Decane
- Formula: C10H22
- Molecular weight: 142.2817
- IUPAC Standard InChIKey: DIOQZVSQGTUSAI-UHFFFAOYSA-N
- CAS Registry Number: 124-18-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Decane; n-C10H22; UN 2247
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -59.67 ± 0.26 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas | 130.46 ± 0.26 | cal/mol*K | N/A | Scott D.W., 1974 | This reference does not contain the original experimental data. Experimental entropy value is based on the results [ Messerly J.F., 1967] for S(liquid).; GT |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
42.801 | 200. | Scott D.W., 1974, 2 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, Scott D.W., 1974, 2]. This approach gives a good agreement with experimental data available for alkanes. However, large uncertainties could be expected at high temperatures.; GT |
52.079 | 273.15 | ||
55.7 ± 0.1 | 298.15 | ||
55.970 | 300. | ||
71.219 | 400. | ||
85.189 | 500. | ||
97.000 | 600. | ||
106.70 | 700. | ||
114.70 | 800. | ||
121.50 | 900. | ||
127.10 | 1000. | ||
131.90 | 1100. | ||
136.10 | 1200. | ||
140.00 | 1300. | ||
143.00 | 1400. | ||
146.00 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -71.95 ± 0.26 | kcal/mol | Ccb | Prosen and Rossini, 1945 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1620.06 ± 0.21 | kcal/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -71.92 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1620.13 ± 0.36 | kcal/mol | Ccb | Prosen and Rossini, 1944 | Corresponding ΔfHºliquid = -71.85 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -1619.1 | kcal/mol | Ccb | Jessup, 1937 | Corresponding ΔfHºliquid = -72.90 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 101.79 | cal/mol*K | N/A | Finke, Gross, et al., 1954 | DH |
S°liquid | 102.5 | cal/mol*K | N/A | Huffman, Parks, et al., 1931 | Extrapolation below 90 K, 92.05 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
75.155 | 298.9 | Czarnota, 1993 | p = 0.1 MPa.; DH |
77.407 | 318.15 | Banipal, Garg, et al., 1991 | T = 313 to 373 K. p = 0.1 MPa.; DH |
75.397 | 298.15 | Trejo, Costas, et al., 1991 | DH |
75.397 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
75.363 | 298.15 | Costas, Huu, et al., 1988 | DH |
75.29 | 298.23 | Kuznetsov, Kharin, et al., 1988 | T = 293 to 420 K. p = 0.1 MPa. Unsmoothed experimental datum given as 2.214 kJ/kg*K.; DH |
74.919 | 298.15 | Perez-Casas, Aicart, et al., 1988 | DH |
74.840 | 298.15 | Pintos, Bravo, et al., 1988 | DH |
75.397 | 298.15 | Wilhelm, Inglese, et al., 1987 | DH |
74.943 | 298.15 | Gates, Wood, et al., 1986 | T = 298.15 to 368.15 K.; DH |
75.397 | 298.15 | Tardajos, Aicart, et al., 1986 | DH |
74.866 | 298.15 | Baluja, Bravo, et al., 1985 | DH |
75.244 | 298.15 | Costas and Patterson, 1985 | T = 283.15, 298.15, 313.15 K.; DH |
74.806 | 298.15 | Lainez, Rodrigo, et al., 1985 | DH |
74.830 | 298.15 | Lainez, Roux-Desgranges, et al., 1985 | DH |
74.830 | 298.15 | Lainez, Wilhelm, et al., 1985 | DH |
75.031 | 298.15 | Grolier, Inglese, et al., 1984 | DH |
75.098 | 298.15 | Roux, Grolier, et al., 1984 | DH |
74.154 | 293.15 | Siddiqi, Svejda, et al., 1983 | DH |
74.69 | 298.15 | Wilhelm, Inglese, et al., 1982 | DH |
74.76 | 298. | Zaripov, 1982 | T = 298, 323, 363 K.; DH |
74.88 | 298.15 | Grolier, Hamedi, et al., 1979 | DH |
