Argon

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar37.0091 ± 0.0007cal/mol*KReviewCox, Wagman, et al., 1984CODATA Review value
gas,1 bar37.008cal/mol*KReviewChase, 1998Data last reviewed in March, 1982

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 6000.
A 4.967974
B 6.754087×10-8
C -3.499499×10-8
D 2.610254×10-9
E -8.750885×10-9
F -1.481203
G 43.02079
H 0.000000
ReferenceChase, 1998
Comment Data last reviewed in March, 1982

Phase change data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director

Quantity Value Units Method Reference Comment
Tboil87.5KN/AStreng, 1971Uncertainty assigned by TRC = 0.3 K; TRC
Tboil87.28KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.02 K; TRC
Quantity Value Units Method Reference Comment
Tfus83.8KN/AVan't Zelfde, Omar, et al., 1968Uncertainty assigned by TRC = 0.3 K; TRC
Quantity Value Units Method Reference Comment
Ttriple87.78KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.8KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.8KN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple83.78KN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.04 K; TRC
Ttriple83.78KN/AClusius and Weigand, 1940Uncertainty assigned by TRC = 0.2 K; See property X for dP/dT at triple point; TRC
Quantity Value Units Method Reference Comment
Ptriple0.680atmN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.0001 atm; TRC
Ptriple0.680atmN/AZiegler, Mullins, et al., 1962Uncertainty assigned by TRC = 0.0001 atm; TRC
Ptriple0.6785atmN/AClark, Din, et al., 1951Uncertainty assigned by TRC = 0.0007 atm; TRC
Quantity Value Units Method Reference Comment
Tc150.86KN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.1 K; TRC
Tc150.86KN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.1 K; TRC
Tc150.65KN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.03 K; TRC
Quantity Value Units Method Reference Comment
Pc4.8339atmN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.002 atm; TRC
Pc48.3400atmN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.09998 atm; TRC
Pc47.9200atmN/AMcCain and Ziegler, 1967Uncertainty assigned by TRC = 0.0700 atm; TRC
Quantity Value Units Method Reference Comment
ρc13.41mol/lN/AAngus, Armstrong, et al., 1972Uncertainty assigned by TRC = 0.005 mol/l; TRC
ρc8.4029mol/lN/AGosman, McCarty, et al., 1969Uncertainty assigned by TRC = 0.008 mol/l; TRC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
114.40 to 150.314.46332481.01222.156McCain and Ziegler, 1967Coefficents calculated by NIST from author's data.
83.78 to 150.723.28984215.24-22.233Drii and Rabinovich, 1966Coefficents calculated by NIST from author's data.
129.33 to 147.404.96600658.98249.819van Itterbeek, Verbeke, et al., 1963Coefficents calculated by NIST from author's data.
90.94 to 101.483.72908302.683-6.083Clark, Din, et al., 1951, 2Coefficents calculated by NIST from author's data.

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Reactions 1 to 50

Lithium ion (1+) + Argon = (Lithium ion (1+) • Argon)

By formula: Li+ + Ar = (Li+ • Ar)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kcal/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr7.cal/mol*KDTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.4294.IMobCassidy and Elford, 1985gas phase; M
1.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
2.6215.DTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Ar+ + Argon = (Ar+ • Argon)

By formula: Ar+ + Ar = (Ar+ • Ar)

Quantity Value Units Method Reference Comment
Δr20. ± 20.kcal/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr12.8cal/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

Potassium ion (1+) + Argon = (Potassium ion (1+) • Argon)

By formula: K+ + Ar = (K+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.8 ± 0.7kcal/molAVGN/AAverage of 9 values; Individual data points

Nitrogen cation + Argon = (Nitrogen cation • Argon)

By formula: N2+ + Ar = (N2+ • Ar)

Quantity Value Units Method Reference Comment
Δr26.8kcal/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr25.4kcal/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr13.7cal/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

Cesium ion (1+) + Argon = (Cesium ion (1+) • Argon)

By formula: Cs+ + Ar = (Cs+ • Ar)

Quantity Value Units Method Reference Comment
Δr1.95kcal/molIMobGatland, 1984gas phase; M
Δr1.46kcal/molSCATTERINGGislason, 1984gas phase; M
Δr1.96kcal/molIMobViehland, 1984gas phase; M
Δr2.28kcal/molIMobTakebe, 1983gas phase; M
Δr2.3kcal/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

Chromium ion (1+) + Argon = (Chromium ion (1+) • Argon)

By formula: Cr+ + Ar = (Cr+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.4kcal/molSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 6.55 kcal/mol, ΔrS(100 K) = 14.4 cal/mol*K; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 6.55 kcal/mol, ΔrS(100 K) = 14.4 cal/mol*K; M

Sodium ion (1+) + Argon = (Sodium ion (1+) • Argon)

By formula: Na+ + Ar = (Na+ • Ar)

Quantity Value Units Method Reference Comment
Δr3.7 ± 2.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr3.70kcal/molSCATTERINGGislason, 1984gas phase; M
Δr4.39kcal/molIMobViehland, 1984gas phase; M
Δr4.4kcal/molDTMcKnight and Sawina, 1973gas phase; M
Δr4.87kcal/molIMobTakebe, 1983gas phase; M

H3+ + Argon = (H3+ • Argon)

By formula: H3+ + Ar = (H3+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr7.5 ± 0.8kcal/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M
Quantity Value Units Method Reference Comment
Δr13.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Xe+ + Argon = (Xe+ • Argon)

By formula: Xe+ + Ar = (Xe+ • Ar)

Quantity Value Units Method Reference Comment
Δr4.1kcal/molPIDehmer and Pratt, 1982gas phase; M
Δr6.0kcal/molSIFTJones, Lister, et al., 1980gas phase; M
Δr3.2kcal/molPINg, Tiedemann, et al., 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KSIFTJones, Lister, et al., 1980gas phase; M

(Ar+ • 2Argon) + Argon = (Ar+ • 3Argon)

By formula: (Ar+ • 2Ar) + Ar = (Ar+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.077.PHPMSTeng and Conway, 1973gas phase; M

(Nitrogen cation • 7Argon) + Argon = (Nitrogen cation • 8Argon)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr1.53kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

(Nitrogen cation • 8Argon) + Argon = (Nitrogen cation • 9Argon)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr1.52kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Fluorine anion + Argon = ArF-

By formula: F- + Ar = ArF-

Quantity Value Units Method Reference Comment
Δr2.00kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Δr-3.96kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Rubidium ion (1+) + Argon = (Rubidium ion (1+) • Argon)

