reviewed in September, 1964
Quantity Value Units Method Reference Comment
Δfsolid-35.05kJ/molReviewChase, 1998Data last reviewed in September, 1964
Quantity Value Units Method Reference Comment
solid150.38J/mol*KReviewChase, 1998Data last reviewed in September, 1964

Liquid Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (J/mol*K)
    H° = standard enthalpy (kJ/mol)
    S° = standard entropy (J/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 500.
A 89.16313
B 178.9141
C 0.929459
D 0.000000
E -0.007107
F -54.13217
G 263.6757
H -19.56401
ReferenceChase, 1998
Comment Data last reviewed in September, 1964

Henry's Law data

Go To: Top, Condensed phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
1.6 CN/A
1.4 LN/A

Vibrational and/or electronic energy levels

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Marilyn E. Jacox

State:   ?


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

Tx = 52600 T gas Bass, Ledford, et al., 1976

State:   ?


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

Tx = 37700 T gas Bass, Ledford, et al., 1976

State:   ?


 Energy 
 (cm-1
 Med.   Transition   λmin 
 (nm) 
 λmax 
 (nm) 
 References

Tx = 29400 gas Bass, Ledford, et al., 1976

State:   X


Vib. 
sym. 
 No.   Approximate 
 type of mode 
 cm-1   Med.   Method   References

ag 1 1383 ± 3 Ne Ra Bolduan and Jodl, 1982
1 1383 Ar Ra Tevault and Andrews, 1974
1 1387 ± 3 Xe Ra Bolduan and Jodl, 1982
2 807 ± 3 Ne Ra Bolduan and Jodl, 1982
2 813 Ar Ra Tevault and Andrews, 1974
2 815 ± 3 Xe Ra Bolduan and Jodl, 1982
3 265 ± 3 Ne Ra Bolduan and Jodl, 1982
3 262 Ar Ra Tevault and Andrews, 1974
3 257 ± 3 Xe Ra Bolduan and Jodl, 1982
au 4 82 T gas IR Bibart and Ewing, 1974
Koput, Seibert, et al., 1993
b1g 5 1718 ± 3 Xe Ra Bolduan and Jodl, 1982
6 480 T gas IR Bibart and Ewing, 1974
Koput, Seibert, et al., 1993
6 498 ± 3 Ne Ra Bolduan and Jodl, 1982
6 485 ± 3 Xe Ra Bolduan and Jodl, 1982
b1u 7 425 gas IR Bibart and Ewing, 1974
b2g 8 657 ± 3 Xe Ra Bolduan and Jodl, 1982
b2u 9 1756.76 gas IR DL Bibart and Ewing, 1974
Melen, Carleer, et al., 1992
Luckhaus and Quack, 1993
Domenech, Andrews, et al., 1994
Hepp, Georges, et al., 2000
9 1756.8 vs Ne IR Beckers, Zeng, et al., 2010
9 1749.2 s Ar IR Louis and Crawford, 1965
Bandow, Akimoto, et al., 1984
9 1761 N2 IR Varetti and Pimentel, 1971
9 1750 O2 IR Louis and Crawford, 1965
9 1735 s Ar IR Fateley, Bent, et al., 1959
Louis and Crawford, 1965
9 1737 N2 IR Varetti and Pimentel, 1971
9 1735 O2 IR Louis and Crawford, 1965
10 265 T gas IR Luckhaus and Quack, 1992
b3u 11 1261.08 gas IR DL Fateley, Bent, et al., 1959
Bibart and Ewing, 1974
Luckhaus and Quack, 1992
Luckhaus and Quack, 1993
Domenech, Andrews, et al., 1994
Hepp, Georges, et al., 2000
11 1260.5 vs Ne IR Beckers, Zeng, et al., 2010
11 1257.0 s Ar IR Fateley, Bent, et al., 1959
Louis and Crawford, 1965
Bandow, Akimoto, et al., 1984
11 1261 N2 IR Varetti and Pimentel, 1971
11 1261 O2 IR Louis and Crawford, 1965
12 755.37 gas IR Bibart and Ewing, 1974
Luckhaus and Quack, 1993
12 747.85 gas IR Bibart and Ewing, 1974
Luckhaus and Quack, 1993
Hepp, Georges, et al., 2000
12 749.7 vs Ne IR Beckers, Zeng, et al., 2010
12 755 s Ar IR Louis and Crawford, 1965
12 745.8 Ar IR Louis and Crawford, 1965
12 751 N2 IR Varetti and Pimentel, 1971
12 746 O2 IR Louis and Crawford, 1965
12 755 O2 IR Louis and Crawford, 1965

Additional references: Jacox, 1994, page 350; Jacox, 1998, page 321; Jacox, 2003, page 330; Smith and Hedberg, 1956

Notes

sStrong
vsVery strong
TTentative assignment or approximate value
xEnergy separation between the band maximum of the excited electronic state and the v = 0 level of the ground state.