74.50 | 298. | Grigor'ev, Rastorguev, et al., 1975 | T = 300 to 463 K.; DH |
75.160 | 298.15 | Finke, Gross, et al., 1954 | T = 12 to 300 K.; DH |
74.639 | 299.8 | Schlinger and Sage, 1952 | T = 80 to 200°F.; DH |
75.041 | 298.15 | Osborne and Ginnings, 1947 | T = 278 to 318 K.; DH |
74.40 | 297.7 | Huffman, Parks, et al., 1931 | T = 91 to 298 K. Value is unsmoothed experimental datum.; DH |
74.00 | 295.5 | Parks, Huffman, et al., 1930 | T = 242 to 296 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 447.2 ± 0.3 | K | AVG | N/A | Average of 34 out of 43 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 243.3 ± 0.6 | K | AVG | N/A | Average of 23 out of 25 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 243.4 ± 0.3 | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 617.8 ± 0.7 | K | AVG | N/A | Average of 16 out of 18 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 20.8 ± 0.8 | atm | AVG | N/A | Average of 11 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.624 | l/mol | N/A | Ambrose and Tsonopoulos, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 1.60 ± 0.05 | mol/l | N/A | Ambrose and Tsonopoulos, 1995 | |
ρc | 1.67 | mol/l | N/A | Steele, 1992 | Uncertainty assigned by TRC = 0.070 mol/l; TRC |
ρc | 1.60 | mol/l | N/A | Anselme, Gude, et al., 1990 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
ρc | 1.67 | mol/l | N/A | Knipmeyer, Archer, et al., 1989 | Uncertainty assigned by TRC = 0.070 mol/l; TRC |
ρc | 1.595 | mol/l | N/A | Gehrig and Lentz, 1983 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 12.27 ± 0.07 | kcal/mol | AVG | N/A | Average of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 19.2 | kcal/mol | B | Swain, Kwan, et al., 1980 | AC |
ΔsubH° | 19.7 | kcal/mol | H | Bondi, 1963 | See also Chickos, Hosseini, et al., 1993.; AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.261 | 447.3 | N/A | Majer and Svoboda, 1985 | |
11.5 | 339. | GC | Mokbel, Razzouk, et al., 2007 | Based on data from 324. to 402. K.; AC |
11.1 | 352. | N/A | Batiu, 2002 | Based on data from 337. to 376. K.; AC |
12.3 | 299. | C | Viton, Chavret, et al., 1996 | AC |
12.1 | 314. | C | Viton, Chavret, et al., 1996 | AC |
12.0 | 324. | C | Viton, Chavret, et al., 1996 | AC |
11.8 | 334. | C | Viton, Chavret, et al., 1996 | AC |
10.2 | 424. | N/A | Lee, Dempsey, et al., 1992 | Based on data from 409. to 584. K.; AC |
11.5 | 340. | EB,IP | Chirico, Nguyen, et al., 1989 | Based on data from 268. to 490. K.; AC |
12.9 | 267. | A | Stephenson and Malanowski, 1987 | Based on data from 252. to 383. K.; AC |
9.97 | 462. | A | Stephenson and Malanowski, 1987 | Based on data from 447. to 526. K.; AC |
9.23 | 539. | A | Stephenson and Malanowski, 1987 | Based on data from 524. to 617. K.; AC |
10.8 | 388. | N/A | Stephenson and Malanowski, 1987 | Based on data from 373. to 443. K. See also Varushchenko, Belikova, et al., 1970.; AC |
12.0 | 313. | GS | Allemand, Jose, et al., 1986 | Based on data from 298. to 347. K.; AC |
11.9 ± 0.41 | 308. to 351. | N/A | Beckhaus, Ruchardt, et al., 1984 | AC |
13.4 | 258. | N/A | Carruth and Kobayashi, 1973 | Based on data from 243. to 310. K.; AC |
10.9 | 383. | MM | Willingham, Taylor, et al., 1945 | Based on data from 368. to 440. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kcal/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 444. | 17.78 | 0.3238 | 617.4 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