By formula: Rb+ + Ar = (Rb+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.03kcal/molIMobGatland, 1984gas phase; M
Δr1.98kcal/molIMobViehland, 1984gas phase; M
Δr2.84kcal/molIMobTakebe, 1983gas phase; M

(O- • 10Argon) + Argon = (O- • 11Argon)

By formula: (O- • 10Ar) + Ar = (O- • 11Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 11Argon) + Argon = (O- • 12Argon)

By formula: (O- • 11Ar) + Ar = (O- • 12Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 12Argon) + Argon = (O- • 13Argon)

By formula: (O- • 12Ar) + Ar = (O- • 13Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 13Argon) + Argon = (O- • 14Argon)

By formula: (O- • 13Ar) + Ar = (O- • 14Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 14Argon) + Argon = (O- • 15Argon)

By formula: (O- • 14Ar) + Ar = (O- • 15Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 15Argon) + Argon = (O- • 16Argon)

By formula: (O- • 15Ar) + Ar = (O- • 16Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 16Argon) + Argon = (O- • 17Argon)

By formula: (O- • 16Ar) + Ar = (O- • 17Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 17Argon) + Argon = (O- • 18Argon)

By formula: (O- • 17Ar) + Ar = (O- • 18Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 18Argon) + Argon = (O- • 19Argon)

By formula: (O- • 18Ar) + Ar = (O- • 19Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 19Argon) + Argon = (O- • 20Argon)

By formula: (O- • 19Ar) + Ar = (O- • 20Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 20Argon) + Argon = (O- • 21Argon)

By formula: (O- • 20Ar) + Ar = (O- • 21Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 21Argon) + Argon = (O- • 22Argon)

By formula: (O- • 21Ar) + Ar = (O- • 22Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 22Argon) + Argon = (O- • 23Argon)

By formula: (O- • 22Ar) + Ar = (O- • 23Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 23Argon) + Argon = (O- • 24Argon)

By formula: (O- • 23Ar) + Ar = (O- • 24Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 24Argon) + Argon = (O- • 25Argon)

By formula: (O- • 24Ar) + Ar = (O- • 25Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 25Argon) + Argon = (O- • 26Argon)

By formula: (O- • 25Ar) + Ar = (O- • 26Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 9Argon) + Argon = (O- • 10Argon)

By formula: (O- • 9Ar) + Ar = (O- • 10Ar)

Quantity Value Units Method Reference Comment
Δr0.7 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 2Argon) + Argon = (O- • 3Argon)

By formula: (O- • 2Ar) + Ar = (O- • 3Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 3Argon) + Argon = (O- • 4Argon)

By formula: (O- • 3Ar) + Ar = (O- • 4Ar)

Quantity Value Units Method Reference Comment
Δr1.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 4Argon) + Argon = (O- • 5Argon)

By formula: (O- • 4Ar) + Ar = (O- • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 5Argon) + Argon = (O- • 6Argon)

By formula: (O- • 5Ar) + Ar = (O- • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 6Argon) + Argon = (O- • 7Argon)

By formula: (O- • 6Ar) + Ar = (O- • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.0 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 7Argon) + Argon = (O- • 8Argon)

By formula: (O- • 7Ar) + Ar = (O- • 8Ar)

Quantity Value Units Method Reference Comment
Δr0.9 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 8Argon) + Argon = (O- • 9Argon)

By formula: (O- • 8Ar) + Ar = (O- • 9Ar)

Quantity Value Units Method Reference Comment
Δr0.9 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • Argon) + Argon = (O- • 2Argon)

By formula: (O- • Ar) + Ar = (O- • 2Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • Argon) + Argon = (Ar+ • 2Argon)

By formula: (Ar+ • Ar) + Ar = (Ar+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr5.06 ± 0.08kcal/molPHPMSTurner and Conway, 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr20.3cal/mol*KPHPMSTurner and Conway, 1979gas phase; M

(Nitrogen cation • Argon) + Argon = (Nitrogen cation • 2Argon)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr3.8kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M

O- + Argon = (O- • Argon)

By formula: O- + Ar = (O- • Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(Ar+ • 10Argon) + Argon = (Ar+ • 11Argon)

By formula: (Ar+ • 10Ar) + Ar = (Ar+ • 11Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 9Argon) + Argon = (Ar+ • 10Argon)

By formula: (Ar+ • 9Ar) + Ar = (Ar+ • 10Ar)

Quantity Value Units Method Reference Comment
Δr1.55 ± 0.20kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.1cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(D3+ • 2Argon) + Argon = (D3+ • 3Argon)

By formula: (D3+ • 2Ar) + Ar = (D3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.4 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 3Argon) + Argon = (D3+ • 4Argon)

By formula: (D3+ • 3Ar) + Ar = (D3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.4 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr16.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 4Argon) + Argon = (D3+ • 5Argon)

By formula: (D3+ • 4Ar) + Ar = (D3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 5Argon) + Argon = (D3+ • 6Argon)

By formula: (D3+ • 5Ar) + Ar = (D3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 6Argon) + Argon = (D3+ • 7Argon)

By formula: (D3+ • 6Ar) + Ar = (D3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr25.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(Ar+ • 3Argon) + Argon = (Ar+ • 4Argon)

By formula: (Ar+ • 3Ar) + Ar = (Ar+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.9cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.00141500.LN/A
0.00141100.MN/A

Gas phase ion energetics data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Ion clustering data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data evaluated as indicated in comments:
HL - Edward P. Hunter and Sharon G. Lias
L - Sharon G. Lias

Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
RDSH - Henry M. Rosenstock, Keith Draxl, Bruce W. Steiner, and John T. Herron

Quantity Value Units Method Reference Comment
IE (evaluated)15.759 ± 0.001eVN/AN/AL
Quantity Value Units Method Reference Comment
Proton affinity (review)88.24kcal/molN/AHunter and Lias, 1998HL
Quantity Value Units Method Reference Comment
Gas basicity82.77kcal/molN/AHunter and Lias, 1998HL

Ionization energy determinations

IE (eV) Method Reference Comment
15.763PIPECOWeitzel, Mahnert, et al., 1994LL
15.75962EVALLide, 1992LL
15.82EIWetzel, Baiocchi, et al., 1987LBLHLM
15.760SKelly, 1987LBLHLM
15.759PEKimura, Katsumata, et al., 1981LLK
15.88EIClare and Sowerby, 1981LLK
15.7EIFreiser, 1980LLK
15.75962 ± 0.00001SMinnhagen, 1973LLK
15.753 ± 0.002TESpohr, Guyon, et al., 1971LLK
15.75962 ± 0.00001SYoshino, 1970RDSH
15.759SYoshino, 1969RDSH
15.713 ± 0.003CIHotop and Niehaus, 1969RDSH
15.757 ± 0.005PECollin and Natalis, 1968RDSH
15.74 ± 0.05EIGallegos and Klaver, 1967RDSH
15.78 ± 0.03EIWinters, Collins, et al., 1966RDSH
15.79PEAl-Joboury and Turner, 1963RDSH