References

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Bass, Ledford, et al., 1976
Bass, A.M.; Ledford, A.E., Jr.; Laufer, A.H., Extinction coefficients of NO2 and N2O4, J. Res. Natl. Bur. Std., 1976, 80A, 2, 143, https://doi.org/10.6028/jres.080A.017 . [all data]

Bolduan and Jodl, 1982
Bolduan, F.; Jodl, H.J., Raman spectroscopy on matrix-isolated No+, No-3 and N2O4 in Ne, Chem. Phys. Lett., 1982, 85, 3, 283, https://doi.org/10.1016/0009-2614(82)80294-7 . [all data]

Tevault and Andrews, 1974
Tevault, D.E.; Andrews, L., Spectrochim. Acta, 1974, 30A, 969. [all data]

Bibart and Ewing, 1974
Bibart, C.H.; Ewing, G.E., Vibrational spectrum, torsional potential, and bonding of gaseous N2O4, J. Chem. Phys., 1974, 61, 4, 1284, https://doi.org/10.1063/1.1682051 . [all data]

Koput, Seibert, et al., 1993
Koput, J.; Seibert, J.W.G.; Winnewisser, B.P., The torsional potential energy function of N2O4, Chem. Phys. Lett., 1993, 204, 1-2, 183, https://doi.org/10.1016/0009-2614(93)85625-X . [all data]

Melen, Carleer, et al., 1992
Melen, F.; Carleer, M.; Herman, M., Fourier transform jet spectrum of the ν9 band of N2O4, Chem. Phys. Lett., 1992, 199, 1-2, 124, https://doi.org/10.1016/0009-2614(92)80058-J . [all data]

Luckhaus and Quack, 1993
Luckhaus, D.; Quack, M., High resolution FTIR spectra of "NOX" (NO2, N2O4) in supersonic jet expansions and their rovibrational analysis, J. Mol. Struct., 1993, 293, 213, https://doi.org/10.1016/0022-2860(93)80052-W . [all data]

Domenech, Andrews, et al., 1994
Domenech, J.L.; Andrews, A.M.; Belov, S.P.; Fraser, G.T.; Lafferty, W.J., Infrared diode-laser spectra of the ν9 and ν11 N--O stretching bands of N2O4, J. Chem. Phys., 1994, 100, 10, 6993, https://doi.org/10.1063/1.466900 . [all data]

Hepp, Georges, et al., 2000
Hepp, M.; Georges, R.; Herman, M.; Flaud, J.-M.; Lafferty, W.J., Striking anharmonic resonances in N2O4: supersonic jet fourier transform spectra at 13.3, 7.9, 5.7 and 3.2μm, J. Mol. Struct., 2000, 517/518, 171, https://doi.org/10.1016/S0022-2860(99)00248-3 . [all data]

Beckers, Zeng, et al., 2010
Beckers, H.; Zeng, X.; Willner, H., Intermediates Involved in the Oxidation of Nitrogen Monoxide: Photochemistry of the, Chem. Eur. J., 2010, 16, 5, 1506, https://doi.org/10.1002/chem.200902406 . [all data]

Louis and Crawford, 1965
Louis, R.V.St.; Crawford, B., Jr., Infrared Spectrum of Matrix-Isolated NO2, J. Chem. Phys., 1965, 42, 3, 857, https://doi.org/10.1063/1.1696071 . [all data]

Bandow, Akimoto, et al., 1984
Bandow, H.; Akimoto, H.; Akiyama, S.; Tezuka, T., Photolysis of asym-N2O4 (ONONO2) isolated in an argon matrix at 11 K, Chem. Phys. Lett., 1984, 111, 4-5, 496, https://doi.org/10.1016/0009-2614(84)85547-5 . [all data]

Varetti and Pimentel, 1971
Varetti, E.L.; Pimentel, G.C., Isomeric Forms of Dinitrogen Trioxide in a Nitrogen Matrix, J. Chem. Phys., 1971, 55, 8, 3813, https://doi.org/10.1063/1.1676666 . [all data]

Fateley, Bent, et al., 1959
Fateley, W.G.; Bent, H.A.; Crawford, B., Jr., Infrared Spectra of the Frozen Oxides of Nitrogen, J. Chem. Phys., 1959, 31, 1, 204, https://doi.org/10.1063/1.1730296 . [all data]

Luckhaus and Quack, 1992
Luckhaus, D.; Quack, M., High-resolution FTIR spectra of NO2 and N2O4 in supersonic jet expansions and their rovibrational analysis, Chem. Phys. Lett., 1992, 199, 3-4, 293, https://doi.org/10.1016/0009-2614(92)80121-Q . [all data]

Jacox, 1994
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules, American Chemical Society, Washington, DC, 1994, 464. [all data]

Jacox, 1998
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement A, J. Phys. Chem. Ref. Data, 1998, 27, 2, 115-393, https://doi.org/10.1063/1.556017 . [all data]

Jacox, 2003
Jacox, M.E., Vibrational and electronic energy levels of polyatomic transient molecules: supplement B, J. Phys. Chem. Ref. Data, 2003, 32, 1, 1-441, https://doi.org/10.1063/1.1497629 . [all data]

Smith and Hedberg, 1956
Smith, D.W.; Hedberg, K., Molecular Structure of Gaseous Dinitrogen Tetroxide, J. Chem. Phys., 1956, 25, 6, 1282, https://doi.org/10.1063/1.1743200 . [all data]


Notes

Go To: Top, Condensed phase thermochemistry data, Henry's Law data, Vibrational and/or electronic energy levels, References