243.49 to 310.59 | 0.20450 | 440.616 | -156.896 | Carruth and Kobayashi, 1973 | Coefficents calculated by NIST from author's data. |
367.63 to 448.27 | 4.07286 | 1501.268 | -78.67 | Williamham, Taylor, et al., 1945 |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
20.3 | 243. | B | Bondi, 1963 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
6.8631 | 243.51 | N/A | Finke, Gross, et al., 1954 | DH |
6.60 | 243. | DSC | Marti, Kaisersberger, et al., 2004 | AC |
6.86 | 243.5 | N/A | Domalski and Hearing, 1996 | AC |
6.8781 | 243.1 | N/A | Huffman, Parks, et al., 1931 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
28.184 | 243.51 | Finke, Gross, et al., 1954 | DH |
28.200 | 243.5 | Domalski and Hearing, 1996 | CAL |
28.30 | 243.1 | Huffman, Parks, et al., 1931 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: H2 + C10H20 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -29.69 ± 0.29 | kcal/mol | Chyd | Rogers and Skanupong, 1974 | liquid phase; solvent: Hexane |
ΔrH° | -29.89 ± 0.31 | kcal/mol | Chyd | Bretschneider and Rogers, 1970 | liquid phase; solvent: galcial acetic acid |
By formula: 3H2 + C10H16 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -95.6 ± 0.5 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid |
By formula: 3H2 + C10H16 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -95.9 ± 0.2 | kcal/mol | Chyd | Skinner and Snelson, 1959 | liquid phase; solvent: Acetic acid |
By formula: H2 + C10H20 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -28.56 ± 0.35 | kcal/mol | Chyd | Rogers and Siddiqui, 1975 | liquid phase; solvent: n-Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -65.27 ± 0.51 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64.86 ± 0.47 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64.39 ± 0.41 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -64.10 ± 0.47 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
By formula: 2H2 + C10H18 = C10H22
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -69.65 ± 0.51 | kcal/mol | Chyd | Rogers, Dagdagan, et al., 1979 | liquid phase; solvent: Hexane |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.00021 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
0.00014 | L | N/A |
Gas phase ion energetics data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data evaluated as indicated in comments:
L - Sharon G. Lias
Data compiled as indicated in comments:
LL - Sharon G. Lias and Joel F. Liebman
LBLHLM - Sharon G. Lias, John E. Bartmess, Joel F. Liebman, John L. Holmes, Rhoda D. Levin, and W. Gary Mallard
LLK - Sharon G. Lias, Rhoda D. Levin, and Sherif A. Kafafi
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
IE (evaluated) | 9.65 | eV | N/A | N/A | L |
Ionization energy determinations
IE (eV) | Method | Reference | Comment |
---|---|---|---|
9.73 | EST | Luo and Pacey, 1992 | LL |
9.65 ± 0.10 | EVAL | Lias, 1982 | LBLHLM |
9.54 ± 0.15 | EQ | Mautner(Meot-Ner), Sieck, et al., 1981 | LLK |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Sadtler Research Labs Under US-EPA Contract |
State | gas |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 114147 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Lee's RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5MS | 159.66 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 10. K/min; Tend: 310. C |