Ion clustering data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Ar+ + Argon = (Ar+ • Argon)

By formula: Ar+ + Ar = (Ar+ • Ar)

Quantity Value Units Method Reference Comment
Δr20. ± 20.kcal/molAVGN/AAverage of 5 out of 7 values; Individual data points
Quantity Value Units Method Reference Comment
Δr12.8cal/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)Ar; Turner and Conway, 1979, Liu and Conway, 1975; M

(Ar+ • Argon) + Argon = (Ar+ • 2Argon)

By formula: (Ar+ • Ar) + Ar = (Ar+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr5.06 ± 0.08kcal/molPHPMSTurner and Conway, 1979gas phase; M
Quantity Value Units Method Reference Comment
Δr20.3cal/mol*KPHPMSTurner and Conway, 1979gas phase; M

(Ar+ • 2Argon) + Argon = (Ar+ • 3Argon)

By formula: (Ar+ • 2Ar) + Ar = (Ar+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.9 ± 0.3kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.077.PHPMSTeng and Conway, 1973gas phase; M

(Ar+ • 3Argon) + Argon = (Ar+ • 4Argon)

By formula: (Ar+ • 3Ar) + Ar = (Ar+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr13.9cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 4Argon) + Argon = (Ar+ • 5Argon)

By formula: (Ar+ • 4Ar) + Ar = (Ar+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr16.1cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 5Argon) + Argon = (Ar+ • 6Argon)

By formula: (Ar+ • 5Ar) + Ar = (Ar+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 6Argon) + Argon = (Ar+ • 7Argon)

By formula: (Ar+ • 6Ar) + Ar = (Ar+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 7Argon) + Argon = (Ar+ • 8Argon)

By formula: (Ar+ • 7Ar) + Ar = (Ar+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 8Argon) + Argon = (Ar+ • 9Argon)

By formula: (Ar+ • 8Ar) + Ar = (Ar+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 9Argon) + Argon = (Ar+ • 10Argon)

By formula: (Ar+ • 9Ar) + Ar = (Ar+ • 10Ar)

Quantity Value Units Method Reference Comment
Δr1.55 ± 0.20kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.1cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

(Ar+ • 10Argon) + Argon = (Ar+ • 11Argon)

By formula: (Ar+ • 10Ar) + Ar = (Ar+ • 11Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989, 2gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989, 2gas phase; M

ArNO- + 2Argon = Ar2NO-

By formula: ArNO- + 2Ar = Ar2NO-

Quantity Value Units Method Reference Comment
Δr1.50kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar2NO- + 3Argon = Ar3NO-

By formula: Ar2NO- + 3Ar = Ar3NO-

Quantity Value Units Method Reference Comment
Δr1.30kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar3NO- + 4Argon = Ar4NO-

By formula: Ar3NO- + 4Ar = Ar4NO-

Quantity Value Units Method Reference Comment
Δr1.30kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar4NO- + 5Argon = Ar5NO-

By formula: Ar4NO- + 5Ar = Ar5NO-

Quantity Value Units Method Reference Comment
Δr1.30kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar5NO- + 6Argon = Ar6NO-

By formula: Ar5NO- + 6Ar = Ar6NO-

Quantity Value Units Method Reference Comment
Δr1.20kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar6NO- + 7Argon = Ar7NO-

By formula: Ar6NO- + 7Ar = Ar7NO-

Quantity Value Units Method Reference Comment
Δr0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar7NO- + 8Argon = Ar8NO-

By formula: Ar7NO- + 8Ar = Ar8NO-

Quantity Value Units Method Reference Comment
Δr0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar8NO- + 9Argon = Ar9NO-

By formula: Ar8NO- + 9Ar = Ar9NO-

Quantity Value Units Method Reference Comment
Δr0.70kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar9NO- + 10Argon = Ar10NO-

By formula: Ar9NO- + 10Ar = Ar10NO-

Quantity Value Units Method Reference Comment
Δr0.70kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar10NO- + 11Argon = Ar11NO-

By formula: Ar10NO- + 11Ar = Ar11NO-

Quantity Value Units Method Reference Comment
Δr0.60kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar11NO- + 12Argon = Ar12NO-

By formula: Ar11NO- + 12Ar = Ar12NO-

Quantity Value Units Method Reference Comment
Δr0.70kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar12NO- + 13Argon = Ar13NO-

By formula: Ar12NO- + 13Ar = Ar13NO-

Quantity Value Units Method Reference Comment
Δr0.30kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Ar13NO- + 14Argon = Ar14NO-

By formula: Ar13NO- + 14Ar = Ar14NO-

Quantity Value Units Method Reference Comment
Δr0.20kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B

Bromine anion + Argon = (Bromine anion • Argon)

By formula: Br- + Ar = (Br- • Ar)

Quantity Value Units Method Reference Comment
Δr0.80kcal/molTherZhao, Yourshaw, et al., 1994gas phase; B
Δr1.40kcal/molMoblGatland, 1984, 2gas phase; B,M

Methyl cation + Argon = (Methyl cation • Argon)

By formula: CH3+ + Ar = (CH3+ • Ar)

Quantity Value Units Method Reference Comment
Δr11.3 ± 2.0kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr20.1cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • Argon) + Argon = (Methyl cation • 2Argon)

By formula: (CH3+ • Ar) + Ar = (CH3+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr15.7cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 2Argon) + Argon = (Methyl cation • 3Argon)

By formula: (CH3+ • 2Ar) + Ar = (CH3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr22.3cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 3Argon) + Argon = (Methyl cation • 4Argon)

By formula: (CH3+ • 3Ar) + Ar = (CH3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 4Argon) + Argon = (Methyl cation • 5Argon)

By formula: (CH3+ • 4Ar) + Ar = (CH3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.2kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr20.6cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 5Argon) + Argon = (Methyl cation • 6Argon)

By formula: (CH3+ • 5Ar) + Ar = (CH3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.3kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.0cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 6Argon) + Argon = (Methyl cation • 7Argon)