Capillary | DB-5MS | 163.22 | Chen, Keeran, et al., 2002 | 30. m/0.25 mm/0.5 μm, 40. C @ 1. min, 4. K/min; Tend: 310. C |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Scott D.W., 1974
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Messerly J.F., 1967
Messerly J.F.,
Low-temperature thermal data for n-pentane, n-heptadecane, and n-octadecane. Revised thermodynamic functions for the n-alkanes, C5-C18,
J. Chem. Eng. Data, 1967, 12, 338-346. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Prosen and Rossini, 1944
Prosen, E.J.; Rossini, F.D.,
Heats of combustion of eight normal paraffin hydrocarbons in the liquid state,
J. Res. NBS, 1944, 33, 255-272. [all data]
Jessup, 1937
Jessup, R.S.,
Heats of combustion of the liquid normal paraffin hydrocarbons from hexane to dodecane,
J. Res. NBS, 1937, 18, 114-128. [all data]
Finke, Gross, et al., 1954
Finke, H.L.; Gross, M.E.; Waddington, G.; Huffman, H.M.,
Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane,
J. Am. Chem. Soc., 1954, 76, 333-341. [all data]
Huffman, Parks, et al., 1931
Huffman, H.M.; Parks, G.S.; Barmore, M.,
Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons,
J. Am. Chem. Soc., 1931, 53, 3876-3888. [all data]
Czarnota, 1993
Czarnota, I.,
Heat capacity of decane at high pressures,
J. Chem. Thermodynam., 1993, 25, 639-642. [all data]
Banipal, Garg, et al., 1991
Banipal, T.S.; Garg, S.K.; Ahluwalia, J.C.,
Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 to 373.15 K and at pressures up to 10 MPa,
J. Chem. Thermodynam., 1991, 23, 923-931. [all data]
Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D.,
Excess heat capacity of organic mixtures, Internat. DATA Series,
Selected Data Mixt., 1991, Ser. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Costas, Huu, et al., 1988
Costas, M.; Huu, V.T.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E.,
Liquid structure and second-order mixing functions for l-chloronaphthalene with linear and branched alkanes, J. Chem. Soc.,
Faraday Trans., 1988, 1 84(5), 1603-1616. [all data]
Kuznetsov, Kharin, et al., 1988
Kuznetsov, M.A.; Kharin, V.E.; Gerasimov, A.A.; Grigor'ev, M.D.,
Isobaric heat capacity of n-alkanes C7 to C10 at temperatures 293 to 630 K and pressures up to 60 MPa, Izv. Vyssh. Ucheb. Zabed.,
Neft i Gaz, 1988, 31(11), 49-52. [all data]
Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M.,
Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser.,
Sel. Data Mixtures, 1988, (2)A, 123. [all data]
Pintos, Bravo, et al., 1988
Pintos, M.; Bravo, R.; Baluja, M.C.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Can. J. Chem., 1988, 1179. [all data]
Wilhelm, Inglese, et al., 1987
Wilhelm, E.; Inglese, A.; Roux, A.H.; Grolier, J.-P.E.,
Excess enthalpy, excess heat capacity and excess volume of 1,2,4-trimethylbenzene +, and 1-methylnaphthalene + an n-alkane,
Fluid Phase Equilibria, 1987, 34, 49-67. [all data]
Gates, Wood, et al., 1986
Gates, J.A.; Wood, R.H.; Cobos, J.C.; Casanova, C.; Roux, A.H.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Densities and heat capacities of 1-butanol + n-decane from 298 K to 400 K,
Fluid Phase Equilib., 1986, 27, 137-151. [all data]
Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D.,
Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc.,
Faraday Trans., 1986, 1 82, 2977-2987. [all data]
Baluja, Bravo, et al., 1985
Baluja, M.C.; Bravo, R.; Pintos, M.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Unusual dependence on concentration of the excess heat capacities of ester solutions in alkanes,
Calorim. Anal. Therm., 1985, 16, 138-144. [all data]
Costas and Patterson, 1985
Costas, M.; Patterson, D.,
Self-association of alcohols in inert solvents, J. Chem. Soc.,
Faraday Trans. 1, 1985, 81, 635-654. [all data]
Lainez, Rodrigo, et al., 1985
Lainez, A.; Rodrigo, M.; Roux, A.H.; Grolier, J.-P.E.; Wilhelm, E.,
Relations between structure and thermodynamic properties. Heat capacities of polar substances (nitrobenzene and benzonitrile) in alkane solutions,
Calorim. Anal. Therm., 1985, 16, 153-158. [all data]
Lainez, Roux-Desgranges, et al., 1985
Lainez, A.; Roux-Desgranges, G.; Grolier, J.-P.E.; Wilhelm, E.,
Mixtures of alkanes with polar molecules showing integral rotation: an unusual composition dependence of CpE of 1,2-dichloroethane + an n-alkane,
Fluid Phase Equilib., 1985, 20, 47-56. [all data]
Lainez, Wilhelm, et al., 1985
Lainez, A.; Wilhelm, E.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Excess molar quantities of (a halogenated n-alkane + an n-alkane). A comparative study of mixtures containing either 1-chlorobutane or 1,4-dichlorobutane,
J. Chem. Thermodynam., 1985, 17, 1153-1161. [all data]
Grolier, Inglese, et al., 1984
Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess molar heat capacities of (1,4-dioxane + an n-alkane): an unusual composition dependence,
J. Chem. Thermodynam., 1984, 16, 67-71. [all data]
Roux, Grolier, et al., 1984
Roux, A.H.; Grolier, J.-P.E.; Inglese, A.; Wilhelm, E.,
Excess molar enthalpies, excess molar heat capacities and excess molar volumes of (fluorobenzene + an n-alkane),
Ber. Bunsenges. Phys. Chem., 1984, 88, 986-992. [all data]
Siddiqi, Svejda, et al., 1983
Siddiqi, M.A.; Svejda, P.; Kohler, F.,
A generalized van der Waals equation of state II. Excess heat capacities of mixtures containing cycloalkanes (C5,C6), methylcycloalkanes (C5,C6) and n-decane,
Ber. Bunsenges. Phys. Chem., 1983, 87, 1176-1181. [all data]
Wilhelm, Inglese, et al., 1982
Wilhelm, E.; Inglese, A.; Quint, J.R.; Grolier, J.-P.E.,
Molar excess volumes and excess heat capacities of (1,2,4-trichlorobenzene + an alkane),
J. Chem. Thermodynam., 1982, 14, 303-308. [all data]
Zaripov, 1982
Zaripov, Z.I.,
Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]
Grolier, Hamedi, et al., 1979
Grolier, J-P.E.; Hamedi, M.H.; Wilhelm, E.; Kehiaian, H.V.,
Excess heat capacities of binary mixtures of carbon tetrachloride with n-alkanes at 298.15 K,
Thermochim. Acta, 1979, 31, 79-84. [all data]
Grigor'ev, Rastorguev, et al., 1975
Grigor'ev, B.A.; Rastorguev, Yu.L.; Yanin, G.S.,
Experimental determination of the isobaric specific heat of n-alkanes,
Iz. Vyssh. Uchebn. Zaved. Neft Gaz 18, 1975, No.10, 63-66. [all data]
Schlinger and Sage, 1952
Schlinger, W.G.; Sage, B.H.,
Isobaric heat capacities at bubble point. cis-2-butene, isopropylbenzene, and n-decane,
Ind. Eng. Chem., 1952, 44, 2454-2456. [all data]
Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C.,
Measurements of heat of vaporization and heat capacity of a number of hydrocarbons,
J. Res. NBS, 1947, 39, 453-477. [all data]
Parks, Huffman, et al., 1930
Parks, G.S.; Huffman, H.M.; Thomas, S.B.,