By formula: (CH3+ • 6Ar) + Ar = (CH3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.9 ± 0.4kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; M
Quantity Value Units Method Reference Comment
Δr21.2cal/mol*KPHPMSHiraoka, Kudaka, et al., 1991gas phase; M

(Methyl cation • 7Argon) + Argon = (Methyl cation • 8Argon)

By formula: (CH3+ • 7Ar) + Ar = (CH3+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr1.93kcal/molPHPMSHiraoka, Kudaka, et al., 1991gas phase; Entropy change calculated or estimated; M

CO+ + Argon = (CO+ • Argon)

By formula: CO+ + Ar = (CO+ • Ar)

Quantity Value Units Method Reference Comment
Δr16.1 ± 1.4kcal/molPIPECONorwood, Guo, et al., 1989gas phase; CO+(X) ground state; M

CO2+ + Argon = (CO2+ • Argon)

By formula: CO2+ + Ar = (CO2+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.0kcal/molPIPratt and Dehmer, 1983gas phase; M

Cobalt ion (1+) + Argon = (Cobalt ion (1+) • Argon)

By formula: Co+ + Ar = (Co+ • Ar)

Quantity Value Units Method Reference Comment
Δr11.8kcal/molPDisAsher, Bellert, et al., 1994RCD

Chromium ion (1+) + Argon = (Chromium ion (1+) • Argon)

By formula: Cr+ + Ar = (Cr+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.9 ± 0.4kcal/molSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 6.55 kcal/mol, ΔrS(100 K) = 14.4 cal/mol*K; M
Quantity Value Units Method Reference Comment
Δr15.8cal/mol*KSIDTKemper, Hsu, et al., 1991gas phase; ΔrH(0 K) = 6.55 kcal/mol, ΔrS(100 K) = 14.4 cal/mol*K; M

Cesium ion (1+) + Argon = (Cesium ion (1+) • Argon)

By formula: Cs+ + Ar = (Cs+ • Ar)

Quantity Value Units Method Reference Comment
Δr1.95kcal/molIMobGatland, 1984gas phase; M
Δr1.46kcal/molSCATTERINGGislason, 1984gas phase; M
Δr1.96kcal/molIMobViehland, 1984gas phase; M
Δr2.28kcal/molIMobTakebe, 1983gas phase; M
Δr2.3kcal/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

D3+ + Argon = (D3+ • Argon)

By formula: D3+ + Ar = (D3+ • Ar)

Quantity Value Units Method Reference Comment
Δr7.0 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr14.5cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • Argon) + Argon = (D3+ • 2Argon)

By formula: (D3+ • Ar) + Ar = (D3+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr4.8 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.5cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 2Argon) + Argon = (D3+ • 3Argon)

By formula: (D3+ • 2Ar) + Ar = (D3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.4 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr18.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 3Argon) + Argon = (D3+ • 4Argon)

By formula: (D3+ • 3Ar) + Ar = (D3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.4 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr16.6cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 4Argon) + Argon = (D3+ • 5Argon)

By formula: (D3+ • 4Ar) + Ar = (D3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 5Argon) + Argon = (D3+ • 6Argon)

By formula: (D3+ • 5Ar) + Ar = (D3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr19.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(D3+ • 6Argon) + Argon = (D3+ • 7Argon)

By formula: (D3+ • 6Ar) + Ar = (D3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr25.2cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Fluorine anion + Argon = ArF-

By formula: F- + Ar = ArF-

Quantity Value Units Method Reference Comment
Δr2.00kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B
Quantity Value Units Method Reference Comment
Δr-3.96kcal/molTDAsWada, Kikkawa, et al., 2007gas phase; Entropy estimated; B

Iron ion (1+) + Argon = (Iron ion (1+) • Argon)

By formula: Fe+ + Ar = (Fe+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.6 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Hydrogen cation + Argon = (Hydrogen cation • Argon)

By formula: H2+ + Ar = (H2+ • Ar)

Quantity Value Units Method Reference Comment
Δr24.kcal/molSIFTBedford and Smith, 1990gas phase; switching reaction(Ar+)Ar, ΔrH>; M

H3+ + Argon = (H3+ • Argon)

By formula: H3+ + Ar = (H3+ • Ar)

Quantity Value Units Method Reference Comment
Δr6.7 ± 0.2kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Δr7.5 ± 0.8kcal/molSIFTBedford and Smith, 1990gas phase; switching reaction(H3+)H2, Hiraoka and Mori, 1989; M
Quantity Value Units Method Reference Comment
Δr13.4cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • Argon) + Argon = (H3+ • 2Argon)

By formula: (H3+ • Ar) + Ar = (H3+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr4.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr16.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • 2Argon) + Argon = (H3+ • 3Argon)

By formula: (H3+ • 2Ar) + Ar = (H3+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr4.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • 3Argon) + Argon = (H3+ • 4Argon)

By formula: (H3+ • 3Ar) + Ar = (H3+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr2.5 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr16.1cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • 4Argon) + Argon = (H3+ • 5Argon)

By formula: (H3+ • 4Ar) + Ar = (H3+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr16.7cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • 5Argon) + Argon = (H3+ • 6Argon)

By formula: (H3+ • 5Ar) + Ar = (H3+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr18.7cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

(H3+ • 6Argon) + Argon = (H3+ • 7Argon)

By formula: (H3+ • 6Ar) + Ar = (H3+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.1kcal/molPHPMSHiraoka and Mori, 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr23.0cal/mol*KPHPMSHiraoka and Mori, 1989gas phase; M

Hg+ + Argon = (Hg+ • Argon)

By formula: Hg+ + Ar = (Hg+ • Ar)

Quantity Value Units Method Reference Comment
Δr5.3 ± 0.4kcal/molPILinn, Brom, et al., 1985gas phase; M

Iodide + Argon = (Iodide • Argon)

By formula: I- + Ar = (I- • Ar)

Quantity Value Units Method Reference Comment
Δr0.60kcal/molTherZhao, Yourshaw, et al., 1994gas phase; B

Potassium ion (1+) + Argon = (Potassium ion (1+) • Argon)

By formula: K+ + Ar = (K+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.8 ± 0.7kcal/molAVGN/AAverage of 9 values; Individual data points

Kr+ + Argon = (Kr+ • Argon)

By formula: Kr+ + Ar = (Kr+ • Ar)

Quantity Value Units Method Reference Comment
Δr12.2kcal/molPIDehmer and Pratt, 1982gas phase; M
Δr13.6kcal/molPINg, Tiedemann, et al., 1977gas phase; M

Lithium ion (1+) + Argon = (Lithium ion (1+) • Argon)