Thermal data on organic compounds. VI. The heat capacities, entropies and free energies of some saturated, non-benzenoid hydrocarbons,
J. Am. Chem. Soc., 1930, 52, 1032-1041. [all data]
Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C.,
Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes,
J. Chem. Eng. Data, 1995, 40, 531-546. [all data]
Steele, 1992
Steele, W.V.,
Personal Commun. 1992 1992, 1992. [all data]
Anselme, Gude, et al., 1990
Anselme, M.J.; Gude, M.; Teja, A.S.,
The Critical Temperatures and Densities of the n-Alkanes from Pentane to Octadecane,
Fluid Phase Equilib., 1990, 57, 317-26. [all data]
Knipmeyer, Archer, et al., 1989
Knipmeyer, S.E.; Archer, D.G.; Chirico, R.D.; Gammon, B.E.; Hossenlopp, I.A.; Nguyen, A.; Smith, N.K.; Steele, W.V.; Strube, M.M.,
High-temperature enthalpy and critical property measurements using differential scanning calorimeter,
Fluid Phase Equilib., 1989, 52, 185. [all data]
Gehrig and Lentz, 1983
Gehrig, M.; Lentz, H.,
Values of the pressure-molar volume-temperature relationship for n-decane up to 300 MPa and 673 K,
J. Chem. Thermodyn., 1983, 15, 1159-1167. [all data]
Swain, Kwan, et al., 1980
Swain, H.A.; Kwan, Chiu-Yin; Sung, Ho-Nan,
Measurement of vapor pressures from 20 to 30.degree.C of long-chain peroxy acids,
J. Phys. Chem., 1980, 84, 11, 1347-1349, https://doi.org/10.1021/j100448a012
. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Chickos, Hosseini, et al., 1993
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.; Liebman, Joel F.,
Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids,
Struct Chem, 1993, 4, 4, 271-278, https://doi.org/10.1007/BF00673701
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Mokbel, Razzouk, et al., 2007
Mokbel, Ilham; Razzouk, Antonio; Hajjaji, Ahmed; Msakni, Nizar; Jose, Jacques,
A Gas Saturation Apparatus for Very Low Vapor or Sublimation Pressure Measurements (10 -3 Pa): Vapor-Liquid Equilibria of n -Alkanes ( n -C 10 , n -C 24 , n -C 28 ),
J. Chem. Eng. Data, 2007, 52, 5, 1720-1725, https://doi.org/10.1021/je7001122
. [all data]
Batiu, 2002
Batiu, I.,
Vapor--liquid equilibria in the binary systems n-decane+(-)-menthone and n-decane+(+)-fenchone at temperatures between 344.45 and 390.75 K,
Fluid Phase Equilibria, 2002, 198, 1, 111-121, https://doi.org/10.1016/S0378-3812(01)00759-2
. [all data]
Viton, Chavret, et al., 1996
Viton, C.; Chavret, M.; Jose, J.,
Enthalpies of vaporization of normal alkanes from nonane to pentadecane at temperatures from 298 to 359 K,
ELDATA: Int. Electron. J. Phys. Chem. Data, 1996, 2, 3, 103. [all data]
Lee, Dempsey, et al., 1992
Lee, Chang Ha; Dempsey, Dennis M.; Mohamed, Rahoma S.; Holder, Gerald D.,
Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin,
J. Chem. Eng. Data, 1992, 37, 2, 183-186, https://doi.org/10.1021/je00006a012
. [all data]
Chirico, Nguyen, et al., 1989
Chirico, R.D.; Nguyen, A.; Steele, W.V.; Strube, M.M.,
Vapor pressure of n-alkanes revisited. New high-precision vapor pressure data on n-decane, n-eicosane, and n-octacosane,
J. Chem. Eng. Data, 1989, 34, 149-156. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Varushchenko, Belikova, et al., 1970
Varushchenko, R.M.; Belikova, N.A.; Skuratov, S.M.; Plate, A.F.,
Zh. Fiz. Khim., 1970, 44, 12, 3022. [all data]
Allemand, Jose, et al., 1986
Allemand, Nadine; Jose, Jacques; Merlin, J.C.,
Mesure des pressions de vapeur d'hydrocarbures C10 A C18n-alcanes etn-alkylbenzenes dans le domaine 3-1000 pascal,
Thermochimica Acta, 1986, 105, 79-90, https://doi.org/10.1016/0040-6031(86)85225-X
. [all data]
Beckhaus, Ruchardt, et al., 1984
Beckhaus, H.D.; Ruchardt, C.; Smisek, M.,
Anwendung von kraftfeldrechnungen. VI. Verbrennungsenthalpie und bildungsenthalpie von 4-carbomethoxy-homocuban und homocuban-4-carbonsaure-ein testfall zur berechnung von bildungsenthalpien nach dem kraftfeldverfahren,
Thermochim. Acta, 1984, 79, 149-159. [all data]
Carruth and Kobayashi, 1973
Carruth, Grant F.; Kobayashi, Riki,
Vapor pressure of normal paraffins ethane through n-decane from their triple points to about 10 mm mercury,
J. Chem. Eng. Data, 1973, 18, 2, 115-126, https://doi.org/10.1021/je60057a009
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009
. [all data]
Marti, Kaisersberger, et al., 2004
Marti, E.; Kaisersberger, E.; Emmerich, W.-D.,
New aspects of thermal analysis, Part I. Resolution of DSC and means for its optimization,
Journal of Thermal Analysis and Calorimetry, 2004, 77, 3, 905-934, https://doi.org/10.1023/B:JTAN.0000041669.06816.36
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Rogers and Skanupong, 1974
Rogers, D.W.; Skanupong, S.,
Heats of hydrogenation of sixteen terminal monoolefins. The alternating effect,
J. Phys. Chem., 1974, 78, 2569-2572. [all data]
Bretschneider and Rogers, 1970
Bretschneider, E.; Rogers, D.W.,
A new microcalorimeter: heats of hydrogenation of four monoolefins,
Mikrochim. Acta, 1970, 482-490. [all data]
Skinner and Snelson, 1959
Skinner, H.A.; Snelson, A.,
Heats of hydrogenation Part 3.,
Trans. Faraday Soc., 1959, 55, 405-407. [all data]
Rogers and Siddiqui, 1975
Rogers, D.W.; Siddiqui, N.A.,
Heats of hydrogenation of large molecules. I. Esters of unsaturated fatty acids,
J. Phys. Chem., 1975, 79, 574-577. [all data]
Rogers, Dagdagan, et al., 1979
Rogers, D.W.; Dagdagan, O.A.; Allinger, N.L.,
Heats of hydrogenation and formation of linear alkynes and a molecular mechanics interpretation,
J. Am. Chem. Soc., 1979, 101, 671-676. [all data]
Luo and Pacey, 1992
Luo, Y.-R.; Pacey, P.D.,
Effects of alkyl substitution on ionization energies of alkanes and haloalkanes and on heats of formation of their molecular cations. Part 2. Alkanes and chloro-, bromo- and iodoalkanes,
Int. J. Mass Spectrom. Ion Processes, 1992, 112, 63. [all data]
Lias, 1982
Lias, S.G.,
Thermochemical information from ion-molecule rate constants,
Ion Cyclotron Reson. Spectrom. 1982, 1982, 409. [all data]
Mautner(Meot-Ner), Sieck, et al., 1981
Mautner(Meot-Ner), M.; Sieck, L.W.; Ausloos, P.,
Ionization of normal alkanes: Enthalpy, entropy, structural, and isotope effects,
J. Am. Chem. Soc., 1981, 103, 5342. [all data]
Chen, Keeran, et al., 2002
Chen, P.H.; Keeran, W.S.; Van Ausdale, W.A.; Schindler, D.R.; Roberts, D.W.,
Application of Lee retention indices to the confirmation of tentatively identified compounds from GC/MS analysis of environmental samples, Technical paper, Analytical Services Division, Environmental ScienceEngineering, Inc, PO Box 1703, Gainesville, FL 32602, 2002, 11. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Gas phase ion energetics data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid IE (evaluated) Recommended ionization energy Pc Critical pressure S°gas Entropy of gas at standard conditions S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.