By formula: Li+ + Ar = (Li+ • Ar)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kcal/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr7.cal/mol*KDTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.4294.IMobCassidy and Elford, 1985gas phase; M
1.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
2.6215.DTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Magnesium ion (1+) + Argon = (Magnesium ion (1+) • Argon)

By formula: Mg+ + Ar = (Mg+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.3 ± 1.6kcal/molCIDTAndersen, Muntean, et al., 2000RCD

N+ + Argon = (N+ • Argon)

By formula: N+ + Ar = (N+ • Ar)

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
28. (+11.,-0.) CIDHaynes, Freysinger, et al., 1995gas phase; giuded ion beam CID; M

Nitric oxide anion + Argon = (Nitric oxide anion • Argon)

By formula: NO- + Ar = (NO- • Ar)

Quantity Value Units Method Reference Comment
Δr1.30 ± 0.90kcal/molN/AHendricks, de Clercq, et al., 2002gas phase; B
Δr1.60 ± 0.30kcal/molN/ABowen and Eaton, 1988gas phase; B

Nitrogen cation + Argon = (Nitrogen cation • Argon)

By formula: N2+ + Ar = (N2+ • Ar)

Quantity Value Units Method Reference Comment
Δr26.8kcal/molPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr25.4kcal/molPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M
Quantity Value Units Method Reference Comment
Δr19.5cal/mol*KPD/KERDKim and Bowers, 1990gas phase; switching reaction(N2+)N2; Hiraoka and Nakajima, 1988; M
Δr13.7cal/mol*KPHPMSTeng and Conway, 1973gas phase; switching reaction(N2+)N2; M

(Nitrogen cation • Argon) + Argon = (Nitrogen cation • 2Argon)

By formula: (N2+ • Ar) + Ar = (N2+ • 2Ar)

Quantity Value Units Method Reference Comment
Δr3.8kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; ΔrH>; M

(Nitrogen cation • 2Argon) + Argon = (Nitrogen cation • 3Argon)

By formula: (N2+ • 2Ar) + Ar = (N2+ • 3Ar)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.2kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr13.7cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation • 3Argon) + Argon = (Nitrogen cation • 4Argon)

By formula: (N2+ • 3Ar) + Ar = (N2+ • 4Ar)

Quantity Value Units Method Reference Comment
Δr1.7 ± 0.2kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr17.9cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation • 4Argon) + Argon = (Nitrogen cation • 5Argon)

By formula: (N2+ • 4Ar) + Ar = (N2+ • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr17.0cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation • 5Argon) + Argon = (Nitrogen cation • 6Argon)

By formula: (N2+ • 5Ar) + Ar = (N2+ • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 0.2kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr17.4cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation • 6Argon) + Argon = (Nitrogen cation • 7Argon)

By formula: (N2+ • 6Ar) + Ar = (N2+ • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.5 ± 0.2kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; M
Quantity Value Units Method Reference Comment
Δr17.3cal/mol*KPHPMSHiraoka, Mori, et al., 1992gas phase; M

(Nitrogen cation • 7Argon) + Argon = (Nitrogen cation • 8Argon)

By formula: (N2+ • 7Ar) + Ar = (N2+ • 8Ar)

Quantity Value Units Method Reference Comment
Δr1.53kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

(Nitrogen cation • 8Argon) + Argon = (Nitrogen cation • 9Argon)

By formula: (N2+ • 8Ar) + Ar = (N2+ • 9Ar)

Quantity Value Units Method Reference Comment
Δr1.52kcal/molPHPMSHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr17.cal/mol*KN/AHiraoka, Mori, et al., 1992gas phase; Entropy change calculated or estimated; M

Sodium ion (1+) + Argon = (Sodium ion (1+) • Argon)

By formula: Na+ + Ar = (Na+ • Ar)

Quantity Value Units Method Reference Comment
Δr3.7 ± 2.1kcal/molCIDTArmentrout and Rodgers, 2000RCD
Δr3.70kcal/molSCATTERINGGislason, 1984gas phase; M
Δr4.39kcal/molIMobViehland, 1984gas phase; M
Δr4.4kcal/molDTMcKnight and Sawina, 1973gas phase; M
Δr4.87kcal/molIMobTakebe, 1983gas phase; M

O- + Argon = (O- • Argon)

By formula: O- + Ar = (O- • Ar)

Quantity Value Units Method Reference Comment
Δr2.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • Argon) + Argon = (O- • 2Argon)

By formula: (O- • Ar) + Ar = (O- • 2Ar)

Quantity Value Units Method Reference Comment
Δr2.0 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 2Argon) + Argon = (O- • 3Argon)

By formula: (O- • 2Ar) + Ar = (O- • 3Ar)

Quantity Value Units Method Reference Comment
Δr1.6 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 3Argon) + Argon = (O- • 4Argon)

By formula: (O- • 3Ar) + Ar = (O- • 4Ar)

Quantity Value Units Method Reference Comment
Δr1.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 4Argon) + Argon = (O- • 5Argon)

By formula: (O- • 4Ar) + Ar = (O- • 5Ar)

Quantity Value Units Method Reference Comment
Δr1.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 5Argon) + Argon = (O- • 6Argon)

By formula: (O- • 5Ar) + Ar = (O- • 6Ar)

Quantity Value Units Method Reference Comment
Δr1.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 6Argon) + Argon = (O- • 7Argon)

By formula: (O- • 6Ar) + Ar = (O- • 7Ar)

Quantity Value Units Method Reference Comment
Δr1.0 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 7Argon) + Argon = (O- • 8Argon)

By formula: (O- • 7Ar) + Ar = (O- • 8Ar)

Quantity Value Units Method Reference Comment
Δr0.9 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 8Argon) + Argon = (O- • 9Argon)

By formula: (O- • 8Ar) + Ar = (O- • 9Ar)

Quantity Value Units Method Reference Comment
Δr0.9 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 9Argon) + Argon = (O- • 10Argon)

By formula: (O- • 9Ar) + Ar = (O- • 10Ar)

Quantity Value Units Method Reference Comment
Δr0.7 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 10Argon) + Argon = (O- • 11Argon)

By formula: (O- • 10Ar) + Ar = (O- • 11Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 11Argon) + Argon = (O- • 12Argon)

By formula: (O- • 11Ar) + Ar = (O- • 12Ar)

Quantity Value Units Method Reference Comment
Δr0.8 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 12Argon) + Argon = (O- • 13Argon)

By formula: (O- • 12Ar) + Ar = (O- • 13Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 13Argon) + Argon = (O- • 14Argon)

By formula: (O- • 13Ar) + Ar = (O- • 14Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 14Argon) + Argon = (O- • 15Argon)

By formula: (O- • 14Ar) + Ar = (O- • 15Ar)

Quantity Value Units Method Reference Comment
Δr0.4 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 15Argon) + Argon = (O- • 16Argon)

By formula: (O- • 15Ar) + Ar = (O- • 16Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 16Argon) + Argon = (O- • 17Argon)

By formula: (O- • 16Ar) + Ar = (O- • 17Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 17Argon) + Argon = (O- • 18Argon)

By formula: (O- • 17Ar) + Ar = (O- • 18Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 18Argon) + Argon = (O- • 19Argon)

By formula: (O- • 18Ar) + Ar = (O- • 19Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 19Argon) + Argon = (O- • 20Argon)

By formula: (O- • 19Ar) + Ar = (O- • 20Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 20Argon) + Argon = (O- • 21Argon)

By formula: (O- • 20Ar) + Ar = (O- • 21Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 21Argon) + Argon = (O- • 22Argon)

By formula: (O- • 21Ar) + Ar = (O- • 22Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 22Argon) + Argon = (O- • 23Argon)

By formula: (O- • 22Ar) + Ar = (O- • 23Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 23Argon) + Argon = (O- • 24Argon)

By formula: (O- • 23Ar) + Ar = (O- • 24Ar)

Quantity Value Units Method Reference Comment
Δr0.1 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 24Argon) + Argon = (O- • 25Argon)

By formula: (O- • 24Ar) + Ar = (O- • 25Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

(O- • 25Argon) + Argon = (O- • 26Argon)

By formula: (O- • 25Ar) + Ar = (O- • 26Ar)

Quantity Value Units Method Reference Comment
Δr0.2 ± 2.0kcal/molN/AArnold, Hendricks, et al., 1995gas phase; EA given is Vertical Detachment Energy. Affinity: difference between successive EAs in (Y); B

Oxygen anion + Argon = (Oxygen anion • Argon)

By formula: O2- + Ar = (O2- • Ar)

Quantity Value Units Method Reference Comment
Δr1.66kcal/molN/ABowen and Eaton, 1988gas phase; Bound by 70 meV relative to EA(O2-.); B

Rubidium ion (1+) + Argon = (Rubidium ion (1+) • Argon)

By formula: Rb+ + Ar = (Rb+ • Ar)

Quantity Value Units Method Reference Comment
Δr2.03kcal/molIMobGatland, 1984gas phase; M
Δr1.98kcal/molIMobViehland, 1984gas phase; M
Δr2.84kcal/molIMobTakebe, 1983gas phase; M

Xe+ + Argon = (Xe+ • Argon)

By formula: Xe+ + Ar = (Xe+ • Ar)

Quantity Value Units Method Reference Comment
Δr4.1kcal/molPIDehmer and Pratt, 1982gas phase; M
Δr6.0kcal/molSIFTJones, Lister, et al., 1980gas phase; M
Δr3.2kcal/molPINg, Tiedemann, et al., 1977gas phase; M
Quantity Value Units Method Reference Comment
Δr19.4cal/mol*KSIFTJones, Lister, et al., 1980gas phase; M

Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin DOW CHEMICAL COMPANY / ASTM E14-UNCERTIFIED SPECTRUM 1
NIST MS number 34321

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Cox, Wagman, et al., 1984
Cox, J.D.; Wagman, D.D.; Medvedev, V.A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984, 1. [all data]

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Streng, 1971
Streng, A.G., Miscibility and Compatibility of Some Liquid and Solidified Gases at Low Temperature, J. Chem. Eng. Data, 1971, 16, 357. [all data]

Gosman, McCarty, et al., 1969
Gosman, A.L.; McCarty, R.D.; Hust, J.G., Thermodynamic Properties of Argon from the Triple Point to 300 K at Pressures to 1000 Atmospheres, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. NSRDS-NBS 27, 1969. [all data]

Van't Zelfde, Omar, et al., 1968
Van't Zelfde, P.; Omar, M.H.; LePair-Schroten, H.G.M.; Dokoupil, Z., Solid-liquid equilibrium diagram for the argon + methane system., Physica (Amsterdam), 1968, 38, 241-51. [all data]

Angus, Armstrong, et al., 1972
Angus, S.; Armstrong, B.; Gosman, A.L.; McCarty, R.D.; Hust, J.G.; Vasserman, A.A.; Rabinovich, V.A., International Thermodynamic Tables of the Fluid State - 1 Argon, Butterworths, London, 1972. [all data]

Ziegler, Mullins, et al., 1962
Ziegler, W.T.; Mullins, J.C.; Kirk, B.S., Calculation of the Vapor Pressure and Heats of Vaporization and Sublimation of Liquids and Solids, Especially Below One Atmosphere Pressure. II. Argon, Ga. Inst. Technol., Eng. Exp. Stn., Proj. A-460, Tech. Rep. No. 2, 1962. [all data]

Clark, Din, et al., 1951
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th.N., The Vapor Pressure of Argon, Physica (Amsterdam), 1951, 17, 876. [all data]

Clusius and Weigand, 1940
Clusius, K.; Weigand, K., Melting Curves of the Gases A, Kr, Xe, CH4, CH3D, CD4, C2H4, C2H6, COS, and PH3 to 200 Atmospheres Pressure. The Chane of Volume on Melting, Z. Phys. Chem., Abt. B, 1940, 46, 1-37. [all data]

McCain and Ziegler, 1967
McCain, W.D., Jr.; Ziegler, W.T., The Critical Temperature, Critical Pressure, and Vapor Pressure of Argon, J. Chem. Eng. Data, 1967, 12, 2, 199-202, https://doi.org/10.1021/je60033a012 . [all data]

Drii and Rabinovich, 1966
Drii, L.I.; Rabinovich, V.A., Dependence of Vapor Pressure of Argon, Zh. Fiz. Khim., 1966, 40, 709-711. [all data]

van Itterbeek, Verbeke, et al., 1963
van Itterbeek, A.; Verbeke, O.; Staes, K., Measurements on the Equation of State of Liquid Argon and Methane Up to 300 kg cm-2 at Low Temperatures, Physica (Amsterdam), 1963, 29, 6, 742-754, https://doi.org/10.1016/S0031-8914(63)80231-1 . [all data]

Clark, Din, et al., 1951, 2
Clark, A.M.; Din, F.; Robb, J.; Michels, A.; Wassenaar, T.; Zwietering, Th., The Vapour Pressure of Argon, Physica (Amsterdam), 1951, 17, 10, 876-884, https://doi.org/10.1016/0031-8914(51)90041-9 . [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Cassidy and Elford, 1985
Cassidy, R.A.; Elford, M.T., The Mobility of Li+ Ions in Helium and Argon, Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587 . [all data]

Keller, Beyer, et al., 1973
Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M., Clustering of Ar to Li+ and a Comparison of Drift - Tube Models, Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446 . [all data]

Teng and Conway, 1973
Teng, H.H.; Conway, D.C., Ion - Molecule Equilibria in Mixtures of N2 and Ar, J. Chem. Phys., 1973, 59, 5, 2316, https://doi.org/10.1063/1.1680338 . [all data]

Turner and Conway, 1979
Turner, D.L.; Conway, D.C., Study of the 2Ar + Ar2+ = Ar + Ar3+ Reaction, J. Chem. Phys., 1979, 71, 4, 1899, https://doi.org/10.1063/1.438544 . [all data]

Liu and Conway, 1975
Liu, W.F.; Conway, D.C., Ion - Molecule Reactions in Ar at 296, 195, and 77 K, J. Chem. Phys., 1975, 62, 8, 3070, https://doi.org/10.1063/1.430906 . [all data]

Kim and Bowers, 1990
Kim, H.S.; Bowers, M.T., Energetics, Structure and Photodissociation Dynamics of the Cluster Ar.N2+, J. Chem. Phys., 1990, 93, 2, 1158, https://doi.org/10.1063/1.459179 . [all data]

Hiraoka and Nakajima, 1988
Hiraoka, K.; Nakajima, G., A Determination of the Stabilities of N2+(N2)n and O2+(N2)n with n = 1 - 11 from Measurements of the Gas - Phase Ion Equilibria, J. Chem. Phys., 1988, 88, 12, 7709, https://doi.org/10.1063/1.454285 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

Kemper, Hsu, et al., 1991
Kemper, P.R.; Hsu, M.T.; Bowers, M.T., Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar), J. Phys. Chem., 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022 . [all data]

Armentrout and Rodgers, 2000
Armentrout, P.B.; Rodgers, M.T., An Absolute Sodium Cation Affinity Scale: Threshold Collision-Induced Dissociation Experiments and ab Initio Theory, J. Phys. Chem A, 2000, 104, 11, 2238, https://doi.org/10.1021/jp991716n . [all data]

Hiraoka and Mori, 1989
Hiraoka, K.; Mori, T., Isotope Effect and Nature of Bonding in the Cluster Ions H3+(Ar)n and D3+(Ar)n, J. Chem. Phys., 1989, 91, 8, 4821, https://doi.org/10.1063/1.456720 . [all data]

Bedford and Smith, 1990
Bedford, D.K.; Smith, D., Variable-temperature selected ion flow tube studies of the reactions of Ar+, Ar2+ and ArHn+ (n=1-3) ions with H2, HD and D2 at 300 K and 80 K, Int. J. Mass Spectrom. Ion Proc., 1990, 98, 2, 179, https://doi.org/10.1016/0168-1176(90)85017-V . [all data]

Dehmer and Pratt, 1982
Dehmer, P.M.; Pratt, S.T., Photoionization of ArKr, ArXe, and KrXe and bond dissociation energies of the rare gas dimer ions, J. Chem. Phys., 1982, 77, 4804. [all data]

Jones, Lister, et al., 1980
Jones, J.D.C.; Lister, D.G.; Twiddy, N.D., Equilibrium Constant for the Reaction Xe+ + 2Ar ---> XeAr+ + Ar in the Temperature Range 150 - 300 K and the Dissociation Energy of XeAr+, Chem. Phys. Lett., 1980, 70, 3, 575, https://doi.org/10.1016/0009-2614(80)80128-X . [all data]

Ng, Tiedemann, et al., 1977
Ng, C.Y.; Tiedemann, P.W.; Mahan, B.H.; Lee, Y.T., Photoionization Studies of the Diatomic Internuclear Rare Gas Molecules XeKr, XeAr, and KrAr, J. Chem. Phys., 1977, 66, 12, 5737, https://doi.org/10.1063/1.433848 . [all data]

Hiraoka and Mori, 1989, 2
Hiraoka, K.; Mori, T., Formation and Stabilities of Cluster Ions Arn+, J. Chem. Phys., 1989, 90, 12, 7143, https://doi.org/10.1063/1.456245 . [all data]

Hiraoka, Mori, et al., 1992
Hiraoka, K.; Mori, T.; Yamabe, S., Gas-Phase Solvation of N2+ with Ar Atoms - A Charge Switch in the Reaction N2+(Ar)...Ar+(N2), Chem. Phys. Lett., 1992, 189, 1, 7, https://doi.org/10.1016/0009-2614(92)85144-Y . [all data]

Wada, Kikkawa, et al., 2007
Wada, A.; Kikkawa, A.; Sugiyama, T.; Hiraoka, K., Thermochemical Stabilities of the Gas-phase Cluster Ions of Halide Ions with Rare Gas Atoms, Int. J. Mass Spectrom.., 2007, 267, 1-3, 284-287, https://doi.org/10.1016/j.ijms.2007.02.053 . [all data]

Arnold, Hendricks, et al., 1995
Arnold, S.T.; Hendricks, J.H.; Bowen, K.H., Photoelectron spectroscopy of the solvated anion clusters O-(Ar)(n=1-26,34): Energetics and structure, J. Chem. Phys., 1995, 102, 1, 39, https://doi.org/10.1063/1.469415 . [all data]

Hunter and Lias, 1998
Hunter, E.P.; Lias, S.G., Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update, J. Phys. Chem. Ref. Data, 1998, 27, 3, 413-656, https://doi.org/10.1063/1.556018 . [all data]

Weitzel, Mahnert, et al., 1994
Weitzel, K.-M.; Mahnert, J.; Penno, M., ZEKE-PEPICO investigations of dissociation energies in ionic reactions, Chem. Phys. Lett., 1994, 224, 371. [all data]

Lide, 1992
Lide, D.R. (Editor), Ionization potentials of atoms and atomic ions in Handbook of Chem. and Phys., 1992, 10-211. [all data]

Wetzel, Baiocchi, et al., 1987
Wetzel, R.C.; Baiocchi, F.A.; Hayes, T.R.; Freund, R.S., Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A, 1987, 35, 559. [all data]

Kelly, 1987
Kelly, R.L., Atomic and ionic spectrum lines of hydrogen through kryton, J. Phys. Chem. Ref. Data, 1987, 16. [all data]

Kimura, Katsumata, et al., 1981
Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S., Ionization energies, Ab initio assignments, and valence electronic structure for 200 molecules in Handbook of HeI Photoelectron Spectra of Fundamental Organic Compounds, Japan Scientific Soc. Press, Tokyo, 1981. [all data]

Clare and Sowerby, 1981
Clare, P.; Sowerby, D.B., Electron impact ionisation energies of some halo-cyclotriphosphazenes, J. Inorg. Nucl. Chem., 1981, 43, 477. [all data]

Freiser, 1980
Freiser, B.S., Electron impact ionization of argon ions by trapped ion cyclotron resonanace spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 263. [all data]

Minnhagen, 1973
Minnhagen, L., Spectrum and the energy levels of neutral argon, Ar I, J. Opt. Soc. Am., 1973, 63, 1185. [all data]

Spohr, Guyon, et al., 1971
Spohr, R.; Guyon, P.M.; Chupka, W.A.; Berkowitz, J., Threshold photoelectron detector for use in the vacuum ultraviolet, Rev. Sci. Instrum., 1971, 42, 1872. [all data]

Yoshino, 1970
Yoshino, K., Absorption spectrum of the argon atom in the vacuum-ultraviolet region, J. Opt. Soc. Am., 1970, 60, 1220. [all data]

Yoshino, 1969
Yoshino, K., Absorption spectrum of the argon atom in the vacuum-ultraviolet region, J. Opt. Soc. Am., 1969, 59, 1525. [all data]

Hotop and Niehaus, 1969
Hotop, H.; Niehaus, A., Reactions of excited atoms molecules with atoms and molecules. II. Energy analysis of penning electrons, Z. Phys., 1969, 228, 68. [all data]

Collin and Natalis, 1968
Collin, J.E.; Natalis, P., Vibrational and electronic ionic states of nitric oxide. An accurate method for measuring ionization potentials by photoelectron spectroscopy, Intern. J. Mass Spectrom. Ion Phys., 1968, 1, 483. [all data]

Gallegos and Klaver, 1967
Gallegos, E.J.; Klaver, R.F., Automatic voltage scanner for a peak switching mass spectrometer, J.Sci. Instr., 1967, 44, 427. [all data]

Winters, Collins, et al., 1966
Winters, R.E.; Collins, J.H.; Courchene, W.L., Resolution of fine structure in ionization-efficiency curves, J. Chem. Phys., 1966, 45, 1931. [all data]

Al-Joboury and Turner, 1963
Al-Joboury, M.I.; Turner, D.W., Molecular photo-electron spectroscopy. Part I. The hydrogen and nitrogen molecules, J. Chem. Soc., 1963, 5141. [all data]

Hendricks, de Clercq, et al., 2002
Hendricks, J.H.; de Clercq, H.L.; Freidhoff, C.B.; Arnold, S.T.; Eaton, J.G.; Fancher, C.; Lyapustina, S.A.; S., Anion solvation at the microscopic level: Photoelectron spectroscopy of the solvated anion clusters, NO-(Y)(n), where Y=Ar, Kr, Xe, N2O, H2S, NH3, H2O, and C2H4(OH)(2), J. Chem. Phys., 2002, 116, 18, 7926-7938, https://doi.org/10.1063/1.1457444 . [all data]

Zhao, Yourshaw, et al., 1994
Zhao, Y.X.; Yourshaw, I.; Reiser, G.; Arnold, C.C.; Neumark, D.M., Study of the ArBr(-), ArI(-), and KrI(-) anions and the corresponding neutral van der Waals complexes by anion zero electron kinetic energy, J. Chem. Phys., 1994, 101, 8, 6538, https://doi.org/10.1063/1.468500 . [all data]

Gatland, 1984, 2
Gatland, I.R., Determination of Ion-Atom Potentials from Mobility Experiments. in Swarms of Ions and Electrons In Gases, W. Lindinger, Ed., Springer-Verlag, NY,, 1984, 44. [all data]

Hiraoka, Kudaka, et al., 1991
Hiraoka, K.; Kudaka, I.; Yamabe, S., A Charge-Transfer Complex CH3+ Ar in the Gas Phase, Chem. Phys. Lett., 1991, 178, 1, 103, https://doi.org/10.1016/0009-2614(91)85060-A . [all data]

Norwood, Guo, et al., 1989
Norwood, K.; Guo, J.H.; Luo, G.; Ng, C.Y., A Study of Intramolecular Charge Transfer in Mixed Ar/Co Dimer and Trimer Ions Using the Photoion - Photoelectron Coincidence Method, Chem. Phys., 1989, 129, 1, 109, https://doi.org/10.1016/0301-0104(89)80023-0 . [all data]

Pratt and Dehmer, 1983
Pratt, S.T.; Dehmer, P.M., On the Dissociation Energy of ArCO2+, J. Chem. Phys., 1983, 78, 10, 6336, https://doi.org/10.1063/1.444561 . [all data]

Asher, Bellert, et al., 1994
Asher, R.L.; Bellert, D.; Buthelezi, T.; Brucat, P.J., The Bond Strength of Ni2+, Chem. Phys. Lett., 1994, 224, 5-6, 529, https://doi.org/10.1016/0009-2614(94)00574-5 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Linn, Brom, et al., 1985
Linn, S.H.; Brom, J.M., Jr.; Tzeng, W.-B.; Ng, C.Y., Photoionization study of HgAr, J. Chem. Phys., 1985, 82, 648. [all data]

Andersen, Muntean, et al., 2000
Andersen, A.; Muntean, F.; Walter, D.; Rue, C.; Armentrout, P.B., Collision-Induced Dissociation and Theoretical Studies of Mg+ Complexes with CO, CO2, NH3, CH4, CH3OH, and C6H6, J. Phys. Chem. A, 2000, 104, 4, 692, https://doi.org/10.1021/jp993031t . [all data]

Haynes, Freysinger, et al., 1995
Haynes, C.L.; Freysinger, W.; Armentrout, P.B., Collision-induced dissociation of N3+(X3-) with Ne, Ar, Kr, and Xe, Int. J. Mass Spectrom. Ion Processes, 1995, 149/150, 267. [all data]

Bowen and Eaton, 1988
Bowen, K.H.; Eaton, J.G., Photodetachment Spectroscopy of Negative Cluster Ions, in The Structure of Small Molecules and Ions, Ed. R. Naaman, Z. Vager, Plenum NY, 1988, 1988, p.147-169. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Ion clustering data, Mass spectrum (electron ionization), References